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Salmonella and Reactive Oxygen Species: 
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Abstract
Salmonella enterica represents an enterobacterial species in-
cluding numerous serovars that cause infections at, or initi-
ated at, the intestinal epithelium. Many serovars also act as 
facultative intracellular pathogens with a tropism for phago-
cytic cells. These bacteria not only survive in phagocytes but 
also undergo de facto replication therein. Phagocytes, 
through the activities of phagocyte NADPH-dependent oxi-
dase and inducible nitric oxide synthase, are very proficient 
in converting molecular oxygen to reactive oxygen (ROS) 
and nitrogen species (RNS). These compounds represent 
highly efficient effectors of the innate immune defense. Sal-
monella is by no means resistant to these effectors, which 
may stand in contrast to the host niches chosen. To cope 
with this paradox, these bacteria rely on an array of detoxifi-
cation and repair systems. Combination these systems al-
lows for a high enough tolerance to ROS and RNS to enable 
establishment of infection. In addition, salmonella possesses 
protein factors that have the potential to dampen the infec-
tion-associated inflammation, which evidently results in a 
reduced exposure to ROS and RNS. This review attempts to 

summarize the activities and strategies by which salmonella 
tries to cope with ROS and RNS and how the bacterium can 
make use of these innate defense factors.

© 2019 The Author(s)
Published by S. Karger AG, Basel

Reactive Oxygen Species 

Reactive oxygen species (ROS) are commonly present 
in various habitats occupied by living organisms. ROS are 
formed in the path of abiotic processes but also by living 
cells themselves, for example through photosynthesis and 
the activity of the respiratory electron transport chain in 
mitochondria and bacterial cytoplasmic membranes [1, 
2]. As such, ROS cause damage to most, if not all, biomol-
ecules [3, 4], including oxidation of amino acids, vita-
mins, lipids, nucleotides, and DNA, with damage to the 
later promoting mutations [5]. Indeed, deliberate pro-
duction of ROS appears as a very ancient host strategy for 
coping with pathogens [6–11] and for acquisition of nu-
trients [12]. Upon contact with microbes, excessive pro-
duction of ROS might also become detrimental to the 
host itself. For example, ROS contribute to endotoxemic 
shock [13, 14], whereas Jurkat T cells undergo necropto-
sis upon contact with pathogenic amoebae as a result of a 

This article is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (CC BY-
NC-ND) (http://www.karger.com/Services/OpenAccessLicense). 
Usage and distribution for commercial purposes as well as any dis-
tribution of modified material requires written permission.



Salmonella and ROS 217J Innate Immun 2019;11:216–226
DOI: 10.1159/000496370

strong ROS response [15]. Likewise, the nematode Cae-
norhabditis elegans is killed during infection with S. Ty-
phimurium through a massive ROS response filling the 
whole nematode, almost resembling a primordial septic 
shock [16]. 

Even pathogens themselves might produce ROS to 
their own disadvantage. Several classes of bacteriocidal 
antibiotics, including cell wall synthesis inhibitors, have 
been suggested to induce ROS production in bacteria via 
triggering of the tricarboxylic acid cycle, and ultimately 
hyperactivation of the electron transport chain with con-
comitant ROS production [17]. Concomitantly it has 
been proposed that wall synthesis inhibitors, for example, 
in part mediate their antibacterial effect through endog-
enous ROS production. Intestinal bacteria will inevitably 
be exposed to bile. Interestingly bile induces production 
of ROS and a genetic ROS response signature in salmo-
nella [18]. Host antibacterial peptidoglycan recognition 
proteins, an additional group of effectors in our innate 
immunity barrier, also induce ROS stress in target bacte-
ria, which likely contribute to the antibacterial activity of 
peptidoglycan recognition proteins [19]. 

