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Abstract

The intimate connection and the strict mutual cooperation between the gut and
the liver realizes a functional entity called gut-liver axis. The integrity of
intestinal barrier is crucial for the maintenance of liver homeostasis. In this
mutual relationship, the liver acts as a second firewall towards potentially
harmful substances translocated from the gut, and is, in turn, is implicated in the
regulation of the barrier. Increasing evidence has highlighted the relevance of
increased intestinal permeability and consequent bacterial translocation in the
development of liver damage. In particular, in patients with non-alcoholic fatty
liver disease recent hypotheses are considering intestinal permeability
impairment, diet and gut dysbiosis as the primary pathogenic trigger. In
advanced liver disease, intestinal permeability is enhanced by portal
hypertension. The clinical consequence is an increased bacterial translocation that
further worsens liver damage. Furthermore, this pathogenic mechanism is
implicated in most of liver cirrhosis complications, such as spontaneous bacterial
peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic
encephalopathy, and hepatocellular carcinoma. After liver transplantation, the
decrease in portal pressure should determine beneficial effects on the gut-liver
axis, although are incompletely understood data on the modifications of the
intestinal permeability and gut microbiota composition are still lacking. How the
modulation of the intestinal permeability could prevent the initiation and
progression of liver disease is still an uncovered area, which deserves further
attention.
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Core tip: The integrity of the gut-liver axis is crucial for the maintenance of the
homestasis of the organism. The disruption of the intestinal barrier and consequent
increased intestinal permeability has been recently associated with the development of
liver damage. This review summarizes present evidence on the relevance of the
derangement of the gut-liver axis in the pathogenesis of liver damage and non-alcoholic
fatty liver disease, the development of the complications of liver cirrhosis and its
modifications after liver transplantation.
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INTRODUCTION

The gut is one of the largest mucosal surfaces of the human body. Besides being
involved in the absorption of nutrients and water introduced with ingested food, it
acts as a barrier that guarantees protection against pathogenic microorganisms and
potentially harmful substances, such as toxins and pollutants!l. In addition, the
interaction that occurs between the gut microbiota and immunological cells at this
level is crucial for the development and maintenance of the immune system®-l.

The gut and the liver are anatomically connected by portal circulation, and their
functional unit realizes the gut-liver axis*l. Thus, any type of substance that goes
beyond the gut barrier can reach the liver where is processed into metabolic pathways
or interacts with the immune system cells or resident cells.

Liver disease affects gut homeostasis, altering intestinal permeability (IP) and the
gut microbiota composition, proportionally to the degree of liver function
impairment. Indeed, once portal hypertension (PHT) is established, the intestinal
barrier functions are altered, causing the passage of substances that are normally kept
in the intestinal lumenPl. In particular, the translocation of bacterial fragments or
products into the bloodstream activates the immune system, stimulating
inflammation. This process not only could further worsen liver function, but it is
implicated in a series of chain reactions involving the whole organism, realizing a
systemic inflammatory condition typical of advanced liver cirrhosis!.

PHYSIOLOGICAL GUT BARRIER

Normally, the gut constitutes a complex physical, chemical, functional and
immunological barrier. In order to perform its tasks, different components are
necessary!*l. Proceeding from the lumen inwards, they can be classified into the
following levels: The microbiota, the extracellular elements, the epithelial cells, the
immune system, the vascular structure (Figure 1).

The microbial barrier

The human gut microbiota harbors one hundred trillions of microorganisms, about
ten times the number of eukaryotic cells. It has about ten times the genes of the
human genome and has a mass of about 1-2 kgl"l.

Several factors, such as birth mode, age, diet and lifestyle, influence the human gut
microbiota. In physiological conditions, its compositional and functional armony is
quite stable over time. However, the onset of disease and/or the use of certain drugs
(e.g., antibiotics) can break this balance, resulting in dysbiosis with significant
consequences on human homeostasis. Indeed, the gut microbiota integrates the
metabolism of the organism providing crucial pathways to process nutrients, vitamins
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Figure 1 Physiological gut barrier.

and endogenous substances!®. Microorganisms host in the lumen interact with the
intestinal mucosa, shaping the mucus!, exerting a trophic and protective function
towards enterocytes. Moreover, it plays a pivotal role in the development, maturation
and maintenance of the immune system!’'"! and induces local production of
antimicrobial peptides and immunoglobulins®'?l.

Extracellular barrier
Intestinal mucus is a gel formed by glycosylated proteins secreted by intestinal goblet
cells called mucins!'®l. It covers the whole gut and its thickness depends on the
location, being almost absent in the stomach and maximum in the colon!”l. Mucus
prevents harmful substances and bacteria from directly contacting cell surface,
causing inflammation"**"l. Thus, a proper structure of mucins is crucial for the
maintenance of the gut barrier, and alterations could facilitate the absorption of
harmful substances, leading to inflammation®". Indeed, quantitative or qualitative
alterations of the mucus layer has been documented in several diseases, such as cystic
fibrosis!”'! and inflammatory bowel disease (IBD)™. In addition, it has been
demonstrated in mice models that a high MUC2 mucin production increases the
susceptibility of goblet cells to apoptosis and endoplasmic reticulum stressi*l. An
increased mucus thickness has been related to alcohol intake and cirrhosis!.
Conversely, an incorrect assembly of MUC2 inside the epithelial cells leads to the
development of an inflammatory disease resembling ulcerative colitis in micel**1.
This process may be responsible of the depletion of goblet cells documented in IBD!.
The inner side of the intestinal mucus is made of a fluid, which is not reached by
the mixing forces of the luminal flow and peristalsis, called unstirred layer. The inner
face of the mucin layer is devoid of bacteria"® and directly contacts the intestinal
epithelial cells, modulating the absorption of water and nutrients due to its static
nature. A thicker unstirred layer has been observed in patients with coeliac disease
and has been related to malabsorption!.

