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A Trypsin-Sensitive Proteoglycan from the 
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p38 MAP Kinase Activation
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Abstract
It has emerged that neutrophils can play important roles in 
the host response following infection with helminth para-
sites. Mice infected with the tapeworm, Hymenolepis diminu-
ta, are protected from some inflammatory conditions, ac-
companied by reduced neutrophil tissue infiltration. Thus, 
the ability of a phosphate-buffered saline-soluble extract of 
the worm (H. diminuta extract [HdE]) was tested for (1) its 
ability to activate murine neutrophils (Ca2+ mobilization, re-
active oxygen species (ROS) and cytokine production); and 
(2) affect neutrophil chemotaxis in vitro to the penta-pep-
tide, WKYMVm, the chemokine, KC, and leukotriene B4. HdE 
was not cytotoxic to neutrophils, elicited a Ca2+ response 

and ROS, but not, cytokine (KC, interleukin-10, tumour ne-
crosis factor-α) generation. HdE is not a chemotactic stimu-
lus for murine neutrophils. However, a heat- and trypsin-sen-
sitive, acid-insensitive proteoglycan (sensitive to sodium 
metaperiodate) in the HdE significantly reduced neutrophil 
chemotaxis towards WKYMVm or KC, but not LTB4. The latter 
suggested that the HdE interfered with p38 mitogen-activat-
ed protein kinase signalling, which is important in WKYMVm 
chemotaxis. Corroborating this, immunoblotting revealed 
reduced phosphorylated p38, and the downstream signal 
heat-shock protein-27, in protein extracts from HdE + WkYM-
Vm treated cells compared to those exposed to the penta-
peptide only. We speculate that HdE can be used to modify 
the outcome of neutrophilic disease and that purification of 
the bioactive proteoglycan(s) from the extract could be used 
as a template to design immunomodulatory drugs targeting 
neutrophils. © 2018 The Author(s)
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Introduction

The neutrophil has traditionally been considered a 
first-line responder to microbial infections, arriving pre-
armed with proteases and rapid reactive oxygen species 
(ROS) generation to kill the invader and with the poten-
tial to do considerable collateral damage to host tissue. 
This is but one of the neutrophils roles, with studies dem-
onstrating important functions in innate immunity and 
interaction with components of adaptive immunity [1]. 
Kubes recently detailed the importance of the often-ma-
ligned neutrophil in immunity, drawing attention to is-
sues that require clarification such as commonalities and 
differences in responding to bacterial products versus 
damaged host tissue, tissue-specific neutrophil activity 
and the possibility of neutrophil subtypes, among others 
[1]. With respect to inflammation, recruitment and acti-
vation of the neutrophil is often a critical component of 
acute inflammation; however, in the setting of chronic 
inflammation, where their capacity to do damage goes 
unchecked, the neutrophil can contribute to disease. 
Thus, there can be benefits to promoting neutrophil re-
sponses as an immediate reaction to infection and bene-
fits to inhibiting their activity in the setting of chronic 
inflammatory disease [1].

Based on its classification as an anti-microbial cell, 
the neutrophil is often overlooked, or dismissed, when 
considering effector mechanisms mobilized in response 
to infection with parasitic helminths. This position 
needs to be re-evaluated. Neutrophils have been impli-
cated in an effective response to the larval stages of the 
nematodes Lithomosoides sigmodontis, Haemonchus 
contortus, and Strongyloides steroralis, which can in-
volve myeloperoxidase (MPO) and the release of extra-
cellular traps (i.e., proteases embedded in a chromatin 
net) [2–5]. Mice infected with Ascaris have increased 
numbers of neutrophils in their lungs at the peak of hel-
minth migration (and tissue damage) through the air-
ways [6]. Similar findings were presented for Nip-
postronglyus brasiliensis-infected mice, and suppression 
of this neutrophil response resulted in reduced mobili-
zation of macrophages capable of killing the parasite and 
alternatively activated macrophages (AAMs) [7]. In ac-
cordance with this, human and mouse neutrophils have 
been shown to collaborate with macrophages to kill S. 
steroralis larvae in vitro [8]. Finally, in the reciprocal di-
rection of communication, the chitinase-like protein 
Ym1, that characterizes the murine AAM, has been 
shown to recruit neutrophils that contributed to the 
control of N. brasiliensis [9].

A substantial body of evidence illustrates the benefit of 
infection with helminth parasites in murine models of 
colitis, diabetes, multiple sclerosis and arthritis [10]. Sup-
pression of inflammatory disease in these model systems 
can also be achieved by systemic delivery of extracts of the 
parasites or helminth-derived excretory-secretory prod-
ucts [11]. Using the non-permissive mouse host, we have 
shown that infection with the rat tapeworm, Hymenolepis 
diminuta, significantly reduced the severity of dinitro-
benzene sulphonic acid-induced colitis (DNBS) [12] and 
complete Freund’s adjuvant (CFA)-induced arthritis 
[13]. The amelioration of disease in both models was ac-
companied by lower tissue levels of the neutrophil mark-
er, MPO, and in the case of CFA-induced arthritis, the H. 
diminuta-infected mice had fewer blood neutrophils. The 
reduced neutrophilia could reflect the impact of host-de-
rived factors (e.g. interleukin [IL]-10), or be mediated by 
bioactive molecules from the helminth. Consequently, we 
designed the current study to test the hypothesis that an 
extract of H. diminuta would directly affect neutrophils 
and their chemotaxis.