From the host side, be it a mammal or a plant, the 
NADPH-dependent oxidases (in mammals NADPH-de-
pendent phagocyte oxidase [Phox]) act as a major source 
of superoxide [6]. In this molecular oxygen (O2) is con-
verted into superoxide anions (O2

–) which may subse-
quently decompose into hydrogen peroxide (H2O2), hy-
droxyl radicals (HO • ), and eventually water [3]. Also, 
phagocyte inducible nitric oxide synthase (iNOS) pro-
duce large amounts of the reactive nitrogen species (RNS) 
nitric oxide (NO) from L-arginine, NADPH, and molecu-
lar oxygen. NO may eventually be converted into per-
oxynitrite (ONOO–) in the presence of ROS [20]. Apart 
from causing damage to biomolecules, NO also acts as a 
biological transmitter causing, among other things, vaso-
dilation, a condition characteristic of septic shock. Thus, 
production of ROS and RNS may be useful arms in innate 
antimicrobial defense, but at the same time it is weapon-
ry to be regulated and used with care. Likewise, successful 
pathogens somehow have to cope with ROS and RNS in 
order to prevail in a host.

Salmonella enterica and Salmonellosis

Many serovars of Salmonella enterica act as facultative 
intracellular pathogens that cause intestinal and invasive 
diseases in humans and animals. The infection is acquired 
via the oral route, whereafter the bacteria invade the in-

testinal epithelium. In human typhoid fever, caused by 
the human-specific serovar Typhi (S. Typhi), the bacteria 
proceed deeper to infect the liver, spleen, gall bladder, and 
bone marrow [21]. This form of salmonellosis is also 
called the typhoidal variant of the disease. Relapses and 
establishment of persistent carriage, in quite a proportion 
of the convalescents, are also hallmarks of typhoid fever 
[22]. Despite modern hygiene and treatment regimens, it 
has been estimated that there are around 22 million cases 
of typhoid fever annually [23]. Also, the increasing spread 
and frequency of multiresistance to antibiotics in S. Typhi 
is becoming alarming [24].

Serovar Typhimurium (S. Typhimurium) in turn 
causes a more localized, nontyphoidal and usually self-
healing inflammatory intestinal infection in humans. 
This serovar, being more promiscuous in terms of host 
range, is capable of causing disease in various animals, 
including mice. In mice, the infection is invasive and re-
sembles typhoid fever [9, 21, 25]. To cause disease in 
mice, S. Typhimurium has to survive in macrophages 
[26], being a cell type highly proficient in generating ROS 
and RNS. S. Typhimurium is in addition genetically trac-
table and infects and replicates in professional phagocyt-
ic cells. These details have put S. Typhimurium in a key 
position for sorting out facets of bacterial intracellular 
parasitism, and factors that adapt bacteria to ROS and 
RNS. The picture that emerges from such studies reveals 
an image of salmonella being equipped with an array of 
enzymes and reducing compounds aimed at detoxifying 
ROS and repairing ROS-induced damage.

S. Typhimurium is closely related to Escherichia coli 
and consequently shares with E. coli a relatively large con-
served core genome coding for “house-keeping” func-
tions. In addition, S. Typhimurium, as S. Typhi, is 
equipped with numerous virulence genes often contained 
in smaller or larger horizontally acquired genetic ele-
ments named salmonella pathogenicity islands (SPI). 
SPI1 and SPI2, respectively, play a key role in allowing 
salmonella to invade the intestinal epithelium and to rep-
licate in professional phagocytic cells [27–29]. SPI1 and 
SPI2 each code for a type III protein secretion system used 
for translocating so-called effector proteins into the host 
cell upon bacteria-host contact. The effector proteins as a 
rule have very specific functions that interfere with cen-
tral host cell activities, including actin polymerization, 
signal transduction, and vesicular trafficking [27–29]. 
Many serovars, including S. Typhimurium, also possess a 
virulence plasmid characterized by the spv virulence 
genes coding for SPI2 effector proteins [29, 30]. Selected 
SPI1 and SPI2 effector proteins, as well as the invasion 
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process itself, will also affect the inflammatory response 
and consequently ROS and RNS production.

In contrast to E. coli, S. Typhimurium lacks a capsule, 
while S. Typhi may express the Vi capsular antigen. How-
ever, salmonella expresses a lipopolysaccharide with an O 
antigen; the latter is an important virulence determinant 
in protection against complement opsonization and 
phagocytosis [31]. However, the lipid A portion of the 
LPS molecule is also an activator of innate immunity re-
sponses, including induction of iNOS expression [32] 
and enforcement of the oxidative burst [33]. In addition, 
salmonella is capable of expressing multiple adhesins that 
in concert contribute to infection of the mouse [34] and 
to biofilm formation that adds to the persistent carriage 
state [35, 36].