Functional barrier

To make the picture more complex, it has to be considered that this system is dynamic
and subject to regulation by gastrointestinal motility and secretions. The outer part of
the mucus layer is continuously moved forward by peristalsis. The luminal flow
prevents the proliferations of microorganism and a prompt clearance of detrimental
elements. This is crucial in the protection against pathogens!*’. Gastric acid decreases
microbial colonization of the small intestine. Only acid resistant microorganism, such
as Helicobacter pylori and Lactobacilli are able to survive at low pH™. Bile acids, the
main constituents of bile, have direct antimicrobial properties interfering with
membrane and protein production and integrity™?. Thus, alterations of the bile and
gastric fluid and impairment of the peristalsis cause both qualitative and quantitative
modifications of the gut microbiota composition up to the derangement of intestinal
homeostasis and the development of pathology!*1.

Intestinal epithelial barrier

Underneath the intestinal mucus, there is a continuous monocellular layer of
enterocytes. Goblet cells, responsible for the production of the mucus, and Paneth
cells, which produce antimicrobial peptides, provide additional functions and support
to the homeostasis of the gut barrier. Enterocytes plasma membrane represents the
main mechanical element of the mucosal barrier. Because of its lipidic structure, it is
impermeable to most solutes that need a specific transporter to cross the barrier
(transcellular pathway)!'. In order to limit the gut permeability, intercellular spaces
are sealed by the presence of a specific apical junctional complex, which is composed
by a tight junction (TJ) and an adherens junction. Overall, over 40 proteins form a TJ,
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being claudins, peripheral membrane proteins, such as zonula occludens (ZO) 1 and
2, and occludin the main componentst .. Both tight and adherens junctions are
connected to the cytoskeleton!. TJ are important elements for both active and passive
transport through the gut barrier!”]. They regulate the passive flow of the solutes and
water through the paracellular pathway, operating both as a size- and charge-
selective filter. The passive movement of substances across TJ occurs through two
different routes: The leak pathway, that allows the transport of larger substances (e.g.,
proteins, bacterial components), and a second pathway mediated by claudin proteins,
that is charge selective and limits the flow to molecules smaller than 4 A"+,

As for active transport, an intact intestinal epithelial barrier, formed by T] and the
plasma membrane of intestinal cell, realizes a gradient between the lumen and the
inner interstice. This condition prevents an uncontrolled translocation of substances
and allows an active transcellular transport through the enterocytes!'. Moreover, the
complex system of TJ is finely regulated by the influence of cytokines, particularly
tumor necrosis factor-alfa (TNFa)!!! and interferon gamma (IFNy)[*4, and by signaling
kinases and cytoskeleton, like myosin light chain kinases (MLCK)!***1. Both qualitative
and quantitative alterations of T] have been described in the context of liver
diseasel”*’l. Finally, intestinal cells own another defensive element. In fact, apical
brush border microvilli are negatively charged, owing to the presence of polar
carbohydrates and charged transmembrane proteins, and cause an electrostatic
repulsive force towards bacterial cell wall, that is negatively charged as welll*’l.

Immunological barrier

In response to the exposure to bacteria and to their components, Paneth cells produce
antimicrobial peptides, such as defensins, cathelicidines, resistin-like molecules,
bactericidial-permeability-inducing proteins and lectins, and immunoglobulins,
particularly secretory IgAFl. These elements are secreted into the gut lumen and are
host in the inner face of the mucin layer hosts’]. Whenever microbial and pathogen-
associated molecular patterns cross the intestinal barrier, they are identified through
the interaction between pattern-recognition receptors, such as Toll-like receptors
(TLRs) and nucleotide binding oligomerization domain-like receptors on the intestinal
epithelial cells. Then, recruited dendritic cells are responsible for the transport of the
captured antigens to the mesenteric lymph nodes (MLNSs) for antigen presentation.
This mechanism allows the priming and maturation of B and T lymphocytes, that
become part of the adaptive immune response in the gut associated lymphoid
tissuel*"l. Hence, immune response is compartmentalized in mucosal lymphatics in
healthy individuals.

Gut-vascular barrier

Since 2015, the knowledge about barrier mechanisms for the modulation of IP stopped
to the basocellular membrane of the enterocytes. Recent studies have successively
revealed that the intestinal defense mechanisms actually go further, and also include a
gut-vascular barrier™. Observing functional similarities between blood-brain barrier
and intestinal barrier, Spadoni et al*>**l hypothesized that a parallel structure in the
gut could be responsible for the prevention of the translocation of bacteria and/or
microbial components passed through the extracellular and the intestinal epithelial
barrier.

