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Psychotic experiences may be understood as altered infor-
mation processing due to aberrant neural computations. 
A  prominent example of such neural computations is the 
computation of prediction errors (PEs), which signal the 
difference between expected and experienced events. Among 
other areas showing PE coding, hippocampal-prefrontal-
striatal neurocircuits play a prominent role in information 
processing. Dysregulation of dopaminergic signaling, often 
secondary to psychosocial stress, is thought to interfere with 
the processing of biologically important events (such as re-
ward prediction errors) and result in the aberrant attribution 
of salience to irrelevant sensory stimuli and internal rep-
resentations. Bayesian hierarchical predictive coding offers 
a promising framework for the identification of dysfunc-
tional neurocomputational processes and the development 
of a mechanistic understanding of psychotic experience. 
According to this framework, mismatches between prior 
beliefs encoded at higher levels of the cortical hierarchy and 
lower-level (sensory) information can also be thought of as 
PEs, with important consequences for belief updating. Low 
levels of precision in the representation of prior beliefs rel-
ative to sensory data, as well as dysfunctional interactions 
between prior beliefs and sensory data in an ever-changing 
environment, have been suggested as a general mechanism 
underlying psychotic experiences. Translating the promise 
of the Bayesian hierarchical predictive coding into patient 
benefit will come from integrating this framework with ex-
isting knowledge of the etiology and pathophysiology of 
psychosis, especially regarding hippocampal-prefrontal-
striatal network function and neural mechanisms of infor-
mation processing and belief updating.
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Introduction

Biological accounts of schizophrenia and related psy-
chotic states have long focused on dopamine dysfunction, 
based on the effects of antipsychotic medication and neu-
roimaging studies showing increased striatal dopamine 
synthesis capacity and release in unmedicated psychotic 
patients.1–4 Decisive steps toward computational accounts 
of dopamine function were taken when Schultz and 
coworkers5 showed that phasic dopamine release reflects 
the valence and magnitude of mismatches between ex-
pected and obtained reward outcomes (called “reward 
prediction errors,” or RPEs), and when Robinson and 
Berridge6 postulated that phasic dopamine release reflects 
the attribution of incentive salience to sensory stimuli 
and internal representations (for further early theories 
on altered learning and inference in schizophrenia, see 
supplementary section 1). We and others7–9 proposed 
that, in schizophrenia, delusion formation is promoted 
by dysregulated, and therefore noisy, firing of dopamin-
ergic neurons, thus imbuing otherwise irrelevant stimuli 
with meaning and motivating subjects to focus their 
attention on these cues—a phenomenon termed “aber-
rant salience attribution.” Increased dopamine tone may 
“drown” the encoding of actually relevant stimuli, such 
as primary reinforcers and conditioned cues associated 
with rewards.10

Dopaminergic prediction error (PE) signaling and its 
postulated cognitive correlate of salience attribution can 
be grounded in a more general computational framework 
of how individuals make inferences about their environ-
ment and thus shape their subjective model of the world.11 
According to the theory of Bayesian inference, beliefs 
are continuously updated by testing prior beliefs against 
novel incoming information, resulting in posterior beliefs. 

http://orcid.org/0000-0002-9236-3719
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It has been proposed that the brain uses this mechanism 
of belief  updating to infer the hidden states of the world 
from incomplete and noisy sensory data.12 In a Bayesian 
sense, the term belief is not exclusively used for higher-
level cognition but also refers to a probability distribution 
over some unknown environmental or internal state and 
may or may not be consciously accessible.13 The mean of 
this distribution denotes the most expected state, whereas 
its variance denotes the uncertainty of  the belief  (and the 
inverse variance its precision). Critically, if  a belief  is held 
with high uncertainty (ie, low precision), mismatching 
sensory information will be very effective in updating the 
belief. In contrast, if  a belief  has low uncertainty (ie, high 
precision), mismatching information can be ignored and 
will have little effect on belief  updating.13