Salmonella and ROS

Be it the typhoidal or the nontyphoidal form of salmo-
nellosis, already at the intestinal epithelium S. enterica is 
recognized by pattern recognition molecules and con-
fronted with professional phagocytic cells, eventually re-
sulting in exposure to ROS and RNS [8, 21]. Both ROS 
and RNS create a central barrier against salmonellosis in 
the mouse model. Mice not capable of producing an oxi-
dative burst (phox–/– mice) quickly succumb to challenge 
doses of S. Typhimurium otherwise coped with by cor-
responding phox+/+ mice [9]. Likewise, humans suffer-
ing from chronic granulomatous disease due to a lack of 
functional phagocyte oxidase show increased sensitivity 
to invasive, sometimes unorthodox, forms of salmonel-
losis caused by nontyphoidal servoriants [37–39].

Detoxification of ROS

The superoxide anion generated by the phagocyte 
NADPH oxidase is charged at neutral pH and thus does 
not readily diffuse through lipid membranes [40]. How-
ever, as such, superoxide could still cause oxidative dam-
age in the periplasmic space [41]. In response, salmonella 
has periplasmic superoxide dismutases capable of de-
grading superoxide [42]. Of these, the periplasmic SodCI 
is needed for virulence of S. Typhimurium in phox-profi-
cient mice [43–45] but not in phox-deficient mice, further 
pointing to the role of superoxide in restricting prolifera-
tion of S. Typhimurium [43]. The importance of SodCI 
in this context is also highlighted by the fact that the cor-
responding gene (sodCI) becomes upregulated even when 

S. Typhimurium replicates in nonactivated murine 
monocytic cells [45, 46] and the fact that sodCI is com-
prised of the salmonella PhoP/PhoQ virulence regulon 
[47] that also includes the SPI1, SPI2, and the spv genes.

S. Typhimurim replicates in an endosomal compart-
ment that is estimated to become moderately low in pH 
[46, 48]. At these acidities the superoxide anion may be-
come protonated and the superoxide start to diffuse into 
the bacterial cytoplasm [40]. To cope with protonated su-
peroxide diffusing through the cytoplasmic membrane, 
the bacterium also codes for 2 cytoplasmic superoxide 
dismutases, i.e., SodA and SodB. An sodA mutant shows 
moderately decreased survival in murine monocyte-like 
cells and a slight attenuation in mice [49].

During in vitro oxidative or bile stress, S. Typhimuri-
um upregulates the sitABCD and mntH manganese trans-
port systems [50]. This likely escalates import of Mn++ to 
suppor SodA (an enzyme needing Mn++), leading to an 
accompanying enhanced superoxide degradation. In-
deed, Mn++ uptake promotes S. Typhimurim survival in 
the inflamed gut in a mouse model for enterocolitis [51].

Hydrogen peroxide produced by the superoxide dis-
mutases, and any hydrogen peroxide in the close vicinity 
of salmonella, diffuses more readily through lipid bilayers 
and is possibly even transported though aquaporins into 
the cytosol [52]. Nevertheless, this ROS species is met by 
an array of cytoplasmic enzymes degrading hydrogen 
peroxide to water and molecular oxygen. These enzymes 
include 3 catalases (i.e., KatE, KatG, and KatN), and 3 
peroxidases (i.e., AhpC, Tpx, and TsaA) [53, 54], yet only 
an S. Typhimurium mutant simultaneously lacking all 3 
catalases as well as ahpC and tsaA has shown hydrogen 
peroxide sensitization and a replication defect in mice, 
bone marrow-derived murine macrophages, and murine 
monocytes like RAW264.7 cells [53]. However, genetic 
complementation with katG or tsaA alone restored hy-
drogen peroxide tolerance and replication in murine 
RAW264.7 monocytic cells. This points to a high degree 
of redundancy with regard to the capacity to degrade hy-
drogen peroxide [55].

While not essential for S. Typhimurium intracellular 
replication, Tpx alone does promote hydrogen peroxide 
tolerance and increases the intracellular replication pro-
pensity in phagocytes [54]. However, this contribution of 
Tpx to intracellular replication was seen only in IFN-γ 
activated cells. The use of a Phox inhibitor abrogated the 
need for Tpx for intracellular replication, indeed pointing 
a role of Tpx in protecting against ROS. 

