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Myeloperoxidase is a major neutrophil antimicrobial protein,
but its role in immunity is often overlooked because individuals
deficient in this enzyme are usually in good health. Within neu-
trophil phagosomes, myeloperoxidase uses superoxide gener-
ated by the NADPH oxidase to oxidize chloride to the potent
bactericidal oxidant hypochlorous acid (HOCl). In this study,
using phagocytosis assays and LC-MS analyses, we monitored
GSH oxidation in Pseudomonas aeruginosa to gauge their expo-
sure to HOCl inside phagosomes. Doses of reagent HOCl that
killed most of the bacteria oxidized half the cells’ GSH, produc-
ing mainly glutathione disulfide (GSSG) and other low-mole-
cular-weight disulfides. Glutathione sulfonamide (GSA), a
HOCl-specific product, was also formed. When neutrophils
phagocytosed P. aeruginosa, half of the bacterial GSH was lost.
Bacterial GSA production indicated that HOCl had reacted with
the bacterial cells, oxidized their GSH, and was sufficient to be
solely responsible for bacterial killing. Inhibition of NADPH
oxidase and myeloperoxidase lowered GSA formation in the
bacterial cells, but the bacteria were still killed, presumably by
compensatory nonoxidative mechanisms. Of note, bacterial
GSA formation in neutrophils from patients with cystic fibrosis
(CF) was normal during early phagocytosis, but it was dimin-
ished at later time points, which was mirrored by a small
decrease in bacterial killing. In conclusion, myeloperoxidase
generates sufficient HOCl within neutrophil phagosomes to kill
ingested bacteria. The unusual kinetics of phagosomal HOCl
production in CF neutrophils confirm a role for the cystic
fibrosis transmembrane conductance regulator in maintaining
HOCl production in neutrophil phagosomes.

Neutrophils, the most abundant white blood cells in circula-
tion, play an indispensable role in host defense (1). Their
importance in immunity is underscored by the severe infec-
tions that afflict individuals with neutropenia. These granulo-
cytes are attracted to sites of infection where they phagocytize,

kill, and digest bacteria and fungi. To kill invading pathogens,
neutrophils have an arsenal of antimicrobial strategies, includ-
ing generation of microbicidal oxidants (2). Oxidative killing
requires assembly of the NADPH oxidase on the phagosomal
membrane, which uses cytosolic NADPH to reduce molecular
oxygen within phagosomes to superoxide (O2

. ) (3, 4). The neu-
trophil granule enzyme myeloperoxidase (MPO)2 dismutates
superoxide to hydrogen peroxide, which it then uses to oxidize
chloride to hypochlorous acid, the most potent antimicrobial
oxidant produced in the neutrophil phagosome (3, 5). Hypo-
chlorous acid reacts rapidly with amino acid side chains, par-
ticularly cysteine and methionine, lipids, and carbohydrates
(6 –10). However, the precise contribution hypochlorous acid
makes to killing of ingested bacteria is far from resolved. Also,
individuals with MPO deficiency generally do not suffer from
persistent or severe infections (11). Consequently, MPO’s role
in host defense is not fully appreciated and has even been chal-
lenged (12).

There is, however, a wealth of data that supports a major role
for MPO and hypochlorous acid in host defense. First, Rosen
and collaborators published two compelling studies (13, 14)
that indicate MPO is bactericidal during phagocytosis, but it
may play a redundant role in killing depending on the suscep-
tibility of the particular bacteria to other killing mechanisms.
They found that although Escherichia coli were killed nonoxi-
datively, there was sufficient MPO-dependent inactivation of
bacterial DNA synthesis that MPO could have killed the bacte-
ria if acting alone in the phagosome (13). In later work, they
found that MPO-mediated bacterial methionine oxidation con-
tributes to killing of E. coli by neutrophils and that methionine
sulfoxide reductases modulate bacterial susceptibility to hypo-
chlorous acid (14). Although these studies provided strong evi-
dence that MPO contributes to oxidative killing within phago-
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somes, they did not confirm a role for hypochlorous acid in
killing because the targets measured in both cases could have
been oxidized by other oxidants.

To directly probe the involvement of hypochlorous acid in
the bactericidal action of neutrophils, Hurst and co-workers
used fluorescein-coated beads to specifically measure the oxi-
dant inside phagosomes. By measuring fluorescein chlorina-
tion, they demonstrated that hypochlorous acid is formed in
phagosomes and at sufficient levels to kill ingested bacteria (15).
Then hypochlorous acid was shown to chlorinate tyrosine res-
idues in the proteins of E. coli and Staphylococcus aureus
ingested by neutrophils (16, 17). This work confirmed that
hypochlorous acid is formed in phagosomes and, importantly,
reacts with the bacterium. Tyrosine chlorination was moni-
tored in phagocytosed Pseudomonas aeruginosa (PsA) and was
found to be low in neutrophils from patients with cystic fibrosis
(CF) (18). This result has important clinical ramifications
because defective hypochlorous acid production in CF neutro-
phils may contribute to the severe and persistent lung infec-
tions of these young patients (19).

One caveat from our earlier work with S. aureus is that not
enough hypochlorous acid appeared to react with ingested
bacteria to be responsible for killing. This conclusion was
based on our finding that formation of 3-chlorotyrosine in
bacterial proteins was low compared with levels obtained
with lethal doses of reagent hypochlorous acid. Kinetic mod-
eling of hypochlorous acid’s reactivity in the phagosomes
also suggested that the majority should react with neutrophil
proteins and only a minor quantum with the bacterium (4).
This prediction was supported by experimental evidence
showing that neutrophil proteins inside phagosomes are
chlorinated to a much higher degree than bacterial proteins
(20). Furthermore, there was undetectable oxidation of the
staphyloxanthin, the golden pigment of S. aureus, when
these bacteria were phagocytosed and killed by neutrophils,
despite this carotenoid being bleached at lethal doses of the
oxidant (21). However, the major limitation of our studies
with S. aureus is that chlorination of tyrosine residues and
staphyloxanthin is slow compared with other reactions of
hypochlorous acid (8, 21). Chlorination should account for a
small percentage only of the amount of oxidant that reacted
with bacteria. Hence, we may have underestimated how
much hypochlorous acid phagocytosed bacteria were ex-
posed to inside neutrophil phagosomes.