Materials and Methods

Animals
Male BALB/c mice (6–8 weeks old) were purchased from 

Charles River Laboratories (Quebec, Canada) and housed under 
standard conditions with free access to food and water. Animal 
experiments were conducted with approval from the University of 
Calgary Health Science Animal Care Committee conforming to 
national guidelines, under protocol AC13-0015 issued to D.M. 
McKay.

Preparation of Hymenolepis diminuta Crude Extract
Adult H. diminuta from rats were rinsed in 0.9% NaCl, and 

∼20  g wet weight homogenized in 20 mL of sterile phosphate-
buffered saline (PBS; 5 min, maximum speed, Polytron PT1200 
homogenizer [Kinematica, Inc., New York, NY, USA]). The ho-
mogenate was centrifuged (3,220 g, 30 min, 4  ° C), pelleted mate-
rial discarded, the supernatant collected and subjected to 2 addi-
tional rounds of centrifugation. The PBS-soluble supernatant was 
collected, designated H. diminuta extract (HdE), the protein con-
centration determined by the Bradford assay, and aliquots stored 
at –80  ° C [14]. Bioactivity of the HdE was confirmed by its ability 
to suppress LPS-stimulated production of tumour necrosis factor-α 
(TNF-α) by human THP-1 macrophages (2 × 105 PMA [10 nM, 24 
h]-activated THP-1 cells were exposed to HdE [100 μg/mL] for 30 
min and then activated with 10 ng/mL Escherichia coli-derived 
LPS. Cell-free conditioned medium was collected 24 h later and 
TNF-α measured by enzyme-linked immunosorbent assay [ELI-
SA]) [14]. The HdE preparation contains < 100 pg LPS/1 mg of 
HdE protein. The in vivo (1 mg) and in vitro (100 μg) doses of HdE 
were based on previous studies [13, 14] and a dose-response ex-
periment (see Results).
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Assessing the nature of the bioactive molecule in the HdE, the 
following manipulations were performed: (1) boiled for 15 min; 
(2) trypsin-treated (1 unit/μg of HdE protein [Sigma-Aldrich] 
while rocking for 6 h at room temperature [RT], followed by neu-
tralization with soybean trypsin inhibitor [1 unit inhibitor: 1 unit 
trypsin; 6 h rocking at RT]); (3) acidified with 2N HCL to pH 2 (30 
min at RT followed by normalizing to pH 7 with 2N NaOH); or, 
(4) treated with sodium metaperiodate (SMP; Sigma-Aldrich) to 
disrupt glycans (HdE treated with 10 mM SMP for 30 min with 
rocking, following by repeated dialysis [Thermo Fisher] to remove 
excess SMP) [14]. In all instances, time-matched control HdE was 
treated identically with the absence of the active reagent.

LPS-Induced Neutrophil Recruitment to Mouse Knee
After hair removal around the knee, mice received either an 

intra-articular (ia.) injection of 50 ng E. coli lipopolysaccharide 
(LPS; 10 μL) (Sigma-Aldrich) or 0.9% NaCl (pyrogen free [Baxter 
Healthcare]) as a control. Some mice were co-treated with HdE 
(1 mg, intraperitoneal [ip.] in 1 mL saline). Six hours after LPS ± 
HdE, the knee and peritoneal cavity were washed with PBS and 
lavages collected, and blood and bone marrow (1 femur) were col-
lected. The total number of leukocytes was determined by count-
ing in a Neubauer chamber after staining with Turk’s solution. 
Differential counts were obtained from cytospin (Shandon III, 
Thermo Shandon, Frankfurt, Germany) preparations by evaluat-
ing the percentage of each class of leukocyte based on nuclear mor-
phology following staining with May-Grünwald-Giemsa [15].

Neutrophil Function in vitro
Cell Viability
Neutrophil necrosis was assessed via staining with trypan blue 

(0.4%), and measurement of released lactate dehydrogenase using 
the CytoTox 96® kit and following the manufactures instructions 
(Promega).

Calcium Mobilization
Mice were humanely euthanized, bone-marrow extracted from 

the femurs and tibias under sterile conditions and neutrophils iso-
lated via a differential Percoll gradient following the protocol of 
Swamydas et al. [16] Neutrophils (2.5 × 106 cells/mL) were incu-
bated with the intracellular Ca2+ indicator dye Fluo-4 (2.5 μM, Sig-
ma-Aldrich) for 45 min at RT while gently shaking, then centri-
fuged at 300 g for 10 min. The supernatant was discarded and the 
cells re-suspended in Hank’s balanced salt solution ± Ca2+. Ali-
quots of 105 cells (100 μL) in 1 mL cuvettes were placed in a fluo-
rescence spectrophotometer (Cole-Parmer, Montreal, Canada) 
and treated with HdE (100 μg/mL), the pentapeptide WKYMVm 
(1.0 μM, Tocris Bioscience), calcium ionophore, A23187 (2.5 μM, 
Sigma-Aldrich) or zymosan (1 μg/mL, Sigma Aldrich), as positive 
controls. Cells were excited at 480 nM and fluorescence measured 
at 530 nM, and recorded as the peak increase to occur within 3 min 
of treatment.