The fundamental structure of this entity is the gut-vascular unit. It is composed by
the intestinal endothelium, which is anatomically and functionally associated with
pericytes and enteric glial cells that surround it. The barrier is completed by TJ and
adherens junctions, which are permeable to most of the small nutrients. Endothelial
plasma membrane provides isolation and is equipped with active and passive
transporters™. Glial cells play an important role in the homeostasis of the gut and in
the regulation of IP®>*. In fact, in murine models, it has been demonstrated that either
genetical or autoimmune targeting of glial cells determines the development of
fulminant enteritis with increased translocation of microbes and evidence of
bacteremial®"°l. When the endothelium is intact, it allows the free diffusion of 4 kD
dextran, whereas 70 kD dextran is blocked. Infection with Salmonella enterica serovar
Typhimurium disrupts the gut-vascular barrier, allowing the translocation of larger
substances, and this happens independently of the increase in the blood flow
provoked by inflammation®. Furthermore, 70 kD dextran was only found in the
liver and not in the spleen, demonstrating that dissemination occurs through the
portal circulation rather than the lymphatic vessels. The increase in plasmalemma
vesicle-associated protein-1 (PV1), a marker of endothelial permeability, during
Salmonella infection confirms this evidence. Finally, the authors demonstrated that
bacteria with the ability to cross the intestinal epithelial barrier do not disseminate to
liver and spleen, blocked by a second barrier™. These experiments definitively prove
the existence of a gut-vascular barrier.
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ALTERED GUT BARRIER, INTESTINAL PERMEABILITY AND
BACTERIAL TRANSLOCATION IN THE PATHOGENESIS OF
LIVER DAMAGE

In liver diseases, increased IP is the consequence of multiple disorders that affect the
homeostasis of the barrier. Several studies in animal models and in human pathology
correlated liver damage and dysfunction to alterations of the gut microbiota
composition””, mucus quality and quantity*], gastrointestinal motility"™, intestinal
epithelial barrier and TJ*”], and the immune system!™l.

Nevertheless, bacterial translocation (BT) is a physiological process that consists in
the passage of small amounts of microorganisms and their constituents from the
intestinal lumen to the MLNsl. At this site, microbial killing occurs without systemic
inflammatory responsel”’l. This process is crucial for the modulation of the immune
system and the development of immune tolerancel*”l. Despite the fact that the liver is
usually devoid of bacterial®, in healthy individuals it is physiologically exposed to
trace amounts of bacterial mRNAs and lipopolysaccharide (LPS)!*>*], mainly acting
as a firewall detoxifying bacterial components!®*l. In healthy mice, it has been
demonstrated that the liver can act as a second firewall for microorganisms
penetrated after mucosal damage and escaped from MLNs surveillance activity!*" .
This function is supposed to be mainly exerted by the hepatic sinusoids, where
Kupffer cells - representing over the 80% of all tissue macrophages - are able to
phagocytize and kill microbes derived from the bloodstream!**"*>-*"l. Several
experiments have demonstrated the importance of liver resident macrophages in the
clearance of microorganisms and microbial- and pathogen- associated molecular
patterns (MAMPs and PAMPs). In fact, °H- and "C-labelled endotoxin purified from
E. coli is actively processed by Kupffer cells!”. Similarly, lipopolysaccharide binding
protein (LBP), an acute-phase protein synthesized in the liver and secreted after
interleukin-1 (IL-1), interleukin-6 (IL-6), and glucocorticoids stimulation, after binding
with LPS mediates the activation of liver mononuclear cells in a way that is dependent
on the presence of functional Toll-like receptor 4 (TLR4)7°l. CD14, either expressed
on myeloid cells (mCD14) or the isoform secreted into the bloodstream by monocytes
and hepatocytes (sCD14), acts as a co-receptor of TLR4 binding the LPS-LBP complex
and allowing its uptake by liver resident myeloid cells/”'’. Moreover, an elegant
imaging-based study by Lee et al”! documented the ability of Kupffer cells to perform
filtration of blood, phagocytosis and killing of green fluorescent protein expressing B.
burgdorferii and antigen presentation to natural killer (NK) cells. Finally, in Kupffer
cells depleted mice, the clearance of E. coli K-12 during bacteremia is delayed!.

Yet, the “liver buffer” is exhaustible too. The disruption of the intestinal barrier at
any level leads to an increase inIP (Figure 2). Thus, harmful substances, such as
MAMPs and PAMPs (LPS, microbial DNA, peptidoglycans and lipopeptides),
metabolic products, and whole bacteria massively reach local MLNs, that are unable
to provide an adequate clearancel’*”’!. Hence, a variable amount of detrimental
products is delivered to the liver through the mesenteric and portal circulation. The
maintenance of a damaging insult triggers a systemic inflammatory response,
developing from the liver”**!l. Kupffer cells play a pivotal role in orchestrating this
mechanism!”#%*%1 Indeed, the interaction between pathogen-associated molecular
patterns and TLRs activate intracellular molecular pathways, either MyD88-
dependent or MyD88-independent, resulting in the activation of NF-xB and the
expression of inflammatory cytokines (TNF-a, IL-13, IL-6, IL-12, IL-18), chemokines
(CXCL1, CXCL2, CCL2, CCL5, CCL3, CCL4), vasoactive factors [nitric oxide (NO)]
and reactive oxygen species (ROS)™.. This local inflammatory storm leads to the
recruitment of systemic leukocytes, such as neutrophils, CD4* T cells and monocytes,
that perpetuate liver inflammation®®*?l. Net result of this process is the induction of
hepatocyte apoptosis and necrosis®!. Both inflammatory cytokines and cell death
cause the activation and proliferation of hepatic stellate cells (HSC) and the
development of fibrosis under the stimulation of transforming growth factor-§
(TGF I?)) [8 L,\'T].

As a consequence of inflammatory cytokines, HSCs and several other liver cells
upregulate the expression of matrix metalloproteinases (MMPs). The overexpression
and hyperactivation of MMPs result in the destruction of the hepatic tissuel*.