The “predictive coding” framework has been suggested 
as one biologically plausible algorithmic implementa-
tion of Bayesian inference in the brain.14,15 This frame-
work describes a hierarchical organization of beliefs, 
where mismatches between prior beliefs and incoming 
signals result in PEs, which serve as learning signals for 
the updating of posterior beliefs and are propagated 
upwards in the hierarchy from low to high levels.16 The 
updating of lower-level beliefs by PEs is weighted by 
higher-level beliefs regarding the certainty attributed to 
a lower-level belief. The predictive coding hierarchy is 
thought to reflect the hierarchical structure of informa-
tion in  the world,17 whereby different sources of uncer-
tainty are computed at different levels of the hierarchy: 
low-level uncertainty results from limited or noisy sen-
sory information, whereas high-level uncertainty results 
from unpredictable state changes over time, ie, environ-
mental volatility.13,18 This hierarchical structure in un-
certainty computation is supposedly represented in the 
sensory cortices for lower-level processing and in associa-
tive cortices for higher-level processing.18,19

In schizophrenia, an altered balance between the encod-
ing of prior beliefs and sensory information processing 
may result in maladaptive PE signaling, not only in dopa-
mine-dependent subcortical circuits, but also in cortical 
brain circuits.16,20,21 In a Bayesian framework,12 this im-
pairment can be formalized as a relative imprecision in the 
signaling of prior beliefs vis-a-vis input signals emanating 
from low-level sensory cortices, leading to a kind of aber-
rant PE signaling, apart from dopamine-dependent sub-
cortical RPE signaling. Such erratic PE signaling could 
impair the ability to distinguish between relevant and ir-
relevant sensory information, resulting in maladaptive 
inferences and belief-updating. Maladaptive inferences 
may arise from aberrant encoding of the precision of prior 
beliefs at different levels of the predictive coding hierarchy. 
However, such accounts need to be integrated with existing 
knowledge regarding hippocampal-prefrontal-striatal net-
work dysfunction in schizophrenia.22,23 In this review, we 
focus on Bayesian predictive coding accounts of psychotic 

experience and discuss the neural circuits related to altered 
information processing in psychosis.

Computational Models of Reinforcement Learning 
Alterations in Psychosis

Computational models of  reinforcement learning (RL) 
have been frequently applied to data from individuals 
performing tasks reliant on the ability to process and 
learn from feedback, and to decide based on representa-
tions of  value.11,24 While the in-the-moment experience 
of  rewarding stimuli appears to be largely intact in the 
majority of  schizophrenia patients, there is solid ev-
idence for deficits in value-based decision making and 
altered neuronal signals during aspects of  reward-based 
learning.25–27 In animal studies, RPEs have been shown 
to evoke phasic dopamine bursts that act as teaching 
signals during associative learning about rewards,28–30 as 
well as salient nonrewarding events.31 Importantly, alter-
ations in the (largely dopaminergic) signaling of  RPEs 
have been proposed to underlie both the increased ten-
dency to attribute aberrant salience to irrelevant stimuli 
(thought to contribute to positive symptoms7,8,10) and the 
reduced ability to adaptively learn about reward value 
and attribute incentive salience to biologically important 
stimuli and events (thought to contribute to motivational 
impairments32,33).

Several groups have used functional magnetic reso-
nance imaging (fMRI) in conjunction with computa-
tional modeling in a RL framework, point to a disruption 
in midbrain RPE signaling in acutely psychotic individu-
als,34–38 which has also been observed in conjunction with 
the encoding of informative errors in the ventral striatum 
during reversal learning.39 Given the evidence for dopa-
minergic dysfunction in psychosis,2,3,40 a link between 
alterations in dopamine function and RPE signaling in 
psychotic illness is very plausible. Indeed, one study in 
healthy volunteers found an inverse association between 
dopamine synthesis capacity and the strength of stri-
atal RPE signals.41 Additional fMRI studies have dem-
onstrated that individuals with schizophrenia (especially 
those with more severe negative symptoms and/or deficits 
in intellectual function)42–44 exhibit attenuations in ven-
tral striatal activation during reward anticipation, relative 
to healthy controls. Such alterations in neuronal learning 
signals can help to explain previously observed RL defi-
cits in schizophrenia patients.45–47

Recent Bayesian accounts of learning and inference 
provide a computational account of dopamine that goes 
beyond signaling the magnitude and valence of RPEs, 
postulating that dopamine plays an important role in 
belief updating by encoding the precision of PEs.48–51 
In short, the effects of PEs on learning are weighted by 
the belief about the current precision of the learning 
signal.52,53 This probabilistic belief is thought to reflect 
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prior assumptions about informational uncertainty and 
is, in turn, modulated by higher-level beliefs regarding 
the volatility of the environment, encoded at higher 
levels of neural computation including the prefrontal 
cortex (PFC) and hippocampus (figure 1).54 A computa-
tional framework that models this hierarchical structure 
of belief updating is the Hierarchical Gaussian Filter13  
(figure 2). This approach extends RL accounts and pro-
vides a broader framework that goes beyond learning of 
beliefs about reward-related value expectation. Using this 
framework, a recent model-based fMRI study of associ-
ative audiovisual learning found that high-level beliefs 
regarding the strength of dynamic cue-target contingencies 
relied on hippocampus and orbitofrontal cortex, whereas 
the representations of low-level conditional target prob-
abilities was associated with early visual cortex activity.19