Mitochondrial Respiration
Neutrophil bioenergetics was determined using the Seahorse 

Bioscience extracellular flux analyzer (Agilent, Santa Clara, CA, 
USA), which measures O2 consumption and proton flux. Over-
night hydrated XFe24 probes in calibrant solution were loaded 
with oligomycin (0.5 μg/mL; inhibits ATP synthase), carbonyl cy-
anide-4-(trifluoromethoxy)phenylhydrazone (FCCP, 0.6 μg/mL; 

H+ ionophore uncoupling oxidative phosphorylation) and anti-
mycin (10 μM; binds to the Qi site of cytochrome c reductase (com-
pel III in electron transport chain)) in ports B, C and D respec-
tively. Port A was filled with HdE (100 μg/mL). Experimental me-
dia was used as control. Neutrophils were plated on XFe24 plates. 
The cartridge and cells were equilibrated in a 37  ° C, non-CO2 in-
cubator for 1 h prior to assay. The oxygen consumption rate was 
monitored continuously and proton leak and ATP levels deter-
mined following the manufacturer’s instructions and as described 
by Dranka et al. [17], with slight modification. We replaced the 
mixing step with longer incubation to avoid neutrophil aggrega-
tion. The results were plotted using Wave software from Agilent.

Reactive Oxygen Species Generation
Neutrophils (108 cells/mL) were re-suspended in 20 μM 2’,7’-di-

chlorofluorescin diacetate (Abcam, Eugene, OR, USA), a fluoro-
genic dye that measures hydroxyl, peroxyl and other ROS, for 30 
min at 37  ° C [18]. Then 105 cells/100 μL were added to each well 
of a dark, clear-bottom 96 well plate (Thermo Fisher) and treated 
with HdE (100 μg/mL), E. coli-derived LPS (1 μg/mL; Sigma-Al-
drich) or both agents. In addition, some wells received polymyxin 
B (10 μg/mL; Sigma-Aldrich) to neutralize LPS. Plates were incu-
bated at 37  ° C for 4 h and fluorescence read in a Victor-5 multi-
label plate reader (excitation 535 nm, emission 485 nm) (Perkin 
Elmer).

Enzyme-Linked Immunosorbent Assay
Neutrophils (105/mL) were exposed to HdE (100 μg/mL), E. 

coli-derived LPS (1 μg/mL) or E. coli (strain HD5-α; 106 colony-
forming units [America Type Culture Collection]). Four h later, 
supernatants were collected and levels of TNF-α, IL-10, and KC 
measured in duplicate samples by ELISA with DuoSet® kits from 
R&D Systems (Minneapolis, MN, USA), and following the manu-
facturer’s instructions.

In other experiments, PBS or HdE (100 μg in 100 μL) was in-
jected into the peritoneal cavity of mice and 6 h later the cavity 
washed with PBS, a 1 mL lavage retrieved and KC levels deter-
mined by ELISA.

Neutrophil Chemotaxis
Under Agarose Gel Assay
An ultrapure agarose gel was prepared as previously described 

[19] and 3 mL aliquots were added to plasma-treated 35 mm di-
ameter Petri culture dishes (Waltham), which were left to harden 
for 45 min at RT, at which time a centre well and one to the right 
and left of centre were cut. The chemoattractant, WKYMVm 
(1 μM) or HdE (100–1,000 μg/mL) was added into the centre well 
and neutrophils (104) placed in the outer wells. In other experi-
ments, neutrophils were treated with HdE (100 μg/mL) for 30 min, 
then rinsed prior to use in the chemotaxis assay. The number of 
neutrophils that moved into the space between neutrophil and 
WKYMVm chambers at the end of a 4 h incubation at 37  ° C was 
counted (duplicate neutrophil samples were used from each mouse 
and the average number of migrating neutrophils determined).

Transwell Assay
Chemoattractants (WKYMVm [2 μM], KC [keratinocyte-de-

rived chemokine, or CXCL1 or GROα; 20 nM] and leukotriene B4 
[LTB4, 100 nM]) were diluted in serum-free RPMI culture medium 
and added to the basal chamber of 24-well culture plates that con-
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tained 8-μm porous filter supports (Fisher, Scientific). Neutrophils 
(2 × 105) were placed in the upper compartment of the transwell, 
the plate placed at 37oC for 4 h and subsequently neutrophils that 
had migrated into the basal chamber were retrieved and counted 
on a hemocytometer [20]. Neutrophils were either pre-treated 
with HdE (100 μg/mL) for 30 min prior to use or HdE was added 
to the apical chamber of the transwell coincident with the applica-
tion of the neutrophils (duplicate neutrophil samples were as-
sessed from each mouse).