Tissue inhibitors of matrix metalloproteinases (TIMPs) are the main modulators of
the activity of MMPs. While a decrease in the levels of TIMPs have been associated
with liver damage in acute liver injury, an increase in their expression in chronic liver
diseases favor the accumulation of collagen and liver fibrogenesis, by inhibiting
degradation of collagen®"l. Furthermore, as proof of the relevance of these enzymes
in the pathogenesis of liver damage, TIMP-1 has been identified as a predictive
marker for the presence of non-alcoholic steatohepatitis (NASH)
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Figure 2 Intestinal permeability in the pathogenesis of liver damage. Several disorders, such as gut dysbiosis and primary and secondary intestinal diseases,
can cause increased intestinal permeability. Consequently, viable bacteria and microbial- associated molecular patterns cross the intestinal epithelial barrier, a
process known as bacterial translocation. An efficient immunological barrier limits this process, promoting a local immune response in activated mesenteric lymph
nodes. When this primary firewall fails, microbes and microbial compounds reach the liver, where they activate Kupffer cells by binding Toll-like receptors. Kupffer cells
orchestrate several processes, such as the release of inflammatory cytokines and reactive oxygen species, the recruitment of innate immune cells, the activation of
hepatic stellate cells. The uncontrolled perpetuation of this pathogenic mechanism results in liver inflammation and damage, fibrogenesis and systemic inflammation.
See text for further details.

Oxidative stress plays a critical role in the development of liver damage!”’l. The
production of reactive oxygen species is a physiological consequence of aerobic life.
Hence, organisms have developed antioxidant mechanisms in order to face the
harmful effects of these agents. The detrimental effect of these species depends on the
balance with antioxidant elements!*".

When this equilibrium is deranged, ROS can negatively affect both sides of the gut-
liver axis. On the one hand, oxidative stress is responsible for intestinal barrier
damage. Indeed, diet™, alcohol™, infectious”! and primary inflammatory diseases!”,
and drugs!”! are able to cause an imbalance in the redox state in the gut, resulting in
increased IP. Furthermore, in advanced liver diseases PHT causes hypoperfusion of
the intestinal mucosa. Subsequent hypoxia enhances the activity of xanthine oxidase,
resulting in increased ROS release and oxidative damage!"’l. On the other hand, the
liver is an important scavenger of free radicals, since it plays a crucial role in the
restoration of endogenous antioxidants and metabolism of exogenous ones!'”'?l. A
significant increase in the level of oxidative stress has been observed in all chronic
liver diseases, irrespective of the etiology of the liver disorder. Moreover, all the liver
cells are sensitive to oxidative stress-related molecules!”'**'"l. The activation of TLR
causes the generation of ROS by Kupffer cells!'”l. ROS signaling causes the activation
and proliferation of HSC!'"l. Conversely, as a consequence to the exposure to ROS,
Kupffer cells produce cytokines and chemokines, which further stimulate HSCs!'!.

Nevertheless, there are some protective mechanisms. IL-10 mediates remarkable
protective effects towards the intestinal mucosa and liver. At the intestinal level, the
release of IL-10 by macrophages modulates innate immune activation, preventing an
excessive response and consequent tissue damage!'”l. Hence, adequate IL-10 levels
improve the integrity of the gut barrier, resulting in a decrease in endotoxin
absorption!'””.. In the liver, IL-10 reduces liver inflammations and fibrosis, inhibiting
several Kupffer cells functions!"”',

Similarly, NK cells regulate fibrogenetic mechanisms in the liver. Indeed, NK cells
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perform immunosurveillance activity by killing early activated and senescent HSCs,
thus limiting fibrogenesis!"'"''?l. Interestingly, TIMP-1-expressing HSCs are resistant to
NK cells activity!'".

Coeliac disease is the hallmark of the pathogenic mechanism linking increased IP
and liver inflammation!*l. Liver damage is a common disorder associated with coeliac
diseasel’’*'"”1. In a recent meta-analysis, the prevalence of cryptogenic
hypertransaminasaemia in newly diagnosed coeliac disease is 27%!*\. In coeliac
patients, increased permeability has been proved as welll?!l. Although the
pathogenesis is poorly understood, the theory that liver involvement could be
secondary to increased IP and BT is widely accepted!"'*!">'**l. Bardella et al"""! reported
a normalization of transaminases levels in about 90% of patients with increased levels
at the time of coeliac disease diagnosis after six months of gluten free diet (GFD). In
the remaining 10% other possible causes of liver damage were proven by liver biopsy.
Another study demonstrated a significant correlation between serum transaminases
levels and IP, assessed with lactulose/mannitol test. The authors found similar
response to GFD (64/72 patients, 88.9%) and reported that IP index significantly
decreased in conjunction with the normalization of serum transaminases levels within
one year of diet. Conversely, in patients who were not compliant with GFD, liver
injury persisted and permeability tests remained altered!'*”. Furthermore, histological
alterations in the liver of patients with newly diagnosed coeliac disease and
transaminases elevation suggest that increased IP could be responsible for liver
damage in this setting. As reported by Jacobsen et all'"”!, among 37 liver biopsies
performed in coeliac patients, 25 showed non-specific patterns, 7 were diagnostic for
other diseases, 5 were classified as normal. Liver histological features of the 25 non-
specific specimens documented an increased number of Kupffer cells (52.0%),
expanded portal tracts (48.0%) and parenchymal or portal mononuclear infiltration
(36% and 20% respectively). Interestingly, some of these alterations are comparable to
those observed in other experiments reproducing liver damage in context of increased
IPU*). Thus, these results are consistent with the hypothesis that IP per se could trigger
the development of liver damage.