The idea that dopaminergic transmission contributes 
to the signaling of the precision of learning signals also 
suggests a mechanism by which dopamine may influence 
higher-level decision making. Specifically, representations 
of uncertainty have been shown to drive exploratory be-
havior.58–60 It is therefore noteworthy that dopamine 
synthesis capacity in the striatum has been found to be 
associated with the extent to which participants used a 
goal-directed learning strategy, in the context of a com-
plex cognitive task,61 and that deficits in goal-directed 

exploration have been found to contribute to impairments 
in learning and motivation in schizophrenia patients.25,47

Further evidence points to roles for glutamater-
gic neurotransmission (eg, via NMDA receptors) and 
GABAergic inhibition in encoding the precision of learn-
ing signals in hippocampal and cortical networks (fig-
ure 1). While the signaling of precision-weighted PEs has 
not been investigated in schizophrenia patients thus far, 
the administration of the NMDA receptor antagonist 
ketamine, to healthy controls, was found to be associated 
with both a reduced ability to use confidence (precision) 
estimates to regulate RL parameters and altered fronto-
parietal activity.62

Finally, dopamine has also been implicated in hippo-
campus-dependent novelty detection and novelty seeking 
behavior in both humans and rodents.54,63–65 Of course, 
merely because a stimulus is “novel” does not necessarily 
mean that it would be involved in belief  updating. Rather, 
it has been proposed that a stimulus must be both novel 
and salient to impact belief, and that prefrontal-hippo-
campal dynamics thought to underlie novelty detection 
interact with dopaminergic salience signals16,54 to bring 
about relevant memory incorporation.54

Regarding neurobiological correlates of the symptoms 
of psychotic illness, positive symptoms are thought to be 
mediated by dopamine hyper-responsivity, with cognitive 

Fig. 1. Circuit model of frontal and hippocampal control of dopamine neuron firing. The ventral hippocampus exerts potent control 
over dopamine neurons firing spontaneously. The number firing determines the amplitude, and hence salience, of the signal. Dopamine 
neurons are normally inhibited by the ventral pallidum, which in turn is inhibited by the nucleus accumbens. When the ventral 
hippocampus is activated, it activates the nucleus accumbens, which in turn inhibits the ventral pallidum and releases dopamine neurons 
from inhibition, allowing them to initiate firing.55 The ventral hippocampus is potently regulated by the PFC via the thalamus. The 
(infralimbic) PFC normally holds the ventral hippocampus in a less-active state. However, when infralimbic PFC activity is decreased, 
the primary effect is deactivation of the reticular nucleus of the thalamus, which in turn disinhibits the thalamic nucleus reuniens. This 
increases the tonic excitatory drive of the nucleus reuniens on the ventral hippocampus, disinhibiting dopamine firing, which impacts 
cognitive control via the associative striatum.56 The human analogue of the infralimbic cortex is the subgenual cingulate area 25. The 
arrows from the VTA to cortical and subcortical regions denote modulatory dopaminergic projections.
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symptoms arising via frontal cortical dysfunction, and 
negative symptoms via impaired function of fronto-
striatal circuits, cingulate cortex, and the amygdalae.66,67 
While decades of research have revealed that dopamine 
can have different actions depending on its projection 
site,54,68,69 one central aspect of dopamine function seems 
to be the signaling of salience or, in Bayesian terms, of 
the precision during information processing.

Sensory Information Processing and Its Association 
With the Formation and Maintenance of Delusions

Insufficient precision in the encoding of low-level prior 
beliefs relative to sensory input could occur either due to 
the faulty acquisition of prior beliefs, or due to a reduced 
ability to appropriately use prior beliefs in perceptual 
inference. The acquisition of prior beliefs could be faulty 
if  sensory information is misleading, if  the detection and/
or encoding of relevant sensory information are per-
turbed (or excessively stochastic),54 or if  the detection 
and/or computation of higher-level PEs are perturbed or 
insufficiently precise.16,21 A  reduced ability to appropri-
ately use prior beliefs in perceptual inference could occur 
if  high-level beliefs include false assumptions regarding 
the volatility of a novel environment.

