Skip to main content
. 2019 Sep 4;10:2055. doi: 10.3389/fimmu.2019.02055

Figure 1.

Figure 1

GM-CSF and monocytes/macrophages in inflammation. Depicted are some potential local and systemic actions of GM-CSF on monocyte/macrophage populations during an inflammatory reaction. Whether particular actions operate are currently debated and are likely to depend on the nature of the inflammatory reaction and the levels of GM-CSF attained from hemopoietic (e.g., lymphocyte) and non-hemopoietic (e.g., fibroblast) cell populations. Locally GM-CSF can act in a concentration—dependent manner on target cells (resident macrophages and/or blood-derived monocytes) to promote their survival and/or polarization/differentiation; the latter cell target can give rise to MoDCs. Their polarization/differentiation can be characterized by the production of proinflammatory mediators such as cytokines (e.g., IL-1β, TNF), proteases, reactive oxygen species (ROS), etc. One interesting pathway (zoomed), which seems to be important for GM-CSF-dependent inflammation and associated pain, leads to CCL17 production via JMJD3 and IRF4. GM-CSF can also act systemically in the blood and/or bone marrow, either directly or indirectly (Inline graphic) via its cellular targets in the tissue, leading to migration/mobilization of monocytes or their precursors and/or monocyte development from these precursors (myelopoiesis) (Inline graphic). MoDC, monocyte-derived DC.