In separate experiments, the pan-caspase inhibitor, Z-VAD (20 
μM), LPS (1 μg/mL), A23187 (2.5 μM), the general antioxidant, n-
acetylcystine (NAC, 1 μM) or the mitochondria-targeted antioxi-
dant, MitoTEMPO (10 μM, Sigma-Aldrich) were used to assess 
roles for apoptosis, activation and ROS in the HdE-elicited sup-
pression of neutrophil chemotaxis respectively.

Protein Detection on Immunoblotting
Protein samples from neutrophil whole-cell extracts were as-

sessed using a standard immunoblotting protocol, with the follow-
ing antibodies: rabbit polyclonal phospho-p38 primary antibody 
(1: 1,000, Cell Signalling, #9211); rabbit polyclonal β-actin anti-
body (1: 1,000, Abcam, #8227); rabbit polyclonal phospho-heat-
shock protein (HSP)27 (1: 1,000, Cell Signaling, #2401).

Statistics and Data Presentation
Data comprised of mean ± SD. Data sets with n ≥5 were sub-

jected to the Brown-Forsythe test for normal distribution and were 
analyzed by parametric one-way analysis of variance with Tukey’s 
post-test for multiple group comparison or non-parametric Krus-
kal-Wallis test with Dunn’s post-test or Student t test for two data 
sets using Graph Prism 6 statistical package. p < 0.05 was accepted 
as a level of statistically significant difference.

Results

HdE Attenuates LPS-Induced Neutrophil Recruitment 
to the Knee
Lavage of knees showed that LPS induced robust re-

cruitment of immune cells into the cavity by 6 h post-
treatment, with differential cell counts revealing that the 
increase in leucocytes was almost entirely due to neutro-
phils: co-treating animals with HdE attenuated this neu-
trophil recruitment (Fig. 1a). Analysis revealed that HdE 
resulted in significant accumulation of neutrophils in the 
peritoneal cavity (Fig. 1b). As a percentage of total cells in 
the peritoneum, neutrophils were control = 1 ± 0.3%, LPS 
(ia.) = 3 ± 1.2%, and LPS (ia.) + HdE (ip.) = 76 ± 4%. The 
neutrophil recruitment in response to injection of HdE 
could be due, in part, to evoked production of KC by res-
ident cells in the peritoneum (PBS treated mice = 168 ± 
113 compared to HdE [100 μg, 6 h] treated mice = 1,891 ± 
200* KC pg/mL [mean ± SEM, n = 3, * p < 0.05]). How-
ever, neither the numbers nor percentages of neutrophils 
in the blood and bone marrow were different between the 

experimental groups (Fig. 1c, d), suggesting that the HdE-
evoked reduction in neutrophils into the knee following 
injection of LPS was not simply due to diversion of the 
cells to the peritoneal cavity.

HdE Is Not Cytotoxic on Murine Neutrophils
Giemsa staining and nuclear morphology analysis re-

vealed that the population of cells isolated from bone 
marrow was 88–94% neutrophils (n = 4). Neutrophils 
tend not to survive well in vitro (hence the 4-h time-point 
in the following experiments); however, we observed no 
additional cytotoxic effects of HdE on murine bone mar-
row-derived neutrophils as gauged by exclusion of the vi-
tal dye, trypan blue, or lactate dehydrogenase release (Ta-
ble 1).

HdE Activates Murine Neutrophils
Calcium mobilization was chosen as a general indica-

tor of cell responsiveness, with A23187- and zymosan-
treated neutrophils displaying a robust response; WYK-
MVm evoked a response of lesser magnitude (Fig. 2a, b). 
Preliminary observations revealed that the addition of 
HdE alone to the cuvette (no neutrophils) gave an in-
crease in signal in the spectrophotometer most likely due 
turbidity of the solution, and so the neutrophil response 
to HdE is the gradual increase in signal after the initial 
spike; a very different Ca2+ mobilization event as com-
pared to A23187 or zymosan (Fig. 2a). HdE also evoked 
a Ca2+ response when experiments were conducted in 
Ca2+-free medium, suggesting the capacity to mobilize 
Ca2+ from intracellular stores (Fig. 2c).

Calcium mobilization is important in ROS generation 
and HdE (100 μg/mL) was as effective as LPS (1 μg/mL) 
in evoking ROS in neutrophils: treatment with both 
agents induced a significantly greater respiratory burst 
than either agent alone (Fig. 3). Assessing the potential 
confounding factor of LPS contamination in HdE, the 
worm extract was treated with polymyxin B (neutralizes 
LPS8). Polymyxin B treatment did not inhibit HdE-in-
duced ROS production but did inhibit the ability of LPS 
to induce ROS (Fig. 3).

Analysis of mitochondrial respiration revealed that 
neutrophils treated with HdE where compromised in 
their response to oligomycin, and the perturbation of the 
ATP synthase resulted in decreased ATP production and 
a corresponding increase in proton leak across the mito-
chondrial inner membrane (Fig. 3b).