These considerations are consistent with the view that 
both genetic and psychosocial factors contribute to the 
development of psychosis. While it is still necessary to 
differentiate among the various forms of stress, a mecha-
nistic understanding of stress effects on neural circuits is 
emerging, indicating, eg, that stress can elevate microglial 
activity in hippocampus70 and increase striatal dopamine 
release.71 Experiences of both acute and early-life stress 
have been shown to engender and exacerbate psychotic 

symptoms—possibly via elevated striatal dopamine syn-
thesis72—especially in those with elevated genetic liability 
for, or social vulnerability to, psychotic illness.73–75 As yet, 
no studies of individuals at elevated genetic or environ-
mental risk for psychosis have examined the precision in 
encoding of prior beliefs, or influence of priors on deci-
sion making. Regardless of whether they are driven by 
psychosocial or primary neurobiological factors, mal-
adaptive inferences related to sensory and high-level 
processing may ultimately implicate the same circuits in-
volved in the comparison of prior beliefs and new sensory 
information. Such neural circuits include temporo-limbic 
brain regions involved in executive control and stress 
reactivity.23,54

Importantly, different levels of neural processing may 
be differentially involved in false inferences underlying 
psychotic experience; Schmack and coworkers76 observed 
that delusional ideation in both healthy volunteers and 
schizophrenia patients is associated with reduced per-
ceptual stability during the viewing of ambiguous visual 
stimuli that represent informational uncertainty,76,77 which 
points to a weaker influence of perceptual priors built up 
at previous encounters with the same visual information. 
This observation is in line with the well-known finding of 
reduced susceptibility to some visual illusions in schizo-
phrenia, pointing to reduced precision of prior beliefs at 
low hierarchical levels.21,78 Interestingly, the finding of a 
decreased influence of such lower-level perceptual beliefs 
was accompanied by an increased influence of higher-level 
cognitive beliefs on sensory processing. Belief-related con-
nectivity between regions encoding high-level beliefs in 
the orbitofrontal cortex and visual brain areas encoding 
visual motion perception was increased in delusion-prone 
individuals and schizophrenia patients.76,79 Accordingly, 

Fig. 2. (A) Schematic model of altered hierarchical inference in the visual system. Sensory input represents processing in early visual 
cortex. Low-level “sensory” beliefs are encoded at the next higher hierarchical level, eg, mid- or high-level visual areas, and high-
level “conceptual” beliefs at the highest cortical levels, eg, PFC. Arrows represent top-down signaling of prior beliefs and bottom-up 
signaling of prediction errors (PEs), with arrow thickness representing their respective precisions. The putative decrease in precision 
of low-level beliefs may lead to increased weighting of the sensory input, thus enhancing PEs, potentially compensated by increased 
precision of conceptual high-level beliefs.57 Brain image courtesy of Flickr/IsaacMao. (B) Schematic representation of the Hierarchical 
Gaussian Filter (adapted from Mathys et al13). Levels x1

(k), x2
(k), x3

(k) represent hidden environmental states at time k. They depend on their 
immediately preceding values x2

1(k ),−  x3
1(k )−  and on the parameters κ (coupling of levels 2 and 3), ω (step size at level 2), and ϑ (learning 

speed about environmental volatility). The probability at each level is determined by the variables and parameters at the level above. The 
levels relate to each other by determining the step size of a random walk. Note that the levels of this model are not equivalent to those 
in (A). However, reduced learning speed about environmental volatility might contribute to a stronger top-down influence of high-level 
beliefs.
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reduced precision of perceptual beliefs encoded at low 
levels (eg, in sensory cortices) may be compensated by 
increased precision of more abstract conceptual beliefs 
encoded in higher-level brain circuits (figure 2).79 In this 
case, such a disambiguating top-down signal may reflect 
a belief  in low volatility of the environment, as previ-
ously suggested.16 In the context of social interactions, 
an individual may falsely categorize ambivalent social 
interactions as threatening if  informational uncertainty 
regarding social cues is wrongly disambiguated by delu-
sion-congruent top-down signals (thereby contributing 
to the stability of delusions).