Also in the setting of primary liver disease, increasing evidence is linking IP to liver
damage. Occludin deficient (Ocln™/~) mice do not show intestinal T alteration!*}, but
ethanol feeding induces a decrease in E-cadherin and p-catenin distribution, which
are other proteins involved in the maintenance of TJ integrity, causing gut barrier
dysfunction!'”]. Although both ethanol fed Ocln™/~ and wild type mice had increased
plasma transaminase levels, liver damage was worse in occludin deficient mice, and
histopathological examination of the liver confirmed the presence of inflammatory
lesions only in Ocln™/~ micel'”l. As for human studies, Cariello et all'*"! demonstrated
that plasma levels of inflammatory cytokines (TNF-a and IL-6) are higher in patients
with both liver disease and increased IP compared to those with normal IP. A positive
correlation between altered IP and liver inflammation and fibrosis was observed in a
population of children with non-alcoholic fatty liver disease (NAFLD)!'”"l. Finally, a
recent meta-analysis showed that patients with NAFLD, particularly those with
increased liver injury markers, more frequently exhibit altered IPI'*’. Altogether, these
data suggest a pathogenic mechanism that determines liver damage through the
alteration of the gut barrier.

GUT-LIVER AXIS: ROLE IN THE PATHOGENESIS OF NAFLD

The pathogenesis of liver damage in patients with NAFLD is still incompletely
understood. However, a growing body of experimental and clinical data suggests a
primary role of the gut-liver axis dysfunction. Traditionally, a “double-hit”
pathogenetic model has been hypothesized for NAFLD development. Lipid
accumulation into the liver (steatosis) represents the first step. Then, a second insult is
needed to cause liver injury and inflammation!">*"*"l. The discovery of a linkage
between small intestinal bacterial overgrowth (SIBO) and NAFLD!""'"'*l and the
observation that endotoxin triggers liver inflammation in mice with steatosis!'*
brought to the formulation of this hypothesis!"*l. Several experiments in animal and
human models confirmed the influence of increased IP both in the development of
liver steatosis and in the pathogenesis of liver inflammation and fibrosis.

Brun et al®! reported gut barrier dysfunction, tested as higher epithelial
permeability to horseradish peroxidase in obese mice, both genetically deficient in
leptin (C57BL/6Job/ob) and functionally deficient for the long-form leptin receptor
(C57BL/6]Jdb/db). Immunochemistry and Western blot confirmed important
alterations of TJ proteins (ZO-1 and Occludin) distribution in obese mice. Hence,
endotoxin in portal circulation and levels of circulating proinflammatory cytokines

Jaishidengs  WJG | https://www.wjgnet.com 4820 September 7,2019 | Volume 25 | Issue33 |



Nicoletti A et al. Intestinal permeability and liver diseases

(IL-1, IL-6, INF-y, and TNF-a) were significantly higher both in ob/ob and in db/db
mice compared to controls. Interestingly, HSC isolated from obese mice showed
enhanced sensitivity to LPS and produced higher levels of cytokines.

Junctional adhesion molecule A (JAM-A) is a constituent of the TJ encoded by the
murine gene F11r. It modulates the epithelial barrier function, regulating IP and
inflammation"*>"*l. F11r~/~ mice, fed a diet high in saturated fat, fructose and
cholesterol (HFCD) for 8 weeks, developed a severe steatohepatitis, assessed by the
presence of histological features of liver inflammation (hepatocyte ballooning and
inflammatory cells infiltration) and fibrogenesis and increase in serum transaminases
compared to controls!'*l,

In a recent study, male C57BL/6 mice were fed with dextran sulfate sodium (DSS),
a chemical compound able to determine gut inflammation, and a high-fat diet (HFD)
for 12 wk. Fat vacuoles and leukocyte infiltration in the liver were higher in DSS and
HFD-fed mice compared to HFD-fed mice. Concordantly, levels of hepatic mRNA
coding for inflammatory cytokines (IL-1, IL-6, TNF-a, MCP-1) were increased as well.
Moreover, DSS + HFD showed higher expression of collagen I and profibrogenic
factors mRNA (TGF-B, Actin a2, tissue inhibitor of metalloproteinase-1 and
plasminogen activator inhibitor-1). Although there were no significant differences in
the levels of serum endotoxin, an upregulation of TLR4 and TLR 9 was observed in
DSS HFD mice. Finally, the downregulation of ZO-1 and Claudin-1 and the increased
expression of PV1 confirmed both the intestinal and gut-vascular barrier dysfunction
after DSS treatment!*”.

As for human models, the first strong evidence of increased IP in NAFLD patients
emerged from a study testing the intestinal absorption and urine excretion of orally
administered *'Cr-EDTA!L Indeed, **Cr-EDTA is normally not metabolized and
poorly absorbed (1%-3%) from the gastrointestinal tract and it crosses the intestinal
barrier through the paracellular pathway in the presence of T] disruption/*!*!l, $1Cr-
EDTA excretion levels were significantly higher than values of healthy volunteers in a
fashion that resulted proportional to the degree of liver steatosis. Furthermore,
duodenal histology showed reduced ZO-1 expression in patients with NAFLD. In this
population of patients, the prevalence of SIBO was about three times compared to
controls, an observation that confirmed findings of previous studies!'*’. However,
increased IP was not associated with the severity of liver inflammation, fibrosis and
the presence of NASH!*!. Similarly, in children with NALFD liver damage has been
linked to alterations of the gut barrier. The ratio between urinary excretion of
lactulose and mannitol (L/M ratio) after oral administration was used to measure the
degree of IPF"'#¥l L /M ratio was significantly higher in NAFLD children and further
increased in NASH patients. In order to ascertain the presence of BT, serum LPS was
quantified and resulted significantly higher in children with confirmed liver damage.
Interestingly, the extent of hepatic inflammation and fibrosis was proportional to the
degree of IPU'*). The association between SIBO and NAFLD and the finding of
increased endotoxemia across the studies underlines the role of the gut microbiota in
the initiation and development of metabolic liver diseasel*>'**!*1. Once increased IP
is established, dysbiosis affects liver homeostasis through different mechanisms. Gut
microorganisms directly cause liver damage either by means of MAMPs and PAMPs
(e.g., LPS) or by products of their metabolism (e.g., ethanol, short-chain fatty acids
(SCFAs) and trimethylamine)!'*l.