In contrast to ROS production, a 4 h exposure to HdE 
did not evoke any significant increases in TNF-α, KC or 
IL-10 from neutrophils (Table 2). The inability of HdE to 
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Fig. 1. H. diminuta extract (HdE) attenuates LPS-induced neutro-
phil recruitment to the knee. Lipopolysaccharide (LPS, 50 ng/10 
μL) or sterile phosphate-buffered saline (PBS) were injected into 
the knee cavity (intra-articular [ia.]) ± co-treatment with HdE (1 
mg/1 mL intraperitoneal [ip.]) or vehicle. Six hours later the knee 
cavity was washed to collect cells (a; representative of 3 experi-
ments). Cells were also collected from the peritoneal cavity by 

washing (b), peripheral blood (c) and bone marrow from one fe-
mur (d). Neutrophils were identified by Wright-Giemsa staining 
of cytospin total cell preparations (data are mean ± SD; each datum 
point is an individual mouse; * and #, p < 0.05 compared to control 
[con] and LPS respectively, by one-way analysis of variance with 
Tukey’s post-test).

Table 1. HdE is not preferentially cytotoxic to murine bone marrow-derived neutrophils over a 16-h period

Control HdE, μg/mL Staurosporine
1 μM

Distilled 
H2O100 500 1,000

4 h 16 h 4 h 16 h 4 h 16 h 4 h 16 h 4 h 16 h 4 h

% viable 92±2 47±4 90±4 45±9 90±4 43±4 90±5 45±6 88±4 10±5 nt
LDH (AU ×105) 3.0±0.8 nt 3.4±0.9 nt 3.5±0.7 nt 2.7±0.7 nt nt nt 5.1±1.0

Data is mean ± SD, n = 4 mice for trypan blue % viability and n = 6 mice for lactate dehydrogenase (LDH); AU, arbitrary units; nt, 
not tested; h, hour; duplicate samples of neutrophils/mouse; HdE, Hymenolepis diminuta extract.
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Fig. 2. H. diminuta extract (HdE) mobilizes calcium in murine 
bone marrow neutrophils. Neutrophils (105) were loaded with 
Furo-4 (2.5 μM) and then challenged with the calcium ionophore, 
A231877 (2.5 μM), zymosan (1 μg/mL), HdE (100 μg/mL) or the 
peptide WKYMVm (1 μM) and the maximum increase in fluores-
cence measured in arbitrary units (AU) that occurred within 3 min 

was recorded. a Representative tracings from the spectrophotom-
eter. b and c show the peak responses (see Δ and dashed line on a) 
recorded in Ca2+-containing and Ca2+-free medium, respectively 
(data are mean ± SD; each datum is the average of 2 neutrophil 
replicates from an individual mouse).
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affect the output of these cytokines does not dismiss the 
possibility that the worm extract could affect neutrophil 
synthesis and release of other cytokines, lipid-mediators 
or enzymes, such as elastase. This possibility should be 
considered in additional studies. 

HdE Is Not Directly Chemotactic for Neutrophils but 
Blocks Responses to WKYMVm and KC, but Not LTB4
Employing the under-agarose assay, neutrophil migra-

tion in response to WKYMVm was obvious but did not oc-
cur in response to HdE (100–1,000 μg/mL; Fig. 4a). More-
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Fig. 3. H. diminuta extract (HdE) elicits a 
reactive oxygen species (ROS) response 
from murine bone-marrow neutrophils. a 
Neutrophils (105) were treated with the 
ROS detector 2’,7’-dichlorofluorescin di-
acetate (DCFDA; 20 μM), then challenged 
with E. coli-derived lipopolysaccharide 
(LPS; 1 μg/mL) or HdE (100 μg/mL) ± 
polymyxin B (PmxB; 10 μg/mL) to neutral-
ize LPS. Four hours later, ROS generation 
was measured as the increase in fluores-
cence and is presented as arbitrary units 
(AU). b Reduction in mitochondrial respi-
ration induced by HdE as gauged by oxy-
gen consumption rates (OCR), proton leak 
and ATP production analyzed by the Sea-
horse assay (data are mean ± SD; each da-
tum point is the average of 2 neutrophil 
replicates from an individual mouse; * and 
# p < 0.05 compared to control [con] and 
LPS, respectively, by one-way analysis of 
variance with Tukey’s post-test).



Tapeworm Suppression of Neutrophil 
Chemotaxis

143J Innate Immun 2019;11:136–149
DOI: 10.1159/000492303

over, when neutrophils were pre-treated with HdE (100 μg/
mL, 37  ° C, 30 min) they showed significantly reduced che-
motaxis to WKYMVm (Fig. 4b). Reduced chemotaxis to 
WKYMVm by HdE-treated neutrophils was also observed 
in the transwell migration assay (Fig. 4c), as was chemo-
taxis to KC (Fig. 4d). Neutrophil chemotaxis towards LTB4 
was unaffected by HdE pre-treatment (Fig. 4e).