To overcome these limitations, we have now chosen to
investigate hypochlorous acid– dependent oxidation of bac-
terial low-molecular-weight thiols during phagocytosis of
PsA by neutrophils. Sulfur-containing amino acids, cysteine
and methionine, and low-molecular-weight weight (LMW)
thiols are the kinetically preferred targets for this oxidant
(22). The most abundant LMW thiol in PsA is glutathione
(GSH), but it also has coenzyme A (CoA) and cysteine (Cys)
(23). Hypochlorous acid oxidizes GSH to a range of products,
including glutathione sulfonamide (GSA), which although a
minor product is specific to hypochlorous acid (24). Moni-
toring oxidation of LMW thiols should more accurately
reflect the contribution hypochlorous acid makes to the bac-
tericidal capability of neutrophils because it will account for

a greater proportion of hypochlorous acid that reacts with
the bacteria than the previous targets we or others have mea-
sured. We have also used this approach to assess whether
hypochlorous acid production is impaired in CF neutrophils
as reported earlier (18).

Results

Quantifying low-molecular-weight thiols GSH, CoA, and
cysteine in PAO1

Based on the high rate constant reported for the reaction of
thiols with hypochlorous acid (25), we hypothesized that
microbial LMW thiols are readily oxidized when bacteria are
exposed to this oxidant. To assess the effect of hypochlorous
acid on LMW thiols in the PsA strain PAO1, the most abundant
LMW thiols reported for this bacterial species, i.e. glutathione
(GSH), coenzyme A (CoA), and cysteine (23), were quantified
by LC with MS (LC-MS). To prevent artifactual oxidation, bac-
teria suspensions were treated with NEM to alkylate free thiols
prior to lysis. GSH–NEM was measured in the lysate using an
isotope-dilution LC-MS method previously established in our
laboratory (26). CoA–NEM and cysteine–NEM were semi-
quantified by specific multiple reaction monitoring (MRM)-
based LC-MS methods set up for this study. Representative
LC-MS chromatograms for lysates of untreated and hypochlo-
rous acid-treated PAO1 are shown in the supporting Informa-
tion, along with chromatograms for CoA–NEM and cysteine–
NEM standards (Fig. S1).

The content of GSH, CoA, and cysteine in PAO1 lysates was
132 � 18, 55 � 9, and 5 � 2 pmol/108 bacteria corresponding to
intracellular concentrations of 0.34 � 0.05, 0.14 � 0.02, and
0.01 � 0.005 mM, respectively (mean � S.E., n � 6) (Table 1).
Intracellular thiol concentrations measured here are in agree-
ment with previously reported concentrations of GSH, CoA,
and cysteine measured as thiol-monobimane derivatives by
HPLC in PsA strains ATCC 10145 (0.37, 0.03, and 0.23 mM,
respectively) and UCSD 24 (2.1, 0.43, and 0.27 mM, respec-
tively) (23, 27). In preliminary work, we found that up to one-
third of the total GSH concentration could be measured on the
outside of the bacteria, i.e. in the medium, indicating that PAO1
exports GSH.

Loss of low-molecular-weight thiols in PAO1 treated with
hypochlorous acid

Next we measured GSH, CoA, and cysteine in PAO1 treated
with bactericidal concentrations of hypochlorous acid. Fig. 1A
shows the loss of bacterial viability with increasing concentra-
tions of hypochlorous acid. The signal for all the reduced LMW

Table 1
Thiol content of PsA strain PAO1 (ATCC 47085)
The mean is �S.E., n � 6.

Thiol
Thiol content Intracellular thiol

concentrationb

(mM)pmol/108 bacteria �mol/g dry weighta

GSH 132 � 18 1.01 � 0.1 0.34 � 0.05
CoA 55 � 9 0.42 � 0.1 0.14 � 0.02
Cysteine 5 � 2 0.03 � 0.02 0.01 � 0.005

a Data are based on a dry weight of 0.13 mg per 1 � 108 bacteria.
b Data assume a cylindrical shape with a diameter and length of 1 and 5 �m, re-

spectively, per bacterium, i.e. a volume of 3.9 � 10�4 ml per 1 � 108 bacteria.
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thiols decreased over the same concentration range of oxidant
in a dose-dependent manner (Fig. 1, B–D). Killing was observed
at lower doses of hypochlorous acid than the loss of LMW thi-
ols. At the LD50 (2.3 nmol/108 bacteria), none of the LMW
thiols had undergone significant loss. One hundred percent
killing was achieved by a dose of hypochlorous acid that caused
half of reduced thiols to be depleted (�4 nmol/108 bacteria).

GSH oxidation products in PAO1 treated with hypochlorous
acid

Because GSH is the most abundant LMW thiol in PAO1, we
determined GSH oxidation products that could account for the
loss of its reduced form observed in hypochlorous acid–treated
PAO1 (Fig. 2A). We measured glutathione disulfide (GSSG, Fig.
2B), glutathione present as a mixed disulfide with other LMW
thiols (GSSX), or with protein thiols (GSSP) and glutathione
sulfonamide (GSA), an oxidation product of GSH specific to
hypochlorous acid (24). All of the oxidized glutathione species
increased upon hypochlorous acid exposure in a concentra-
tion-dependent manner (Fig. 2, B–E).

The majority of GSSX is likely to encompass the mixed disul-
fide with CoA, i.e. CoASSG, because CoA is present at about
one-third of the concentration of GSH (55 versus 132 pmol/108

bacteria, respectively). CoASSG could not be measured in
PAO1 lysates due to the likely instability of this analyte during
sample processing. We could, however, measure the mixed
disulfide of GSH with cysteine (CysSSG), and we found its levels
to increase with increasing doses of hypochlorous acid (Fig. 2F).

GSSX and GSSG were the major oxidation products of GSH
largely accounting for the loss of the reduced form upon treat-
ment with hypochlorous acid, whereas GSSP and GSA were
minor products (Fig. 2G). For example, at a dose of 10 nmol of
hypochlorous acid/108 bacteria, at which GSH was nearly
depleted to only 6% of the total glutathione, GSSX, GSSG,
GSSP, and GSA amounted to 47, 39, 2, and 6%, respectively (Fig.
2G). The sum of GSH, 2�GSSG, GSSX, GSSP, and GSA in
PAO1 treated with increasing concentrations of hypochlorous
acid equaled the GSH concentration in untreated PAO1 indi-
cating that all major GSH oxidation species were accounted for
by our measurements (Fig. 2H).