At this point, our understanding of the role of dopa-
minergic modulation of (and by) fronto-striatal circuits 
comes back into view.22,80 In the following section, we 
review a series of studies suggesting that aberrations in 
glutamatergic and dopaminergic signaling emerge from 
dysfunctional interactions among temporo-limbic, pre-
frontal, and striatal brain areas, and consider how these 
empirical findings relate to the theoretical framework of 
Bayesian predictive coding.

Reverberating Circuits and Temporal Limbic-Cortical 
Dysfunction in Psychosis

Despite genetic associations between dopamine receptor 
variants and schizophrenia risk,81 even the most ardent 
proponents of the dopamine hypothesis of schizophrenia 
would not suggest that schizophrenia involves a primary 
deficit in dopamine dysfunction akin to that characteriz-
ing Parkinson’s disease. Rather, it has been proposed that 
fronto-striatal circuits may be disrupted in schizophre-
nia, thus putting a focus on dopamine–glutamate inter-
actions1,22,23 (see supplementary section 2.1).

Preclinical studies suggest that interactions of tem-
poro-limbic brain areas with PFC control regions second-
arily disinhibit subcortical dopamine release, potentially 
in a “compensatory effort” to increase the signal-to-noise 
ratio when confronted with noisy information process-
ing.10,82–84 Furthermore, a series of studies85,86 of temporo-
limbic-prefrontal interactions has focused on the balance 
of excitatory glutamatergic and inhibitory GABAergic 
neurotransmission. Complementary fMRI and magnetic 
resonance spectroscopy (MRS) studies86–88 suggest that 
abnormal GABAergic transmission can lead to elevated 
hippocampal and frontocortical glutamate concentra-
tions as well as hippocampal hyperactivity in schizophre-
nia patients. The most recent meta-analysis of glutamate 
MRS studies89 reported elevations in glutamatergic 
metabolites in the medial frontal cortex in individuals at 
high risk for schizophrenia, and in the medial temporal 
lobes and basal ganglia of schizophrenia patients (but 
see supplementary section 2.2; Schür et al90). In preclin-
ical models, and postmortem studies, of schizophrenia, 
a consistent loss of parvalbumin (PV) GABAergic inter-
neurons is found in schizophrenia, which are located at 

the cell body of the pyramidal neurons and have greater 
influence on overall activity.91 Compared with the total 
GABAergic interneuron population, the number of 
PV interneurons is small, so that measuring overall 
GABA concentrations will not give a precise picture of 
excitability.

Findings of systematic relationships between gluta-
matergic concentrations in brain regions of interest and 
PET measures of dopamine synthesis92 suggest that per-
turbations of excitatory glutamatergic neurotransmission 
contribute to dopamine system abnormalities observed in 
psychosis patients, in accordance with preclinical studies 
showing that activation of hippocampal pyramidal neu-
rons drive dopamine neuron activity states.93,94 Within a 
Bayesian framework, alterations in glutamatergic neu-
rotransmission as well as the balance between excitatory 
glutamatergic and inhibitory GABAergic signal trans-
duction in the temporo-limbic and PFC may be just spe-
cific correlates of a more widespread alteration in the 
precision of information processing. In this context, vol-
atility may be underestimated at high hierarchical levels 
(see supplementary material; Jardri et al95).

We argue that genetic- and stress-dependent vulnera-
bility factors can contribute to psychosis by shifting the 
balance between the respective precisions of prior beliefs 
and sensory evidence. In people with these risk factors, 
slight alterations in the balance between excitatory and 
inhibitory neurotransmission may result in overall nonse-
lective information processing and reduced precision of 
prior beliefs, thus increasing the relative effects of sen-
sory inputs, which in turn results in a shift of posteriors 
toward the sensory evidence and enhanced precision-
weighted PEs. As a result, irrelevant information could 
have a greater tendency to be perceived as overly salient, 
leading to an impaired distinction between relevant and 
irrelevant stimuli. This could be tested by examining rele-
vant neurocognitive and computational measures in indi-
viduals at elevated risk for schizophrenia. These processes 
can strongly involve brain areas associated with novelty 
detection including the hippocampus,23,54 which is critical 
in regulating dopamine neuronal activity.94 Furthermore, 
all of  the regions implicated in the expression of the 
symptoms of psychosis (eg, fronto-striatal circuits, cingu-
late cortex, and the amygdalae) receive innervation from 
the limbic hippocampus.96 Thus, dysfunctional informa-
tion processing in the limbic hippocampus has far-reach-
ing consequences, necessarily disrupting related circuits 
in the cerebral cortex and influencing volatility estimates 
at the highest levels.79,97,98