Neutrophils co-treated with HdE at the time of addi-
tion of WKYMVm to the basolateral chamber of the cul-
ture transwell displayed reduced chemotaxis (Fig.  4f). 
The reduced chemotaxis of HdE-treated neutrophils was 
not due to apoptosis, a generalized activation event caus-
ing stasis, or ROS, as determined by the use Z-VAD, LPS, 
A23187, NAC or MitoTEMPO, respectively (Fig. 5). With 
HdE being effective in a pre-treatment regimen (HdE 
rinsed from neutrophils prior to use) in the WKYMVm 
chemotaxis and reducing KC-induced neutrophil migra-
tion, it is unlikely that the HdE directly bound WKYM-
Vm, although this possibility has not unequivocally been 
ruled out.

A Heat- and Trypsin-Sensitive Glycoprotein in the 
HdE Suppressed Neutrophil Migration
Considering the physico-chemical nature of the bioac-

tive molecules(s) within the HdE, boiling, trysinization 
and sodium-metaperiodate (to disrupt glycans) treat-
ment of the HdE ablated its ability to inhibit WKYMVm-
induced chemotaxis, whereas acidification did not affect 
HdE’s ability to reduce neutrophil chemotaxis (Fig. 6a–
d).

Cognizant of low level of LPS contamination in HdE, 
we speculated that this may contribute to the inhibition 
of neutrophil chemotaxis. However, the addition of 
polymyxin B to the HdE did not affect its ability to in-
hibit murine neutrophil migration, and pre-treatment of 
neutrophils with HdE and LPS did not enhance further 
the suppression of chemotaxis in response to WKYM-
Vm (Fig. 6e).

The Molecular Mechanism
As reported [21], we also find that WKYMVm-evoked 

chemotaxis in neutrophils is completely blocked by the 
selective pharmacological inhibitor of p38 mitogen-acti-
vated protein kinase (MAPK), SB20350 (Fig. 7a). The in-
hibitor of the ERK1/2 MAPK pathway, U0126, blocked 
neutrophil by ∼40% in the transwell migration assay 
(data not shown). Focusing on the p38 MAPK pathway, 
we observed that the activation (i.e., phosphorylation) of 
p38 MAPK and the downstream signalling molecule, 
HSP27, by WKYMVm (10 min treatment) was substan-
tially reduced by co-treatment with HdE (Fig. 7b).

Discussion

Often overlooked in the context of infection with par-
asitic helminths, the potential of neutrophils to kill larval 
nematodes in vitro was observed in 1979 [22]. Since then 
neutrophils have been shown to participate in the host 
response to helminths, but it is not always clear if they are 
mobilized because of concomitant tissue damage [7], the 
parasite (or its eggs/products) per se [6, 23], or bacteria 
from the helminth as described for Wolbachia endobac-
teria causing neutrophil accumulation around the filarial 
nematode, Onchocerca volvulus [24].

Infection with H. diminuta suppressed the severity of 
DNBS-induced colitis and CFA-induced arthritis in mice, 
one indicator of which was reduced MPO and hence neu-
trophil infiltration into the tissue [12, 13]. Whether this was 
due to reduced chemokine production by the host and/or 
related to bioactive molecules from the worm was not de-
termined. Here, the injection of LPS into the mouse knee 
resulted in an accumulation of neutrophils that was sig-
nificantly reduced by co-treatment with a PBS-soluble ex-
tract of H. diminuta (HdE). While consistent with the find-
ings in the DNBS and CFA models of inflammation, re-
duced neutrophil recruitment to the knee of HdE-treated 

Table 2. HdE does not evoke a murine neutrophil cytokine response

Control HdE LPS LPS and HdE E. coli E. coli and HdE

KC 44±5 3±4 338±119* 450±188* nt nt
IL-10 33±9 20±12 nt nt 392±85* 447±50*
TNF-α 36±31 68±32 701±456* 499±117* nt nt

Data is pg/mL mean ± SD measured 4 h after treatment; n = 6; HdE at 100 μg/mL; LPS at 1 μg/mL; E. coli 
strain DH5-α at 106 colony forming units; nt, not tested; * p < 0.05 compared to control.

HdE, Hymenolepis diminuta extract; IL, interleukin; TNF-α, tumor necrosis factor-α.
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mice does not differentiate between direct and indirect ef-
fects of the HdE on the neutrophil. It was possible that the 
HdE was acting as a distraction, attracting neutrophils into 
the peritoneal cavity (noting that HdE evoked increases in 
KC in the peritoneal cavity), but this is unlikely to be the 
full explanation, since neither bone marrow nor blood lev-
els of neutrophils were reduced in the HdE-treated mice.