Proteobacteria, particularly Enterobacteriaceae, can ferment carbohydrates to
ethanoll'*l. In the presence of adequate conditions, the amount produced can be
remarkablel'””); indeed, a significant correlation between ethanol-producing bacteria
abundance, blood ethanol concentration and liver inflammation has been
demonstrated!*l. Besides causing direct toxic effects to the liver, this overproduction
determine the activation of hepatic ethanol metabolic pathways and increases liver
oxidative stress!'*’l. These evidences have confirmed the relevance of endogenous
ethanol production in the pathogenesis of NASH.

Acetic, propionic and butyric acid are the main SCFAs produced by the gut
microbiota in physiological conditions as a result of carbohydrates fermentation!*’l.
Following the intestinal absorption, SCFAs reach the liver through the portal
circulation, where they serve as energy source and exert a relevant role in lipogenesis
and gluconeogenesis!'*>*"'"!l, Interacting with Gprotein coupled receptors GPR41 and
GPR43 of intestinal enteroendocrine L cells, SCFAs stimulate the release of the
peptide YY (PYY), a hormone able to slow gastric emptying and intestinal transit and
favor energy absorption!'”’l. Another important consequence is the release of
glucagon-like peptide-1, which enhances glucose-dependent insulin releasel'™.
Altogether, these effects may favor the development of NAFLD and NASHU*1.

Furthermore, the intestinal microbiota inhibits the production and secretion of
fasting-induced adipocyte factor (FIAF) by the intestinal L cells and the enterocytes.
FIAF is an inhibitor of lipoprotein lipase (LPL), which determines, when suppressed,

Baishidengs WJG | https://www.wjgnet.com 4821 September 7, 2019 | Volume 25 | Issue33 |



Nicoletti A et al. Intestinal permeability and liver diseases

the activation of LPL and the increase in triglyceride accumulation in the liver and the
adipocytes!'™. Hence, increased hepatic lipid storage activates the carbohydrate-
responsive element-binding protein and the sterol regulatory element-binding protein
1, perpetuating fat accumulation!"™’].

Finally, choline is implicated in the synthesis of very-low density lipoprotein
(VLDL). Hence, choline deficiency cause a decrease in the production and release of
VLDL and triglyceride accumulation in the liver™’l. Bacteria of the taxa Erysipelotrichia
are able to metabolize choline to methylamines, toxic compounds that have been
correlated to liver damage!”**l. In NAFLD patients, augmented intestinal metabolism
of choline, choline deficiency and abundance of Erysipelotrichia taxa have been
observed!'”.

Recent studies reported qualitative alterations of the gut microbiota composition in
patients with NAFLD. Particularly, Bacteroides genus is correlated with NASH and a
parallel decrease in Prevotella abundance was found!"™”'*l. In fact, diet enriched in fat,
proteins of animal origin and simple sugars, like Western one, promotes Bacteroides
abundance, whilst an increase in Prevotella abundance is favored by a diet rich in
fibers and vegetal carbohydrates!"”'*!l. Ruminococcus genus has been positively
associated with significant liver fibrosis (= F2) in humans!"*”, and a correlation
between the abundance of this genus and the development of metabolic impairment
has been observed in animal models!'*’l. Alcohol production, due to the ability of
Ruminococcus to ferment complex carbohydrates, may be responsible for further liver
damagel'”l. An increase in Proteobacteria/Enterobacteriaceae/ Escherichia abundance has
been described in NASH and correlates with serum levels of alcohol*l.

Furthermore, NAFLD-related liver cirrhosis patients showed a low gut microbiota
diversity compared to healthy controls. At the genus level, an abundance in
Lactobacillus, Bacteroides, Ruminococcus, Klebsiella, Prevotella, Enterococcus, Haemophilus,
Pseudomonas, Parabacteroides, Phascolarctobacterium, Veillonella, Streptococcus, Atopobium,
Dialister, Christensenella, and decrease in Methanobrevibacter and Akkermansia was
observed!*.

It is well known that dief also is a key regulator of IP!'*’l. In animal models of
NAFLD, adaptation of a high-fat diet or high-fructose intake has been associated with
increased gut permeability!**'*’l. Elevated concentrations of saturated fat or fructose
favors pro-inflammatory microbiota; on one hand, suppressing production of SCFAs
that are essential for intestinal barrier function, on the other hand recruiting
macrophages and leading to the release of TNF-a and other cytokines causing
mucosal inflammation!**'*’l. The consequence is a decreased expression of TJ proteins
and a higher permeability of the gut barrier!'"".. Diet-induced increases in blood LPS
levels are known as metabolic endotoxaemia and play an important role in the
activation of TLR-mediated low-grade liver inflammation, which are associated with
NAFLD and NASH!'"1. Current evidence from animal studies suggests that a high-fat
diet or a high-fructose diet can induce metabolic endotoxaemia by altering the
intestinal TJ proteins, mainly ZO-1 and occluding!®>'”*'7l. In NAFLD adolescents,
postprandial endotoxin levels were increased compared to healthy subjects in
response to fructose, but not glucose, beverages (consumed with meals) in a 24-h
feeding challengel'™\.