A twist to detoxification of hydrogen peroxide comes 
from the observation that the ABC-type efflux pump 
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 MacAB adds to hydrogen peroxide tolerance in S. Ty-
phimurium and promotes intracellular replication in 
murine monocyte like J774 cells [56]. Also, MacAB pro-
motes replication of S. Typhimurium in the liver of in-
fected mice. In J774 cells not capable of mounting a respi-
ratory burst, MacAB does not add to intracellular fitness. 
At first glance one would expect the efflux pump to export 
hydrogen peroxide from the bacterial cytoplasm. How-
ever, intriguingly, a macAB mutant revealed a markedly 
reduced capacity to degrade hydrogen peroxide in vitro, 
implicating a role of MacAB in degradation rather than 
in efflux of hydrogen peroxide.

Thiol Chemistry

The periplasmic space poses a special interest with re-
gard to salmonella oxidative stress tolerance, as protein 
disulfide formation of gram-negative bacteria is con-
ducted in this compartment. This is achieved with the aid 
of Dsb proteins using Cys-X-X-Cys motifs that undergo 
oxidation-reduction cycles in forming and breaking di-
sulfide bonds [57, 58]. In this way DsbA acts as a some-
what unspecific oxidoreductase, primarily creating di-
sulfide bonds, DsbB and DsbD act as cytoplasmic mem-
brane electron donors, and DsbC conducts “proof- 
reading” of disulfide bond formation. In addition, the  
S. Typhimurium chromosome codes for the DsbL and 
DsbI proteins, and these are paralogues for, respective- 
ly, DsbA and DsbB [59]. Furthermore, S. Typhimurium  
also codes for the ScsABCD proteins containing Cys-X-
X-Cys motifs and for the SrgA disulfide oxidoreductase. 
ScsB is a homologue of DsbD and has the capacity to re-
duce ScsC [60], while SrgA assists in formation of the 
plasmid-encoded Pef-fimbriae [61]. The S. Typhimuri-
um periplasmic disulfide oxidases DsbA and SrgA also 
participate in assembly of the virulence-associated SPI2 
protein secretion system [62], while motility relies on 
DsbA [63].

In the case of oxidative stress one could expect the oc-
currence of nonenzymatically oxidized thiols and con-
comitantly an increase in wrongly matched disulfide 
bridges in periplasmic proteins. As the disulfide oxidases 
act through disulfide bond formation, the SPI2, Pef, and 
flagellar supramolecules could be indirect targets of an 
oxidative attack, e.g., through effects on DsbA and SrgA. 
Also, exposure to peptidoglycan recognition proteins 
generates thiol stress in S. Typhimurium, contributing to 
the afore mentioned antibacterial effect of these proteins 
[19].

That said, surprisingly, mutational inactivation of 
DsbC in S. Typhimurium does not come with major in 
vitro sensitization to oxidative substances or NO donors 
[64]. Also, a dsbC deletion mutant does not exhibit any 
apparent attenuation in virulence in BALB/c mice. This 
could be explained by the presence of the several addi-
tional proteins mentioned above that could, or do, take 
part in disulfide bond formation in the periplasm. Thus, 
there seems to be redundancy in S. Typhimurium with 
regard to periplasmic (oxido)reductases. That said, when 
the scsABCD genes were deleted in a dsbC proficient 
background, the mutant not only remained virulent but 
also showed enhanced replication in murine monocyte-
like RAW264.7 cells [65]. A rational explanation for this 
would be that the Dsb system(s) supporting SPI2 assem-
bly competes with the Scs system for redox equivalents, 
thus contributing to a more efficient SPI2 activity in the 
absence of the Scs system. Still, S. Typhimurium lacking 
ScsB becomes sensitized to copper chloride [65]. That 
copper chloride acts as a disulfide catalyst in vitro [66], 
and de facto conducts disulfide formation of periplasmic 
proteins in E. coli [67], points to a role of the Scs system 
in restoring wrong disulfide formation upon oxidative 
stress. 