Murine neutrophils were responsive to the HdE as 
gauged by Ca2+ mobilization, ROS generation (a compo-
nent of which would arise from the noted H+ leak in mi-
tochondria) and reduced mitochondrial capacity to make 
ATP, although, and perhaps surprisingly, the HdE did 

not elicit KC, IL-10 or TNF-α production directly from 
neutrophils. HdE-evoked ROS generation was not affect-
ed by use of polymyxin B to absorb LPS, suggesting that 
the effect was not because of this bacterial contaminant in 
the HdE. The scientific literature is replete with examples 
of helminth-derived excretory/secretory products, ex-
tracts or semi-purified molecules directly affecting a va-
riety of functions of innate immune cells [25, 26]. Indeed, 
products from nematode and trematode parasites can be 
chemoattractants for neutrophils in vitro [27–29]: thus, it 
was unexpected when HdE failed to elicit neutrophil che-
motaxis in under-agarose or transwell systems. Contrari-

Fig. 4. H. diminuta extract (HdE) suppresses WKYMVm and KC-
induced chemotaxis in murine bone marrow neutrophil. Freshly 
isolated neutrophils (2 × 105 NØs) were placed in the outside wells 
of an ultrapure agarose gel and chemotaxis towards HdE or 
WKYMVm (1 μM) assessed (a upper panels are representative im-
ages showing extensive migration of neutrophils out of the well 
(demarcated by the dashed line) in response to WKYMVm but not 
HdE). b shows that NØs pretreated with HdE (100 μg/mL, 30 min) 
had reduced chemotaxis to WKYMVm. Using a transwell (8 μm 

pore size) migration system revealed that HdE inhibited NØ che-
motaxis to WKYMVm (c) and KC (20 ng/mL; d), but not leukot-
riene B4 (LTB4, 100 nM; e). Treatment of NØs with HdE at the time 
of application of WYKMVm to the culture well (co-treatment) also 
suppressed chemotaxis (f; data are mean ± SD; each datum point 
is the average of 2 NØ replicates from an individual mouse; * and 
# p < 0.05 compared to control [con] or the appropriate chemotac-
tic stimulus only, respectively, by one-way analysis of variance 
with Tukey’s post-test).
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Fig. 5. H. diminuta extract (HdE) suppres-
sion of neurophil chemotaxis is not depen-
dent on reactive oxygen species (ROS). 
Murine bone marrow neutrophil (2 × 105 
NØs) migration towards WKYMVm 
(1 μM) in a transwell assay (8 μm pore size 
filter) is unaffected by a 30 min pre-treat-
ment with LPS (1 μg/mL) or the calcium 
ionophore, A23187 (2.5 μM). Moreover, 
suppression of NØ chemotaxis by Hyme-
nolepis diminuta extract (HdE, 100 μg/mL) 
was unaffected by co-treating the NØs with 
the anti-apoptotic pan-caspase inhibitor, 
Z-VAD (20 μM) or the antioxidants, n-ace-
tylcystine (NAC, 1 μM) or mitoTEMPT 
(mTEMPO, 10 μM) (data are mean ± SD; 
each datum point is the average of 2 NØ 
replicates from an individual mouse, * and 
#, p < 0.05 compared to control (con) and 
WKYMVm only, respectively, by one-way 
analysis of variance with Tukey’s post-
test).

Fig. 6. A heat-, trypsin-sensitive glycoprotein mediates the effect 
of H. diminuta extract (HdE) on neutrophil chemotaxis. Murine 
bone marrow neutrophils (2 × 105 NØs) were treated with (a) 
boiled (boil), (b) trypsinized (tryp), (c) sodium metaperiodate 
(SMP) or (d) acidified (acid) HdE (100 μg/mL) and placed in the 
upper chamber of the transwell (8 μm pore size filter) separated 
from WKYMVm (1 μM) and NØ migration assessed 4 h later. Pan-

el D shows the lack of an effect of applying polymyxin B (PmxB; 
10 μg/mL) or E. coli-derived LPS (1 ng/mL) on the HdE-suppres-
sion of chemotaxis (data are mean ± SD; each datum point is the 
average of 2 NØ replicates from an individual mouse, * and # p < 
0.05 compared to control (con) and WKYMVm only, respectively, 
by one-way analysis of variance with Tukey’s post-test).

(For figure see next page.)
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ly, when added to neutrophils as a pre- or co-treatment, 
HdE significantly suppressed migration towards the che-
motactic penta-peptide, WKYMVm. Inhibition of neu-
trophil chemotaxis by HdE also occurred with the murine 
chemokine KC, but not the lipid mediator, LTB4. This 