Stress-dependent and/or chaotic dopamine firing can 
lead to noisy signaling of common primary and sec-
ondary reinforcers by augmenting otherwise irrelevant 
signals: in the frontal cortex and ventral striatum, dys-
regulated dopamine release may blunt signals elicited 
by the surprising manifestation of cues associated with 
positive reinforcers and thus contribute to motivational 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby154#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby154#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sby154#supplementary-data
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deficits99 (see supplementary section 2.3). On the other 
hand, when phasic dopamine release is associated with 
stressful or chaotically coinciding stimuli, salience can 
be attributed to these otherwise random co-occurrences, 
thus contributing to delusional perceptions and delusion 
formation.26,100 Bayesian posteriors may be further shifted 
toward sensory input by circular inference, thus amplify-
ing certain information aspects at the expense of others 
(supplementary section 3).

Summary and Consequences for Future Research

In sum, these findings suggest that, beyond simple 
effects of sensory priors on the processing of sensory 
input, there are complex interactions in psychotic illness 
between low-level information processing in sensory cor-
tices and information processing at higher levels of the 
predictive coding hierarchy. We argue that such interac-
tions of higher-level with lower-level beliefs might be a 
general and important mechanism underlying psychotic 
experiences in a volatile environment.

The framework of Bayesian inference offers a promis-
ing approach for developing computational models that 
account for psychotic experiences by capturing exam-
ples of nonselective information processing and failed 
attempts to deal with a lack of precision. Mathematical 
models, particularly when constrained by biological plau-
sibility, offer the possibility of identifying neurocomputa-
tional steps that the individual has to take when solving 
a certain task (eg, the computation of PEs101) and the 
neural signals associate these steps. Importantly, the idea 
of nonselective information processing within a Bayesian 
framework, as a consequence of disrupted temporo-lim-
bic and prefrontal-striatal interactions, might account 
for a wide range of psychotic experiences, including self-
disorders related to the initiation and performance of 
action as well as the self-attribution of intentions and 
thoughts.102–104 Beyond RL, Bayesian approaches can 
be applied to a range of cognitive and perceptual pro-
cesses, such as visual information processing,78,105,106 reli-
ant on frontal-occipital connectivity.76 To further develop 
a mechanistic understanding of the emergence of the 
symptoms of psychotic illness, 4 steps are recommended.

First, future research should place greater emphasis on 
auditory information processing. Even though auditory 
hallucinations clearly occur outside of psychotic illness, 
complex auditory hallucinations figure prominently in 
psychotic illness,107–109 and substantial evidence points to 
predictive coding alterations in relation to auditory proc-
essing in schizophrenia.98,110

Secondly, we strongly recommend employing multi-
modal imaging approaches, including the combination 
of MRS assessment of excitatory and inhibitory neu-
rotransmitters and their metabolites with PET studies 
of monoaminergic neurotransmission and fMRI, EEG, 
or magnetoencephalographic measures of neural signals 

corresponding to the magnitude, valence, and precision 
of predictions and violations thereof. This would allow 
us to assess relationships among molecular measures of 
neurochemical concentration and function and measures 
of neural circuit function.

Thirdly, Bayesian models of decision making should 
make increasing use of more formalized approaches 
to dynamic interactions between brain areas, such as 
dynamic causal modeling and laminar neuroimaging 
methods. Dynamic causal modeling has already helped 
to identify subgroups of schizophrenia patients based on 
the severity of cognitive impairments and negative symp-
toms,111,112 while laminar neuroimaging methods may 
provide more precise assays of top-down and bottom-up 
information flow.113,114

Finally, more studies should attempt to integrate com-
putational neuropsychiatry methods investigating the 
pathophysiology of psychosis with advances in identi-
fication of genetic and environmental risk factors for 
schizophrenia to better understand how, why, and when 
psychopathology emerges.115 In the larger picture, compu-
tational modeling—specifically Bayesian models of pre-
dictive coding—offer the possibility to link various, thus 
far largely separate, strains of research focused on dif-
ferent aspects of psychotic experience, such as aberrant 
salience attribution in delusion formation, the tenacity of 
delusions, and the development of impaired self-ascrip-
tion of thoughts and actions.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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