13C labeling of PAO1

To evaluate oxidation of bacterial GSH during phagocytosis
of PAO1 by human neutrophils, we had to distinguish bacte-
rial GSH from GSH present in neutrophils. To achieve this,
we grew PAO1 in complete medium containing exclusively
carbon-13 and adapted our LC-MS assay to measure gluta-
thione species containing the heavy carbon isotope (Fig. S2,
A and B). PAO1 grown in 13C-medium produced as much
GSH as LB-grown PAO1, and all 10 carbons were replaced
with the heavy isotope (Fig. S2, A and B). The hypochlorous
acid-induced oxidation pattern of glutathione of PAO1
grown in the 13C-medium (Fig. S2, A–C) and the extent of
killing was not significantly different from PAO1 grown in
LB medium (Fig. S2D). Methionine (0.5 mM) was able to

Figure 1. Killing of P. aeruginosa by reagent HOCl and loss of low-molecular-weight thiols. Bacteria were treated with increasing concentrations of HOCl
in HBSS at 37 °C for 10 min with end– over– end rotation. The reaction was stopped by the addition of 1 mM methionine, and viable bacteria were determined
by the CFU plating assay. A, % survival is expressed as (CFUtreated/CFUuntreated) � 100. After exposure to HOCl, NEM (20 mM) and protease inhibitors were added,
and the bacteria were lysed by sonication for 5 min. The NEM adducts of reduced glutathione (GSH) (B), cysteine (Cys) (C), and coenzyme A (CoA) (D) were
measured by LC-MS/MS and expressed as a percentage of untreated control. Data are presented as mean � S.E. of at least five independent experiments.
Dose-response curves with variable slope (four parameters) were fitted. The line fitted to the survival data in A is also shown as a dotted line in B–D. A significant
difference when compared with untreated control was identified by ANOVA with Dunnett’s multiple comparison test and is indicated by asterisk (*, p � 0.01;
**, p � 0.01; and ***, p � 0.001).
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scavenge hypochlorous acid and prevent the oxidation of
bacterial GSH (Fig. S2C).

Oxidation of GSH in 13C-labeled PAO1 during phagocytic by
human neutrophils

Oxidation of bacterial GSH during phagocytosis by human
neutrophils was monitored by measuring 13C-containing glu-
tathione species (Fig. 3). GSH decreased over time with half the
amount lost after 30 min (Fig. 3A). GSSG (Fig. 3B) and GSSX
(Fig. 3C) increased with time, but did not reach the same levels
observed with hypochlorous acid treatment. GSA, in contrast,
reached similar levels in the hypochlorous acid and neutrophil

systems (Fig. 3D). GSSP was not measured as it was found to be
only a minor oxidation product and would be difficult to detect
in the presence of excess neutrophil proteins. As with reagent
hypochlorous acid, GSSX was the major oxidation product of
GSH when PAO1 was phagocytosed by neutrophils (Fig. 3E).
The recovery of total glutathione (GSH � 2 � GSSG �
GSSX � GSA) was 98, 76, and 63% at 5, 15, and 30 min, respec-
tively, when compared with the control at 0 min (Fig. S3).

The loss of GSH during phagocytosis by neutrophils could be
diminished by pretreatment of neutrophils with inhibitors of
the NADPH oxidase (DPI) or MPO (AZM198 and azide) (Fig.
4A). Methionine, a scavenger of extracellular hypochlorous

Figure 2. GSH oxidation in P. aeruginosa treated with reagent HOCl. Bacteria were grown overnight in LB and treated with increasing concentrations of
HOCl in HBSS at 37 °C for 10 min with end– over– end rotation. The reaction was stopped by the addition of 1 mM methionine. NEM (20 mM) and protease
inhibitors were added, and the bacteria were lysed by sonication for 5 min. GSH (reduced glutathione) (A), GSSG (glutathione disulfide) (B), GSSX (glutathione
present in a mixed disulfide with another low molecular thiol) (C), GSSP (glutathione present in a disulfide with proteins) (D), GSA (glutathione sulfonamide) (E)
were quantified by stable isotope dilution LC-MS/MS. F, Cys-SG (glutathione present in a mixed disulfide with cysteine) was detected by LC-MS/MS, and the
area under the curve (AUC) was determined and expressed relative to the untreated control. Data are presented as mean � S.D. of at least four independent
experiments, and a dose response with variable slope (four parameters) was fitted. A significant difference when compared with untreated control was
identified by ANOVA with Dunnett’s multiple comparison test and is indicated by * (p � 0.05), ** (p � 0.01), or *** (p � 0.001). G, GSSG was expressed as GSH
equivalents by multiplying by two. Total glutathione was calculated by [GSH] � [GSSX] � 2�[GSSG] � [GSSP] � [GSA]. Individual glutathione species are
presented as a percentage of total glutathione. The mean of at least four different experiments is shown. H, total glutathione was calculated as in G, and the
mean � S.D. of at least four independent experiments is shown.
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acid (Fig. S2C), did not have this protective effect. Similarly,
DPI pretreatment lowered the levels of oxidized glutathione
species GSSG and GSSX and prevented formation of GSA (Fig.
4, B–D). The MPO inhibitors AZM198 and azide substan-
tially decreased GSA formation, and azide also lowered GSSG.
The decrease in GSA with the MPO inhibitors was not as great
as with DPI suggesting an insufficient delivery of these inhibi-
tors to the phagosome or incomplete inhibition of MPO.
Methionine also inhibited production of GSA, albeit to a lesser
degree than the other inhibitors, indicating that a small propor-
tion of GSA stems from oxidation of extracellular GSH. Collec-
tively, these results show that oxidation of bacterial GSH occurs
during neutrophil phagocytosis. The oxidation process is
MPO-dependent and predominantly intracellular. Formation
of bacterial GSA during phagocytosis can thus be used to assess
the hypochlorous acid–production capacity of neutrophils.

To relate GSH oxidation to phagocytosis and bacterial kill-
ing, we performed a two-step killing assay measuring both
extracellular and surviving intracellular bacteria. PAO1 was
readily taken up by human neutrophils (Fig. 5A). The majority
of bacteria (	99%) was killed within 30 min (Fig. 5B), at which
point about half of the reduced GSH was depleted (Fig. 3A), and
significant amounts of GSA were formed. This mirrored the
results from hypochlorous acid treatment, where 50% depletion

of reduced GSH and comparable levels of GSA were observed at
doses that caused complete loss of bacterial viability (Figs. 1, A
and B, and 2E).