Apart from housing catalases and peroxidases, the 
bacterial cytoplasm includes the highly reducing enzyme 
thioredoxin 1 (TrxA). TrxA also operates through a Cys-
X-X-Cys motif and assists the Dsb system and ribonucle-
otide reductase [68]. Still, a trxA mutant of S. Typhimuri-
um mutant did not reveal any obvious in vitro sensitiza-
tion to oxidative compounds or NO donors [64]. Even in 
a very poor medium the tolerance for NO donors was the 
same for the wild type and a trxA mutant. This might ap-
pear somewhat surprising as ribonucleotide reductase 
generates dideoxynucleotides through a tyrosine-associ-
ated radical mechanism inhibited by NO [69, 70]. How-
ever, the trxA the mutant showed a severe replication de-
fect in cultured phagocytic cells and mice due to an in-
ability to translocate virulence-associated SPI2 effector 
proteins [64].

In part the apparent redundancy of cytoplasmic cata-
lases, peroxidases, and dismutases could be explained by 
the strong reductant glutathione (contained in mM con-
centrations in a reduced form in the cytoplasm). Gluta-
thione acts through oxidation of its own thiol group to 
form an oxidized dimer. Genetic depletion of glutathione 
synthesis in S. Typhimurium caused marked in vitro sen-
sitization to paraquat and hydrogen peroxide but only 
when the bacteria were grown in medium mimicking the 
intravacuolar compartment for salmonella (low pH, poor 
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in nutrients and magnesium [64]). At first glance one 
would expect the cytoplasm to be a niche protected by 
glutathione from ROS. However, E. coli also possesses a 
CydDC transport system that shuffles glutathione into 
the periplasmic space [71], implying that glutathione may 
add to oxidoprotection in the periplasm as well. S. Ty-
phimurium contains the cyd homologues, which become 
upregulated under oxidative stress, albeit not as strongly 
as many canonical oxidoprotectant genes [50].

Like ROS, the reducing gas hydrogen sulfide (H2S) is 
commonly present in biotic habitats, and it is also pro-
duced by many bacterial species. Hydrogen sulfide has 
also been proposed to act as a general protectant against 
various classes of antibiotics mechanistically through ox-
idoprotective mechanisms [72]. A classical diagnostic pa-
rameter for S. Typhimurium in the microbiological labo-
ratory is its ability to produce large amounts of hydrogen 
sulfide [73]. Thus, it would not be surprising if S. Ty-
phimurium also applies hydrogen sulfide when coping 
with ROS. Indeed, the genes for thiosulfate reductase, 
CysIJ involved in hydrogen sulfide production, become 
upregulated upon in vitro hypochlorite stress [74] and 
peroxide stress [50], as well as under in vitro conditions 
that mimic the environment of the salmonella-contain-
ing intracellular vacuole [50].

Damage Repair

Two additional classes of reductases have been identi-
fied as adding tolerance to ROS and virulence in S. Ty-
phimurium through reduction of oxidized sulfur groups. 
In this biotin sulfoxide reductase converts biothine sulf-
oxide back to biothine. Biotin sulfoxide reductase adds to 
hydrogen peroxide tolerance in S. Typhimurium, as well 
as to the ability to replicate in murine monocytic cells 
[75]. Likewise, methionine sulfoxide reductase MsrA, 
that generates methionine from methionine sulfoxide, 
improves hydrogen peroxide tolerance and increases the 
fitness of S. Typhimurium in IFN-γ-activated murine 
monocytic cells, as well as in mice [76].

Apart from oxidizing sulfhydryl and sulfur groups, 
ROS also causes the conversion of aspartate to iso-aspar-
tate, a reaction reverted by isoaspartate methyl transfer-
ase. In S. Typhimurium the gene for this enzyme, i.e., 
pimt, is needed for full tolerance to ROS and for growth 
in IFN-γ-activated peritoneal murine macrophages [77]. 
Inhibition of Phox by apocynin decreased the need for 
pimt. This would support the notion that the role of pimt 
indeed originates from coping with Phox-generated ROS. 