There are currently no data concerning diet modulation of IP in patients with
NAFLD, and it is plausible that a healthy diet can reduce IP in patients with NAFLD
by restoring the integrity of tight junctions. The Mediterranean diet contains a high
intake of mono- and polyunsaturated fatty acids, fibres, polyphenols, antioxidants
and phytochemicals; many of these components promote short-chain fatty acid-
producing gut bacteria and have significant prebiotic effects!!”®l. As such,
Mediterranean diet was an attractive tool for reducing impaired IP in patients with
NAFLD. In a cross-over pilot study!”, twenty patients with NAFLD underwent 16
weeks of a Mediterranean diet and 16 weeks of a low-fat diet; although the majority of
patients presented at baseline, as expected, high IP evaluated according to 51Cr-
EDTA, none of the two diets were sufficient to modulate it. Diet-modulation of IP in
humans is much more difficult to obtain than in animal models and further research is
needed.

GUT-LIVER AXIS: ROLE IN THE PATHOGENESIS OF
CIRRHOSIS

Increased IP and BT are hallmarks of liver cirrhosisi>*l. As previously described, the
contribution of BT to liver damage could be crucial for the progression to liver
cirrhosis. On the other hand, the once liver cirrhosis is establishment it further
enhances IP. The magnitude of BT is proportional to the stage of the disease!”’ and
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correlates with prognosis!”l.

PHT can reasonably be considered the primary determinant of the onset of altered
IP in the setting of advanced liver disease. Indeed, increased splanchnic vasodilation
induces a decrease in the blood flow and venous congestion at the intestinal mucosa
level, leading to ischemia and edema, up to the disruption of the T] and epithelial
barrier dysfunction!””'*l. Consequently, BT is enhanced and in most cases it becomes
clinically relevant, due to the large extent of the mucosa involved in the pathogenic
mechanism!"*-"*l. To confirm of the importance of PHT in the pathogenesis of
increased IP, the reduction of hepatic venous pressure gradient by non-selective beta-
blocker therapy decreases IP!'.

Endotoxemia further worsens the hemodynamics of cirrhotic patients. In fact, the
systemic inflammatory response activated by bacteria and their products/fragments
leads to the release of cytokines and the consequent synthesis of (NO) by inducible
nitric oxide synthase (iNOS)!'"***’]. The result is a decrease in systemic vascular
resistance and the secondary development of hyperdynamic circulation”* "% that
further worsen IP and BT!'"!. In fact, there is evidence that intestinal decontamination
improves the hyperdynamic state in liver cirrhosis!*"'*!l.

Furthermore, increased IP and consequent BT are fundamental pathogenic steps in
the development of complications of chronic liver diseasel”. In cirrhotic patients,
impaired hemodynamics in advanced phases may negatively affect renal function,
causing the hepatorenal syndrome (HRS). LPS per se leads to renal vasoconstriction,
but it can worsen renal function via the increase of plasma levels of endothelin!'**'**l.
Furthermore, TLR4 may play a role in the pathogenesis of HRS via the consequent
activation of NF-xB and TNF-a pathways, since it is overexpressed in the kidney
during endotoxemial'”l. The importance of this pathogenic mechanism in the
development of HRS is highlighted by the fact that in both animal and human studies,
intestinal decontamination, achieved either by norfloxacin, paromomycin or
rifaximin, showed beneficial effects on renal function!'”>'”’l. Similarly, among the
ancillary effects of albumin infusion, the scavenging of LPS is involved in the
amelioration of renal hemodynamics!*.

In the first clinical reports of spontaneous bacterial peritonitis (SBP) in the 1960s, a
pathogenetic mechanism involving BT from the gastrointestinal tract has already been
hypothesized!”**"l. However, clear scientific evidence was only produced in the
1990s. These experiments showed in murine models of liver cirrhosis a high
correspondence between the isolation of bacteria from cultures of MLNs and ascites.
Positive cultures were obtained from both mice with or without SBP, demonstrating
that BT is a frequent event in advanced liver diseasel*”*"l. Another evidence that
elucidates the causal association between intestinal dysbiosis, impaired IP, BT and
SBP is the decrease in the incidence of SBP (-72%) in patients with ascites treated with
rifaximin®*!. Similar results in SBP primary and secondary prophylaxis have been
obtained with norfloxacin”**,

In liver cirrhosis, the liver capacity to detoxify ammonia, neurotoxic substances and
false neurotransmitters, produced by the gut microbiota from the catabolism of
dietary proteins, is insufficient!®*?!’l. On the other hand, the formation of
portosystemic shunts further decrease the part of blood depurated”'l. Thus, entering
the bloodstream, these substances are delivered to the brain, where they have
detrimental effects, causing edema and altering neurotransmission, causing hepatic
encephalopathy (HE)P*#'.