When neutrophils were pretreated with the NADPH oxidase
inhibitor DPI, significantly more bacteria survived phagocyto-
sis (Fig. 5C). The MPO inhibitor AZM198 had no effect on
killing (Fig. 5C). Although pretreatment with the MPO inhibi-
tor azide appeared to increase bacterial survival slightly, this
effect was not statistically significant (Fig. 5C).

Oxidation of PAO1 GSH is dependent on functional CFTR

Having demonstrated that the formation of bacterial GSA is
a sensitive marker of hypochlorous acid production by neutro-
phils during phagocytosis of PAO1, we compared formation of
GSA and bacterial survival between neutrophils from healthy
individuals and those with CF. We used neutrophils from CF
patients with the CFTR mutations 
F508 and G551D. The

F508 mutation causes 100% loss of CFTR function as the pro-
tein is misfolded and gets degraded before reaching the apical
membrane, and the substitution of aspartic acid for glycine at
position 551 (G551D) abolishes ATP-dependent gating of the
CFTR chloride channel. Methionine was added to prevent
extracellular GSH oxidation that could mask differences in
the intracellular hypochlorous acid production between the

Figure 3. Oxidation of GSH in P. aeruginosa during phagocytosis by human neutrophils. PAO1 (1 � 108/ml) grown on CELTONE Complete 13C-medium
was incubated with neutrophils (1 � 107/ml) at 37 °C with end– over– end rotation. At the indicated time points, phagocytosis was stopped by placing the
mixtures on melting ice; NEM (20 mM) was added, and neutrophils and bacteria were lysed. [13C]GSH (A), [13C]GSSG (B), [13C]GSSX (C), and [13C]GSA (D) were
measured by stable isotope dilution LC-MS/MS. A significant difference when compared with time 0 was identified by ANOVA with Dunnett’s multiple
comparison test and is indicated by * (p � 0.05), ** (p � 0.01), or *** (p � 0.001). Data were obtained for at least three different donors and presented as mean �
S.D. E, individual glutathione species are presented as a percentage of total glutathione as described in Fig. 2. Data are presented as means from at least three
independent experiments.
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healthy and CF cohorts. The rate of uptake of PAO1 was similar
in CF and healthy neutrophils as indicated by a comparable
rate of disappearance of viable extracellular bacteria from the
medium (data not shown). However, more bacteria survived
inside CF neutrophils compared with healthy neutrophils (Fig.
6A). Concomitantly, although GSA levels were not significantly
different at 15 min (Fig. 6B), the levels continued to go up in the
neutrophils from healthy individuals but plateaued off in neu-
trophils from CF patients. At each time point, there were no
significant differences for bacterial GSH and GSSG between
non-CF and CF neutrophils (Fig. 6, C and D). However, there
was a significant decrease in GSH over time for non-CF neutro-
phils, which did not occur in the CF neutrophils (Fig. 6C).
Greater production of GSA was associated with decreased sur-
vival of PAO1 (Fig. 6E).

Discussion

In this study, we show that bacterial GSH is oxidized during
phagocytosis of PsA by human neutrophils in an MPO-depen-
dent manner. The extent of bacterial GSH loss and GSA forma-
tion was analogous to that following treatment with bacteri-
cidal doses of HOCl. Our results demonstrate that HOCl is
produced inside neutrophil phagosomes at sufficient doses to
kill ingested bacteria. Furthermore, by showing that formation
of bacterial GSA was diminished in neutrophils from patients
with cystic fibrosis, our study supports a role for CFTR in ena-
bling neutrophils to keep generating HOCl in the phagosome.

Previous studies have provided evidence for hypochlorous
acid production in the neutrophil phagosome using a variety of
methods, including hypochlorous acid–specific fluorescent
probes, measurement of 3-chlorotyrosine of phagosomal con-
tents, and bleaching of fluorescently-labeled bacteria (4, 14,
16 –18, 20, 28 –30). However, these studies used HOCl report-
ers that are not specific for this oxidant or react only slowly with
it and so might overestimate or underestimate the extent of
HOCl produced in the phagosome. Conclusions from earlier
studies are therefore curbed by their inability to relate oxidative
damage of phagocytosed bacteria to that of bacteria treated
with bactericidal doses of reagent HOCl. Consequently, it is still
debated whether enough hypochlorous acid is produced in
neutrophil phagosomes to cause killing of bacteria. Here, by
monitoring oxidation of bacterial GSH, we demonstrate that
bactericidal amounts of HOCl are formed inside the neutrophil
phagosomes. GSH is a major target for HOCl due to its high
abundance and reactivity (8, 22), and its oxidation yields the
HOCl-specific product GSA (24). Accordingly, our study is
more sensitive and specific than previous studies and therefore
more conclusive.

Although our data are consistent with a role for HOCl in
neutrophil bactericidal activity, blocking oxidant production in
neutrophils did not abolish their ability to kill phagocytosed
PsA. DPI-treated neutrophils contained significantly more sur-
viving bacteria than control neutrophils, but they were still able