The effect of ROS on nucleic acids is dual. First, nucle-
ic acids act as a target for ROS-induced damage causing 
strand breaks, mutagenesis, and modification of nucleo-
tide bases [3, 78, 79]. Indeed, components of the DNA 
repair machinery, such as recA, lexA, and sulA appear to 
be of high importance for virulence and ROS tolerance in 
S. Typhimurium [79–82]. In S. Typhimurium, the lack of 
RecA, a protein needed for DNA repair and induction of 
the SOS response, results in substantial sensitization to 
ROS and a strong attenuation with regard to virulence in 
mice [80]. Likewise, bacterial RNA has been implicated as 
a main target for ROS [78]. In this, the ribonuclease poly-
nucleotide phosphorylase has been proposed to protect E. 
coli against hydrogen peroxide through degradation of 
oxidized RNA. However, an S. Typhiumurium mutant 
lacking functional polynucleotide phosphorylase does 
not reveal increased sensitization to hydrogen peroxide 
(unpubl. res.). However, the S. Typhimurium polynucle-
otide phosphorylase participates in the regulation of SPI1 
and SPI2 gene expression [83] and could thus indirectly 
contribute to ROS adaptation.

A second line of effects caused by ROS on DNA is at 
the gene regulatory level. E. coli possess redox-sensing 
transcriptional regulators, such as OxyR, SoxR, and SoxS, 
that regulate, for example, the expression of the ahpC, 
ahpF, katG, and sodA genes, as well as genes involved in 
DNA repair and methionine synthesis [84]. In this, OxyR 
acts through the formation of an intermolecular Cys-X-
X-Cys cysteine bridge to sense oxidation. Transcriptomic 
profiling of S. Typhimurium shows that basically the ho-
mologues of the whole E. coli OxyR/SoxR/SoxS regulon, 
in terms of upregulated genes, are also induced in S. Ty-
phimurium upon oxidative shock [50]. Nevertheless, ge-
netic depletion of OxyR in S. Typhimurium does not af-
fect the ability of the mutant to survive in neutrophils 
[85], while the Sox regulon seems to be required for S. 
Typhimurium tolerance to paraquat [82].

In E. coli, dps codes for a DNA-binding ferritin-like 
protein that becomes highly abundant in the stationary 
phase [86]. Dps binds DNA and confers increased resis-
tance to oxidative stress [87–89], possibly by physically 
protecting DNA from ROS-induced damage. Upon oxi-
dative and nitrosative stress S. Typhimurium strongly up-
regulates the expression of its dps [50]. The gene is also 
needed for S. Typhimurium survival in primary murine 
macrophages and for virulence in mice [89]. Apart from 
a possible role in directly protecting DNA, Dps could also 
add to oxidoprotection through scavenging of iron, thus 
preventing Fenton reactions. 
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Hypochlorite is an ROS produced by neutrophils in 
response to infection, and a compound found in many 
disinfectants. E. coli possess a transcriptional regulator, 
i.e., YjiE, that responds to hypochlorite and confers hy-
pochlorite tolerance [90]. A homologue for yjiE is present 
in S. Typhimurium and yijE expression becomes activat-
ed upon oxidative stress [50], implying that S. Typhimuri-
um may also have a hypochlorite-protection regulon.

Nitric Oxide

As implied above, when salmonella encounters profes-
sional phagocytes these cells may become activated and 
start producing RNS (NO) with the aid of iNOS and ROS 
present. Like ROS, RNS may cause a multitude of dam-
ages, such as protein nitrosylation or formation of metal 
complexes. Mice lacking iNOS become sensitized to S. 
Typhimurium, albeit not to the same extent as phox(–/–) 
mice [9]. Still, murine macrophages and dendritic cells 
infected with S. Typhimurium and simultaneously treat-
ed with iNOS inhibitors lose their ability to control intra-
cellular replication of the bacteria [46, 91]. All of this im-
plies that salmonella should have measures to cope with 
RNS. Indeed, an S. Typhimurium mutant lacking sodCI, 
apart from being sensitized to superoxide, becomes high-
ly sensitized to a mixture of superoxide and an NO donor 
[42]. A rational explanation for this could be that SodCI 
prevents the formation of peroxynitrite through degrada-
tion of superoxide radicals. 

Flavohemoglobins belongs to the hemoglobin super-
family and consists of 2 domains, i.e., a FAD-binding ox-
idoreductase domain and a heme-containing domain. E. 
coli and S. Typhimurium both encode for the flavohemo-
globin Hmp. It protects against NO by oxidizing NO into 
nitrate under aerobic conditions [92–95]. Hmp is also 
needed for the survival of S. Typhimurium in human 
macrophages [94] and the hmp gene becomes induced as 
S. Typhimurium replicates in murine macrophages [46].