reveals that the neutrophil retained the ability to rear-
range its cytoskeleton and migrate (and that neutrophil 
viability was not an issue), suggesting that the HdE effect 
was restricted to peptide chemoattractants. Moreover, 
this was not because of neutrophil exhaustion due to the 
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Fig. 7. H. diminuta extract (HdE) suppres-
sion of neutrophil chemotaxis occurs via 
p38 MAP kinase. a Murine bone marrow 
neutrophil (2 × 105, NØs) migration in a 
transwell (8 μm pore size filter) in response 
to the peptide WKYMVm (1 μM) is com-
pletely blocked by pre-treatment (30 min, 
37  ° C) with the selective pharmacologic in-
hibitor of the p38 mitogen-activated pro-
tein kinase (MAPK) pathway, SB20350 
(2.5 μM) (data is mean ± SD; each datum 
point is the average of 2 NØ replicates from 
an individual mouse; * and # p < 0.05 com-
pared to control (con) or WKYMVm only, 
respectively, by one-way analysis of vari-
ance with Tukey’s post-test). b Immunob-
lots show that activation of p38 in NØs and 
the downstream signal heat-shock protein 
(HSP) 27 by WKYMVm is inhibited by the 
co-treatment with HdE (100 μg/mL; 
10 min, 37  ° C; representative immunoblot 
and densitometric analysis where data are 
mean ± SD, #  p < 0.05 compared to 
 WKYMVm only, by Kruskal-Wallis test 
with Dunn’s post-test).
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HdE-evoked oxidative burst or Ca2+ mobilization, since 
WKYMVm chemotaxis was unaffected by LPS exposure 
or treatment with the Ca2+ ionophore, A23187. Mecha-
nistically, ROS neutralization did not affect the HdE sup-
pression of WKYMVm-induced neutrophil migration.

The suppression of neutrophil chemotaxis is intriguing, 
particularly since other reports on helminth-derived mol-
ecules describe them as neutrophil chemoattractants [27–
30]. Schroeder et al. reported that live microfilariae of Bru-
gia malayi blocked transendothelial migration of neutro-
phils but did not determine if this was via the release of a 
molecule from the nematode [31]. We add 2 speculative 
points when interpreting our data. One, identification of 
the bioactive molecule(s) within the HdE could yield a 
blueprint for the development of a new drug to direct neu-
trophil movements in the treatment of disease. Two, the 
HdE by acting as a “don’t leave” signal could retain neutro-
phils in a tissue, potentially prolonging their activity and, 
where following apoptosis, they act as an important second 
signal to promote the reparative function of AAMs [32].

With few exceptions [33, 34], the identification of mol-
ecules from parasitic helminths has proved challenging. 
Characterization of the nature of the HdE revealed that 
the component that blocked neutrophil chemotaxis was 
a heat- and trypsin-sensitive glycan (SMP-sensitive), 
most likely a proteoglycan that was resistant to acidifica-
tion. Similarly, a H. diminuta glycan was found to sup-
press LPS-evoked TNF-α production from macrophages 
[14], and numerous findings support the ubiquity of hel-
minth-derived glycans in the modulation of host immu-
nity [25, 35]. So while the challenge remains to identify 
the structure of the anti-chemotactic molecule(s) from H. 
diminuta, the search has been narrowed to a heat- and 
trypsin-sensitive proteoglycan.

Cell chemotaxis is a coordinated process [36], in which 
the p38 MAPK directs neutrophil migration in response 
to KC/IL-8 and formyl-peptide receptor ligands such as 
WKYMVm [37], but not LTB4 [38]: the leukotriene may 
be an important synergist stimulus of neutrophil chemo-
taxis [39] and has been shown to amplify eosinophil ac-
cumulation in response to infection with nematodes [40]. 
Following confirmation that pharmacological blockade 
of p38 MAPK signalling prevented WKYMVm-induced 
neutrophil chemotaxis, immunoblotting revealed that 
HdE-treated neutrophils displayed diminished activation 
of p38 MAPK and the downstream signal, HSP27 (impor-
tant in chemotaxis [36]), in response to the challenge with 
WKYMVm. Subsequent research efforts need to be di-
rected towards more fully elucidating HdE’s mechanism 
of action that could involve binding with and blocking the 

FPR and KC receptors, or HdE mobilizing a signalling 
cascade that inhibits p38 MAPK phosphorylation direct-
ly or targets up-stream molecules such as phosphati-
dylinositol 3′-kinase [38].

What of the paradox of HdE injection resulting in ac-
cumulation of neutrophils in the peritoneum of mice 
compared to the suppression of chemotaxis in vitro. This 
most likely reflects the target cells of the HdE. With direct 
access to the neutrophil (in vitro analyses), the HdE will 
suppress neutrophil chemotaxis to WKYMVm or KC. 
However, in vivo HdE can evoke the production of neu-
trophil chemoattractants (KC was increased in the peri-
toneum) by other cells, possibly myeloid cells, which 
would attract neutrophils that have not been affected by 
direct contact with the HdE.

Often considered a pariah because of its capacity for col-
lateral tissue damage upon activation, the neutrophil, alive 
or dead, is an important player in host immunity [1]: alive 
it performs critical anti-microbial functions, while apop-
totic neutrophils may be important in promoting a tissue-
healing phenotype in murine AAMs [32]. Here we show 
that a PBS-soluble extract of the cestode H. diminuta acti-
vates murine neutrophils and that a trypsin-sensitive pro-
teoglycan in the extract blocks WKYMVm- and KC-in-
duced chemotaxis via suppression of p38 MAPK signalling. 
While the exact nature of the bioactive molecule(s) of the 
helminth-derived molecules awaits determination, and the 
full significance of these changes in neutrophil function for 
host immunity needs to be defined, the current study rein-
forces the folly of overlooking the role that neutrophils play 
in the host response to infection with parasitic helminths.
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