Figure 4. Oxidation of GSH in P. aeruginosa during phagocytosis by human neutrophils and its dependence on active MPO and NADPH oxidase.
Neutrophils (1 � 107/ml) were preincubated with inhibitors of the NADPH oxidase (10 �M DPI) and MPO (10 �M AZM198 and 100 �M sodium azide) and a
scavenger of extracellular HOCl (0.5 mM methionine) before the addition of 13C-grown PAO1 (1 � 108/ml). After 30 min at 37 °C with end– over– end rotation.
[13C]GSH (A), [13C]GSSG (B), [13C]GSSX (C), and [13C]GSA (D) were measured by LC-MS. Bars represent means � S.D. from five separate experiments using
different donors. A significant difference when compared with the untreated control was identified by repeated measures ANOVA with Dunnett’s multiple
comparison test and is indicated by * (p � 0.05), ** (p � 0.01), or *** (p � 0.001).
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to kill 90% of PsA. MPO inhibitors, while inhibiting the forma-
tion of GSA, had no significant effect on killing. These results
show that PsA can be effectively killed by nonoxidative neutro-
phil antimicrobial proteins such as neutrophil elastase,
lysozyme, defensins, and cathelicidins as reported before (31–
35). When inhibitors of oxidant production fail to interfere sub-
stantially with neutrophil killing, it is tempting to conclude that
oxidants are not involved in bacterial killing. DPI is often used
to support or reject a role for oxidative killing. However, inhib-
iting the NADPH oxidase with DPI will also cause phagosome
acidification thus affecting pH-sensitive neutrophil granule
enzymes such as neutrophil elastase and cathepsin G (36, 37).
The small but significant inhibition of neutrophil killing by DPI
observed in this study could have been due to its interference
with nonoxidative mechanisms, rather than revealing a small
contribution of oxidants to killing. Therefore, inhibitors cannot
be used to decisively tease out oxidative and nonoxidative kill-
ing mechanisms during neutrophil phagocytosis. Also, the fact
that nonoxidative mechanisms can compensate when oxidant
production is inhibited, does not deny HOCl a role in bacterial
killing when it is being produced. We show that neutrophils
produce bactericidal amounts of HOCl even when phagocyto-
sing a microbe that could be killed by their nonoxidative
machinery alone. The implication of our finding is that neutro-
phil killing is a multifactorial process in which redundant

antimicrobial tools are deployed to ensure fail-safe killing of
bacteria.

In CF, despite excessive infiltration into the infected lung,
neutrophils seem incapable of clearing infections, and thus
an intrinsically impaired oxidant production has been sug-
gested to exist in these neutrophils (38 –42). So far, evidence
for defective HOCl production in particular has come from
using nonspecific, indirect, or insensitive markers of oxidant
production such as luminol chemiluminescence, R19 fluo-
rescence, and formation of bacterial 3-chlorotyrosine (18,
41, 43). Because the reactivity of tyrosine and R19S with
hypochlorous acid is low (8, 22, 28), the observed changes in
levels of the respective oxidation products, 3-chlorotyrosine
and R19, could have been brought about by insubstantial
differences in the amount of oxidant produced by healthy
and CF neutrophils. By showing decreased formation of bac-
terial GSA during phagocytosis of PsA, we confirm that
hypochlorous acid production is impaired in CF neutrophils
(Fig. 7). This defect is likely caused by an insufficient supply
of chloride to the phagosome in the absence of functional
CFTR as suggested previously (18, 44). In addition to chlo-
ride, CFTR also transports bicarbonate, thereby regulating
phagosomal pH (45). Impaired HOCl production with loss of
CFTR might thus also result from phagosome acidification,

Figure 5. Killing of P. aeruginosa by human neutrophils. PAO1 (1 � 108/ml) was incubated with neutrophils (1 � 107/ml) at 37 °C with end– over– end
rotation. At indicated time points, phagocytosis was stopped by placing the mixtures on melting ice. Extracellular (A) and intracellular (B) viable bacteria were
determined by CFU plating assay. Means � S.D. from at least three separate experiments using different donors are shown. C, neutrophils were preincubated
with inhibitors of the NADPH oxidase (10 �M DPI) and MPO (10 �M AZM198 and 100 �M sodium azide) and a scavenger of extracellular HOCl (0.5 mM

methionine) before the addition of PAO1 and viable intracellular bacteria were determined after 30 min phagocytosis. The dotted line indicates the starting
concentration of bacteria. Bars represent means � S.D. from separate experiments using different donors. A significant difference when compared with the
untreated control was identified by ANOVA with Dunnett’s multiple comparison test and is indicated by ** (p � 0.01).
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Figure 6. Killing of P. aeruginosa and oxidation of GSH during phagocytosis by human neutrophils depends on functional CFTR. A, neutrophils
(1 � 107/ml) from healthy (NCF, black symbols) or cystic fibrosis donors (CF, gray symbols) were incubated with 13C-grown PAO1 (1 � 108/ml) at 37 °C with
end– over– end rotation in the presence of 0.5 mM methionine. After 15 or 30 min, phagocytosis was stopped; extracellular bacteria were removed, and
intracellular viable bacteria were determined. B, neutrophils and PAO1 were incubated as in A. After 15 or 30 min, NEM (20 mM) was added, and
neutrophils and bacteria were lysed, and [13C]GSA (B), [13C]GSH (C) and [13C]GSSG (D) were determined by LC-MS. Bars represent means � S.D. from at
least four separate experiments using different donors. A significant difference when compared with the healthy neutrophils at the same time point was
identified by an unpaired t test and is indicated by *, p � 0.05, or **, p � 0.01. A significant difference between 30 and 15 min holding the CF status the
same is indicated by #, p � 0.05, or ###, p � 0.001. E, for experiments where matching data from the same donor were available, the number of
intracellular viable bacteria was plotted against the level of GSA formed after 30 min of phagocytosis. Pearson r correlation coefficient, p value, and
number of individual subjects are shown.

Figure 7. Requirement for CFTR in MPO-dependent production of HOCl and killing of P. aeruginosa by human neutrophils.
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which inhibits both the NADPH oxidase and MPO-chlori-
nating activity (46, 47).

Whereas CFTR loss– of–function and treatment with MPO
inhibitors both caused a similar decrease in the amount of bac-
terial GSA formed during neutrophil phagocytosis, only loss of
CFTR was associated with a significant increase in bacterial
survival. It is possible that in addition to diminishing HOCl
production in neutrophils, defective CFTR also disrupts non-
oxidative killing mechanisms. Dysregulation of pH might affect
the activity of pH-dependent proteases (36, 37, 48). Also, chlo-
ride is needed to activate cathepsin C, which in turn cleaves
neutrophil serine proteases such as neutrophil elastase and
cathepsin G into their active forms (49, 50). It is also impor-
tant to consider the different kinetics of HOCl production
between CF neutrophils and inhibition of MPO activity in
normal neutrophils. In CF neutrophils, HOCl production
during the early stages of phagocytosis may interfere with
the functioning of nonoxidative mechanisms so that at later
time points both oxidative and nonoxidative killing would be
compromised. In contrast, when MPO is inhibited in normal
neutrophils, nonoxidative mechanisms would not be com-
promised during phagocytosis.