E. coli furthermore possesses the NorRVW (previous-
ly YgaAKD) NO protection system [96]. This system con-
verts NO into nitrous oxide (N2O) at lower oxygen ten-
sions. The corresponding genes are present in S. Ty-
phimurium, with norV and norW being strongly induced 
for expression upon in vitro-induced NO stress [50].

Intriguingly, De Groote et al. [97] noted that one could 
increase NO tolerance in S. Typhimurium by deleting the 
genes for the stress tolerance sigma factor RpoS or the 
Dpp dipeptide transport system. The mechanism(s) be-
hind these observations remains to be sorted out, but one 

possible explanation is that the sigma factor and peptide 
transport systems would strongly distort fitness if nitro-
sylated by RNS. While RpoS activates katE expression, 
expression of rpoS itself is not induced upon either per-
oxide or NO stress [50].

Preventing ROS and RNS Production

While invasion of S. Typhimurium of epithelial cells 
results in an inflammatory response trough SPI effector 
proteins, i.e., LPS and flagellin, selected effector proteins 
also possess a potential anti-inflammatory activity. For 
example, the SPI1 effector protein AvrA (from avirulence 
protein A) prevents NF-kB nuclear translocation [98]. 
This would prevent the expression of several cytokines 
and iNOS in phagocytes. Likewise, several SPI2 effector 
proteins, such as SpvC, SseL, and SspH1, pose functions 
potentially downregulating inflammatory activation of 
the infected host cells [29], with, for example, SpvC de-
phosphorylating phosphor-threonine from phospho-
ERK [99]. S. Typhi, the human-adapted serovar that 
causes typhoid fever, codes for a cytolethal-distending 
toxin (CDT) not present in S. Typhimurium. The toxin 
acts by being a nuclease. Surprisingly though, when the S. 
Typhi CDT is implanted in S. Typhimurium the intestinal 
inflammation score is highly reduced in orally infected 
mice [100]. Expression of CDT also causes downregula-
tion of the expression of cytokines and iNOS in intestinal 
epithelial tissue. This implies that salmonella through its 
CDT dampen intestinal inflammation and likely thereby 
exposure of salmonella to ROS and RNS.

It is also possible to isolate phagocyte-adapted mutants 
of S. Typhimurium that downregulate NO production 
with an accompanying increased intracellular growth ca-
pacity [91]. The mechanism(s) remains to be solved, but 
for all such mutants isolated the effect appeared to be on 
iNOS activity rather than on iNOS expression. As iNOS 
relies on L-arginine for NO production, one tentative 
mechanism would be to, one way or another, deplete the 
phagocyte from L-arginine.

Biofilm Formation

Biofilms can be defined as microbial multicellular 
communities embedded in a macromolecular mass pro-
duced by a single or different microbial species therein 
[36, 101, 102]. The benefits of living in such communities 
are probably many, but from a perspective of clinical mi-
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crobiology one could imagine the following: adherence to 
abiotic and biotic surfaces, the ability to resist host im-
mune defense, and an increased tolerance to antimicro-
bial compounds [103].

Salmonella is capable of forming biofilms on gall blad-
der stones, which is believed to promote establishment of 
carriage [35], despite constant exposure to bile and hence 
ROS stress as stipulated above. S. Typhimurium biofilm 
formation is characterized by a decreased expression of 
motility (planktonic mode), accompanied by the expres-
sion biofilm extracellular matrix components such as am-
yloid curli fimbriae and cellulose fibers (sessile mode) 
[36]. In conjunction with the second messenger cyclic-di-
GMP-associated gene regulatory network, the CsgD gene 
regulator plays a key role in regulation of biofilm forma-
tion. Several observations connect biofilm formation 
with oxidative stress. As S. Typhimurium enters biofilm 
formation, apart from upregulating csgD it also upregu-
lates genes associated with ROS stress [104]. In parallel, 
hypochlorite stress induces in S. Typhimurium a tran-
scriptomic signature suggestive of an adaptation towards 
sessile biofilm formation [74]. Growth of S. Typhimuri-
um on the oxidative surface of a redox-active conducting 
polymer also enhanced biofilm formation [105]. This 
could all imply that, at least under some redox stress con-
ditions, S. Typhimurium prefers to shift from the plank-
tonic to the sessile biofilm mode to adapt to ROS. This 

would be consistent with the induction of biofilm for-
mation in, for example, Campylobacter jejuni [106] and 
Staphylococcus aureus [107] as a response to oxidative 
stress.