A perturbation in the gut microbiota composition has been linked to the
development of HE. In particular, Alcaligeneceae, Porphyromonadaceae, Enterobacteriaceae
abundance has been correlated with cognitive impairment and neuroinflammation in
cirrhotic patients?'?. Moreover, the systemic inflammatory state resulting from the
perpetuation of BT independently affects brain functions and worsens cognitive
performancel”*?"", and finally, inflammation secondarily extends to the brain, where a
self-maintaining process is then established!”**"***’l. Hence, the modulation of the gut
microbiota and its metabolism represents the basis for the treatment and prevention
of overt HEP',

The pathogenesis of portal vein thrombosis (PVT) is incompletely understood.
However, besides reduced portal vein flow velocity and prothrombotic state, BT into

known that endotoxin is able to increase thrombin generation via the increased
production of tissue factor (TF)*.. Similarly, LPS stimulates the release of factor VIII
and von Willebrand factor release, in a way that could be mediated by TLR4
activation””l. Since the liver acts as a firewall towards BT, there is a gradient
between the concentration of LPS in the portal vein and in the systemic circulation.
Hence, this could be a significant pathogenic mechanism for the development of PVT
in cirrhotic patients!”* 1. Interestingly, endotoxin-induced prothrombotic state in the

portal system can cause microembolism to hepatic sinusoids, contributing to liver
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damage and inflammation!

Increasing evidence supports the involvement of the gut-liver axis in
hepatocarcinogenesis. As aforementioned, intestinal hyperpermeability and
consequent BT activate TLRs through the binding with LPSF¥’l. The subsequent
activation of NF-xB signaling initiates the inflammatory cascade that favors
carcinogenesis”**!l. Indeed, in animal models, it has been demonstrated that the
infusion of LPS stimulates the development as well as the growth of liver tumors*>**1.
Conversely, the lack of IKK-b, a kinase that frees NF-xB from inhibitory proteins,
decreases hepatocarcinogenesis™. An inflammatory environment is crucial for the
development of hepatocellular carcinoma (HCC). Cytokines modify the micro-
enviroment by recruiting innate immune cells and altering the extracellular
matrix!*'**l. Moreover, the production of ROS cause direct DNA damage!*" and
inflammation stimulate cell turnover and proliferation, favoring the accumulation of
DNA mutations®"*"1,

Other MAMPs and PAMPs and microbial metabolites have also been proposed as
potential carcinogens”**l. Hence, recent studies have analyzed the gut microbiota of
patients with HCC in order to find a microbial fingerprint of the disease. Ponziani et
alt*l described the gut microbiota of NAFLD cirrhotic patients with HCC. At the
genus level, a significant increased abundance of the Phascolarctobacterium,
Enterococcus, Streptococcus, Gemella, Bilophila genera was observed. In another recent
study, the abundance of the Haemophilus, Eggerthella, Bifidobacterium, Butyricimonas,
Christensella, Odoribacter genera, an unknown genus from Tenericutes phylum and an
unknown genus from Firmicutes phylum was significantly increased by 2-3 fold in
the HCC group. Interestingly, the authors found a correlation between changes in the
gut microbiota and liver inflammation"..

Finally, as regards the gut microbiome in liver cirrhosis, a decreased bacterial
diversity has been observed compared to healthy controls. At the phylum level, the
abundance of Bacteroidetes is reduced, whilst Proteobacteria and Fusobacteria are
increased. The increase in the abundance of potentially pathogenic bacteria, such as
Streptococcus, Veilonella, and Enterobacteriaceae, may explain the frequent involvement
of these bacteria in the pathogenesis of infectious complications in these patients***!1.
A relocation in the distribution of microorganisms along the gastrointestinal tract has
been correlated with the onset of the complications of liver cirrhosis, as well®. In
particular, a higher abundance of Streptococcus salivarius has been correlated with the
minimal HEP?. In parallel, a decrease in the abundance of potentially beneficial
Lachnospiraceae and Clostridium cluster XIVa has been reported*>*1.

GUT-LIVER AXIS AFTER LIVER TRANSPLANTATION

PHT, which is responsible for increased IP in the setting of liver cirrhosis, is reverted
by liver transplantation (LT)***l. Accordingly, IP should decrease after LT. In a
study analyzing IP 2 to 3 years after LT in patients on immunosuppressant drugs
(tacrolimus and cyclosporine), Parrilli et al**! reported an increase in lactulose
/rhamnose ratio (Lacl/L-Rh ratio) that was only due to a decrease in L-Rh excretion.
The authors concluded that IP was restored, in spite of the effects of antirejection
drugs on intestinal barrier function. Moreover, serum endotoxin levels were similar
between LT patients and controls. Another study soon after LT in patients receiving
tacrolimus therapy showed that IP, assessed with L/R ratio, was elevated compared
to healthy controls. Furthermore, about 50% of the patients had increased serum
levels of endotoxinl. Therefore, IP could still be impaired soon after LT and improve
later. However, further studies are needed to analyze the modification of IP in
patients with cirrhosis after LT.

Few studies analyzed the alterations of the gut microbiota after LT. In particular, a
decrease in Eubacteria, Bifidobacterium spp, Fecalibacterium prausnitzii and Lactobacillus
spp abundance and a decrease in Enterobacteriaceae and Enterococcus spp has been
observed™’l. Interestingly, in a recent study microbial diversity did not show
significant modification during the first week after LT. Instead, during postoperative
days 8 to 14 the influence of surgical operation, antibiotics and antirejection therapy
reduced microbial diversity**’l. Afterwards diversity was progressively restored?"**l,
No association was been found between intestinal dysbiosis and acute cellular
rejection, post-transplant bloodstream infections and/or the recurrence of liver
diseasel*%**I,
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CONCLUSION

Increased IP, BT and alterations of the gut microbiota composition are important
pathogenetic elements responsible for the development of liver damage, the initiation
of fibrosis changes up to the development of liver cirrhosis and its complications. At
present, there are very few evidences of the efficacy of the role of the gut microbiota
modulation in the modification of the natural course of liver disease. Further studies
are needed to investigate the efficacy of these strategies.
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