Although we found a significant decrease in the ability of
neutrophils from CF patients to kill PsA as reported previously
by Painter et al. (51), the majority of bacteria (	98%) were still
killed. About twice the number of bacteria survived inside neu-
trophils from CF patients compared with those from healthy
donors. This small difference in the killing capacity of neutro-
phils may contribute to the persistent bacterial infections fre-
quently observed in CF lungs (52, 53), particularly as it occurs in
combination with other antimicrobial defects in CF such as
inadequate mucociliary clearance and decreased activity of
antimicrobial proteins in the epithelial lining fluid (54). Con-
sistent with this theory, a previous study showed that MPO
knockout mice were more susceptible to infections with PsA
than WT mice when inoculation doses were high (55). At low
PsA doses, MPO-deficient and WT mice were not different
suggesting that MPO antimicrobial activity is particularly
important when a greater number of bacteria are required to be
killed.

Kinetic data suggest that bacterial thiols will be preferentially
oxidized when bacteria are exposed to hypochlorous acid (22,
25), and bacterial LMW thiols have been proposed to protect
bacteria against oxidative stress by preventing other crucial cel-
lular targets from becoming oxidized. But little is known about
the fate of LMW thiols in bacteria exposed to hypochlorous
acid. Loss of reduced GSH was previously observed in E. coli
upon treatment with bactericidal doses of reagent hypochlo-
rous acid (56). Also, phagocytosis of E. coli expressing roGFP2-
based fusion probes by a neutrophil-like cell line revealed a
disruption of bacterial thiol redox balance (57). To our knowl-
edge, this study is the first to comprehensively characterize the
fate of all major endogenous LMW thiols in a bacterial species
treated with hypochlorous acid and during phagocytosis by
human neutrophils. We had postulated that GSH would be a
major target for hypochlorous acid in PsA; however, a near
100-fold excess of hypochlorous acid (10 nmol/108 bacteria)
was required to achieve complete loss of bacterial GSH (0.13

nmol/108 bacteria) indicating that only about 1% of the oxidant
had reacted with GSH. The stoichiometry of hypochlorous acid
to GSH was reported to be 4:1 for E. coli (56). The difference can
in part be explained by the fact that E. coli has 10 –30-fold
higher levels of GSH than PsA (27, 56). Our findings suggest
that there are other biomolecules in PsA that become preferen-
tially oxidized by hypochlorous acid.

Protein thiols constitute up to 70% of overall cellular thiols
(58). They are likely to be the major targets for HOCl within
phagocytosed bacteria, but glutathionylation may protect crit-
ical thiol residues from becoming irreversibly oxidized (59).
However, we showed that GSSP was only a minor oxidation
product of GSH in PsA treated with HOCl. This result sug-
gests that at least with PsA other oxidation products of cys-
teine residues must be favored over glutathionylation. In
contrast to our result, Xie et al. (60) recently reported sub-
stantial reversible protein thiol oxidation in E. coli phagocy-
tosed by a neutrophil-like cell line. This reversible thiol oxi-
dation may have involved glutathionylation because GSH
levels in E. coli are much higher than PsA (27, 56). In future
work it will be of interest to quantitatively assess oxidation of
protein thiols in different pathogenic bacteria during neu-
trophil phagocytosis and to determine what oxidation prod-
ucts are formed.

Finally, we need to acknowledge the limitations of this study.
We only recovered about 60% of the total bacterial glutathione
after 30 min of phagocytosis. This loss was slightly inhibited by
DPI indicating that GSH was oxidized to a product that we had
not accounted for, e.g. glutathione sulfonic acid or oxidized
GSSG. Indeed, a smaller amount of GSSG was measured in PsA
exposed to the neutrophil system compared with reagent
hypochlorous acid suggesting that the disulfide was perhaps
further oxidized (61). Alternatively, some of the GSH and
GSSG loss can be explained by the action of �-glutamyltrans-
ferases present in the bacterial periplasm (62, 63). This
enzyme could have come into contact with intracellular GSH
and GSSG following damage to the bacterial plasma mem-
brane by neutrophil granule enzymes.

Our finding that HOCl production is impaired in neutrophils
from CF patients is based on a small number of patients (n � 4).
However, it is difficult to recruit CF children free of respiratory
pathogens who are old enough and willing to donate the
amount of blood needed for these experiments. Therefore, we
ended our study when a statistically significant difference was
observed between groups, given that our results were consis-
tent with prior reports on defective HOCl production in CF
neutrophils (18, 43).

In conclusion, this work demonstrates that neutrophils pro-
duce bactericidal amounts of HOCl during phagocytosis of bac-
teria thereby clarifying the involvement of MPO in neutrophil
killing. This study also supports a role for CFTR in neutrophil’s
ability to produce hypochlorous acid and to ensure efficient
killing of phagocytosed bacteria. We suggest that bacterial GSA
can be used as a tool for monitoring defects in oxidant produc-
tion by neutrophils by directly assessing hypochlorous acid-
induced damage to microbes.
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Experimental procedures

Materials

Coenzyme A (CoA), L-cysteine (Cys), L-methionine (Met),
reduced and oxidized glutathione (GSH and GSSG), N-ethyl-
maleimide (NEM), iodoacetamide (IAM), diphenylene iodo-
nium chloride (DPI), sodium azide, saponin, DNase I type II
from bovine pancreas, Hanks’ balanced salt solution (HBSS),
and phosphate-buffered saline (PBS) for cell culture were
purchased from Sigma. Protease inhibitor mixture tablets
cOmplete were from Roche Applied Science (Basel, Switzerland),
and LB Broth powder (Miller’s) was from Thermo Fisher Sci-
entific (Waltham, MA). CELTONE Complete medium (13C,
98%�) and heavy-labeled glutathione (GSH, 13C2 � 15N) were
obtained from Cambridge Isotopes Laboratories (Tewksbury,
MA). HOCl (�292 � 350 M�1 cm�1 for OCl� at pH 12) (64) was
purchased as a commercial chlorine bleach from Household
and Body Care (Auckland, New Zealand). AZM198, a specific
MPO inhibitor, was provided as a gift by AstraZeneca
(Mölndal, Sweden) (65). Ficoll-Paque (GE Healthcare, Sweden)
and dextran from Leuconostoc mesenteroides (average Mr
150,000, Sigma) were used for isolation of neutrophils.