Biofilm formation also connects to redox in the sense 
that deleting either dsbA or dsbB results in CsgD-depen-
dent upregulation of biofilm formation in S. Typhimuri-
um [108]. Furthermore, this upregulation relies on the 
c-di-GMP phosphodiesterase STM3615, thus linking 
periplasmic protein thiol chemistry to biofilm formation 
and c-di-GMP. 

Making Use of ROS

By expressing pathogen-associated microbial patterns, 
such as flagellin and LPS, S. Typhimurium is clearly itself 
responsible for evoking inflammation [32]. Intriguingly, 
salmonella evidently makes use of an inflammatory re-
sponse with an accompanying ROS production. For one 
thing, intestinal inflammation induced by S. Typhimuri-
um infection skews the intestinal microbial flora in mice, 
such that it favors salmonella colonization [109]. This 
competitive advantage may be further potentiated in that 
the inflammation-associated ROS production creates tet-
rathionate, a sulfur oxanion, in the intestine from preex-
isting sulfur compounds [110]. Tetrathionate in turn can 
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Fig. 1. Summary of strategies by which S. 
Typhimurium copes with oxidative stress: 
(1) degradation of ROS before they act on 
target molecules, as exemplified by super-
oxide dismutases (SodA and SodCI), cata-
lase (KatE), and thiol peroxidase (Tpx); (2) 
balancing periplasmic disulfide bond for-
mation, as exemplified by the thioredoxin, 
Dsb, and Scs systems; (3) transport of co-
factors for detoxifying enzymes; (4) redox-
sensing gene regulatory systems lodging 
on, e.g., superoxide disumutase genes; (5) 
direct protective or iron-scavenging sys-
tems (Hmp) or (6) repairing enzymes (me-
thionine sulfoxide reductase MsrA); (7) ap-
plication of secreted effector proteins such 
as AvrA with the potential to downregulate 
an inflammatory response; and (8) produc-
tion and transport of small-molecular re-
ducing compounds to appropriate loca-
tions.
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be used as a respiratory electron sink by S. Typhimurium 
[110, 111], thus in principle allowing S. Typhimurium to 
take advantage of the oxidative potential of ROS for its 
own respiration in an otherwise anaerobic or hypoxic en-
vironment. 

S. Typhimurium can also sense oxidative/nitrosative 
stress with the aim of inducing virulence. The virulence-
associated SPI2 response regulator SsrB becomes S-nitro-
sylated at Cys 203 upon NO stress [112]. While it did not 
affect the expression of selected SPI2 genes, a mutant with 
an ssrRB allele lacking the critical SsrB Cys residue showed 
decreased fitness in a murine infection model. This could 
suggest that ssrB regulates virulence factor genes outside 
of SPI2 but in response to RNS.

Intriguingly, S. Typhimurium seems to be able to sense 
the neurotransmitter adrenaline followed by induction of 
sodA [113]. The connection may appear farfetched, but 
adrenaline, like selected other neurotransmitters, partici-
pates in regulation of inflammatory responses [114]. 
Thus, while acting more to dampen inflammation, adren-
aline could still be used by S. Typhimurium to sense an 
inflammatory environment, potentially being enriched in 
ROS.

Thus, ROS production clearly is a double-edged sword 
from the perspective of both salmonella and its host. ROS 
is obviously needed for protection against salmonellosis, 

as evidenced by infection experiments with phox–/– mice 
and by the increased prevalence of invasive salmonellosis 
in patients suffering from chronic granulomatous dis-
ease. S. Typhimurium in turn translocates SPI1 and SPI2 
effector proteins during the infection which have the po-
tential to dampen an inflammatory response [96, 97], 
possibly to prevent too early a clearance, yet host-derived 
ROS and RNS adds to its in vivo replication potential. 
Furthermore, the so-called “typhoid” CDT-like toxin 
dampened intestinal inflammation in a mouse infection 
model [100]. Thus, salmonella seems to try to balance the 
host response (Fig. 1) to allow a certain degree of ROS 
response to increase its fitness and to allow induction of 
virulence genes.
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