PsA culture

PsA strain PAO1 (ATCC 47085) was stored and grown under
standard conditions and maintained on Columbia sheep blood
agar plates. For experiments, PAO1 was grown overnight in LB
or CELTONE Complete 13C-medium at 37 °C. Cells were pel-
leted by centrifugation at 12,000 � g for 5 min, washed twice
with PBS, and then resuspended in HBSS. Biofilms and bacterial
aggregates were removed by centrifugation at 100 � g for 5 min,
and the concentration of bacteria in the supernatant was deter-
mined by absorbance measurement at 550 nm and conversion to
colony-forming units (CFU) using A550 � 0.127 for 1 � 108

CFU/ml as determined by a standard curve. For the purpose of this
study, it was assumed that one bacterium will form one colony, i.e.
CFU was equaled to the number of bacteria.

Treatment of PsA with hypochlorous acid

Five hundred �l of HBSS containing increasing concentra-
tions of hypochlorous acid (0 –200 �M) was added to 500 �l of
bacteria (1 or 2 � 109 bacteria/ml) while mixing vigorously and
incubated for 10 min at 37 °C with end– over– end rotation.
The reaction was stopped by the addition of 1 mM methionine.
A 50-�l aliquot was removed for viability plating assay; NEM
(20 mM final) and protease inhibitors (1� final) were added, and
after 20 min of incubation at 20 –22 °C, cells were lysed by son-
ication, and cell debris was removed by centrifugation at
12,000 � g for 5 min. glutathione species were analyzed in the
supernatant by LC-MS/MS as described below.

Peripheral blood neutrophils

Blood was obtained from healthy human volunteers and CF
patients with informed consent and with ethical approval from
the Southern Health and Disability Ethics Committee, New
Zealand. Our studies abide by the Declaration of Helsinki
principles. There was an even split of male and female
donors among the donors, and the ages ranged from 21 to 48

years and 8 to 14 years for healthy volunteers (NCF) and CF
patients, respectively. CF patients (n � 4) were clinically
stable and had no identified pathologic bacterial infections
at the time the blood was obtained as indicated by negative
cough swab or bronchoalveolar lavage (BAL) culture. One
BAL showed moderate growth of fungal species, and one
patient was on treatment with i.v. cefuroxime. Three CF
patients were 
F508 homozygotes, and one was a 
F508/
G551D compound heterozygote.

Human neutrophils were isolated from freshly drawn heparin-
ized blood under sterile conditions by dextran sedimentation fol-
lowed by Ficoll-Paque centrifugation. Human granulocytes,
including neutrophils, were isolated from the Ficoll pellet by eryth-
rocyte lysis in hypotonic buffer (66). Neutrophils were resus-
pended in HBSS supplemented with 10% autologous serum.

Phagocytosis of PAO1 by human neutrophils

PAO1 was opsonized at 2 � 108/ml in HBSS containing 10%
fresh autologous human serum for 20 – 40 min at 37 °C with
end– over– end rotation. Five hundred �l of opsonized PAO1
(2 � 108/ml) was mixed with 500 �l of neutrophils (2 � 107/ml)
pre-warmed to 37 °C and incubated for up to 30 min at 37 °C
with end– over– end rotation. At various time points, the mix-
ture was placed on melting ice, and 1 ml of ice-cold PBS was
added to stop phagocytosis. Nonphagocytosed bacteria were
removed by centrifugation at 100 � g at 4 °C, and the pellet was
washed twice with 1 ml of ice-cold PBS. All supernatants were
combined, and after further dilution, 100 �l was plated on Colum-
bia sheep blood agar plates to determine viable extracellular bac-
teria. The pellets were resuspended in pH 11 water containing
0.05% saponin, passed three times through a 25-gauge needle, and
treated with DNase (addition of 10 �l of each: 1 M Tris-HCl (pH
7.4), 100 mM CaCl, 50 mM MgCl2, DNase 10,000 units/ml) for 10
min at 37 °C with end–over–end rotation. After further dilution,
100 �l was plated on Columbia sheep blood agar plates to deter-
mine viable intracellular bacteria. Neutrophils were preincubated
with inhibitors at 37 °C for 10 min prior to phagocytosis at double
the final concentration (1 mM methionine, 200 �M sodium azide,
20 �M DPI, 20 �M AZM198).

For determining oxidation of GSH, phagocytosis was
stopped by placing the neutrophil/PAO1 mixtures on melting
ice at the indicated time points, and 500 �l of ice-cold PBS was
added. One hundred �l of 200 mM NEM was added and incu-
bated for 10 min at 20 –22 °C. Neutrophils and bacteria were
lysed by sonication on ice for 5 min with a 50% pulse (Omni
Sonic Ruptor 400 microtip, Omni International, NW Kenne-
saw, GA) or bead beating using a Precellys Evolution Homoge-
nizer and the VK05 lysing kit (Bertin Instruments, Montigny-
le-Bretonneux, France) three times for 30 s at 6800 rpm with
10-s intervals at 4 °C. Cell debris was removed by centrifugation
at 12,000 � g for 5 min, and glutathione species in the superna-
tant were analyzed by LC-MS/MS as described below.

Measurement of glutathione species by LC/MS

GSH, GSSG, GSA, and GSSP were measured using a pre-
viously described multiple reaction monitoring (MRM)-
based stable isotope dilution LC tandem MS assay (LC-MS/
MS) method (26, 67). An Ultimate 3000 RS system (Thermo
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Fisher Scientific, Waltham, MA) coupled to a 4000 QTrap
mass spectrometer (Sciex, Framingham, MA) or an Infinity
1290 LC system (Agilent, Santa Clara, CA) coupled to a 6500
QTrap mass spectrometer (Sciex) was used. Internal standards
([13C2,15N1]GSH–NEM, [13C4,15N2]GSSG, and [13C2,15N1]GSA)
were added to a volume of PAO1 lysate containing 107 bacteria;
protein was precipitated by the addition of ice-cold ethanol (80%
v/v), and the protein pellet was removed by centrifugation. The
supernatant was dried by vacuum evaporation, and after resuspen-
sion into water containing 0.1% formic acid, GSH (as the GSH–
NEM adduct), GSSG, and GSA were quantified by LC-MS/MS in
MRM mode using the transitions shown in Table S1.

To measure GSSP, a volume of PAO1 lysate containing 2 �
108 bacteria was mixed with an equal volume of 3.3% metaphos-
phoric acid; the resulting protein pellet was washed with 1%
metaphosphoric acid and reduced with 10 mM DTT. Any free
thiol was alkylated with IAM (20 mM); the sample was spiked
with [13C2,15N1]carbamidomethyl-GSH as the internal stan-
dard; the protein was precipitated by adding ice-cold ethanol
(80% v/v) and removed by centrifugation; and carbamidom-
ethyl-GSH was analyzed in the supernatant by LC-MS/MS
using the MRM transitions shown in Table S1.

Any mixed disulfides of GSH with other LMW thiols (GSSX)
were measured by reducing the PAO1 lysate with 10 mM DTT
for 10 min at 20 –22 °C followed by the addition of 20 mM NEM
and incubation for 20 min. GSH–NEM was measured by LC-
MS/MS after precipitation of protein as described above. GSSX
was determined using Equation 1.

[GSSX] � [GSH�DTT] � [GSH�DTT] � [GSSP] � 2 � [GSSG]

(Eq. 1)

For measuring glutathione species from PAO1 grown on
13C-containing medium, MRM transitions in Table S1 were
used.

Preparation of Cys-NEM, CysSSG, CoA-NEM, and CoASSG
standards

CoA–NEM and Cys-NEM standards were prepared by incu-
bating 1 mM reduced CoA and Cys with 20 mM NEM for 20 min
at 20 –22 °C. LC-MS analysis in negative ion mode (described in
more detail below) showed the formation of ions with m/z of
891 and 245 consistent with the [M � H]� of CoA–NEM and
Cys-NEM, respectively. Conversion to the NEM adducts was
nearly complete as indicated by negligible signals for CoA-SH
(m/z 776) and Cys-SH (m/z 120). CysSSG was prepared by incu-
bating 0.5 mM cysteine with 5 mM GSSG in water (pH 9), for 2 h
at 37 °C. LC-MS analysis in negative ion mode showed the for-
mation of an ion with the m/z of 245 consistent with the [M �
H]� of Cys-SSG, respectively. Conversion to CysSSG was
nearly complete as indicated by a negligible signal for Cys-SH
(m/z 120).

CoASSG was prepared by mixing 0.25 mM CoA, 0.25 mM

GSH, and 0.13 mM hypochlorous acid and incubated for 10 min
at 20 –22 °C. LC-MS analysis in negative ion showed the forma-
tion of an ion with the m/z of 425 consistent with the [M � H]�
of CysSSG. Conversion to CoASSG was not complete as indi-

cated by the presence of an ion with an m/z consistent with
CoA-SH (m/z 776).

Measurement of Cys-NEM, CoA-NEM, CysSSG, and CoASSG by
LC-MS

Protein in PAO1 lysate containing 107 bacteria was removed
by ethanol precipitation as described above. Analytes in the
supernatant were measured by LC-MS/MS using an Infinity
1290 LC system (Agilent, Santa Clara, CA) coupled to a 6500
QTrap mass spectrometer (Sciex, Framingham, MA), and con-
centrations were calculated using a corresponding calibration
curve. Detection of Cys-NEM, CysSSG, CoA–NEM, and
CoASSG was by MRM in negative ion mode. Cys-NEM, Cys-
SSG, CoA–NEM, and CoASSG standards prepared above were
used to optimize MRM parameters, and settings for the target
analytes were m/z 8913 543.9, 2453 119.8, 4253 304, and
535 3 991 (parent ion 3 fragment ion) for CoA-NEM, Cys-
NEM, CysSSG, and CoASSG, respectively.

Cys-NEM and CysSSG were separated on a Hypercarb col-
umn (150 � 2.1 mm, 3 �m, Thermo Fisher Scientific, Wal-
tham, MA) operated at 60 °C. Eluent A was water containing
0.25% formic acid (v/v), and eluent B was acetonitrile/pro-
pan-2-ol (50:50, v/v) containing 0.25% formic acid (v/v). A
linear gradient from 100% eluent A to 50% eluent B was run
over 8 min, followed by a 3-min wash with 95% eluent B and
re-equilibration to the initial conditions. The flow rate was
0.25 ml/min, and the injection volume was 10 �l. Cys-NEM
eluted at 9.1 min and CysSSG at 8.7 min (Fig. S1, A and B).
This method is linear over the range of 60 to 0.03 pmol of
Cys-NEM and 500 to 0.01 pmol for CysSSG injected onto the
column, respectively. Recovery of 2.5 pmol of Cys-NEM and
CysSSG standards added to PAO1 lysates after removal of
protein by ethanol precipitation was 115 � 20 and 97 � 14%,
respectively (n � 3, mean � S.D. using three different PAO1
lysates).

CoA as the CoA–NEM adduct was separated on a Kinetex
C18 column (150 � 2.1 mm, 2.6 �m, Phenomenex, Torrance,
CA) operated at 40 °C. Eluent A was water containing 10 mM

ammonium acetate (pH 6.8), and eluent B was methanol. A
linear gradient from 5 to 50% eluent B was run over 8 min,
followed by a 3-min wash with 95% eluent B and re-equili-
bration to the initial conditions. The flow rate was 0.2
ml/min and injection volume was 10 �l. CoA–NEM eluted at
9.5 min (Fig. S1C). This method is linear over the range of 60
to 2 pmol of CoA–NEM injected onto the column. Recovery
of 100 pmol of CoA–NEM standards added to PAO1 lysates
was 141 � 11% (n � 2, mean � S.D. with different PAO1
lysates).

CoASSG was separated on a Kinetex Biphenyl column
(100 � 2.1 mm, 2.6 �m, Phenomenex, Torrance, CA) operated
at 40 °C in isocratic mode with 10% eluant B. Eluent A was water
containing 10 mM ammonium acetate (pH 6.8), and eluent B
was methanol. The flow rate was 0.25 ml/min, and injection
volume was 10 �l. CoASSG eluted at 0.9 min (Fig. S1D). This
method is linear over the range of 125 to 0.25 pmol of CoASSG
injected onto the column. CoASSG standards added to PAO1
lysates could not be recovered after removal of protein by eth-
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anol precipitation indicating the instability or loss of this ana-
lyte during processing.

Statistics

Graphs were plotted, and statistical analysis was performed
using GraphPad Prism 8 (GraphPad Software, La Jolla, CA).
Differences between groups were determined using one-way
ANOVA with Dunnett’s multiple comparison test. Alterna-
tively, an unpaired t test was used when only two groups were
compared. A p value � 0.05 was considered significant.
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