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Abstract
Influenza A virus (IAV) poses a constant worldwide threat to 
human health. Although conventional vaccines are avail-
able, their protective efficacy is type or strain specific, and 
their production is time-consuming. For the control of an in-
fluenza pandemic in particular, agents that are immediately 
effective against a wide range of virus variants should be de-
veloped. Although pretreatment of various Toll-like receptor 
(TLR) ligands have already been reported to be effective in 
the defense against subsequent IAV infection, the efficacy 
was limited to specific subtypes, and safety concerns were 

also raised. In this study, we investigated the protective ef-
fect of an attenuated bacterial outer membrane vesicle 
harboring modified lipid A moiety of lipopolysaccharide 
(fmOMV) against IAV infection and the underlying mecha-
nisms. Administration of fmOMV conferred significant pro-
tection against a lethal dose of pandemic H1N1, PR8, H5N2, 
and highly pathogenic H5N1 viruses; this broad antiviral ac-
tivity was dependent on macrophages but independent of 
neutrophils. fmOMV induced recruitment and activation of 
macrophages and elicited type I IFNs. Intriguingly, fmOMV 
showed a more significant protective effect than other TLR 
ligands tested in previous reports, without exhibiting any 
adverse effect. These results show the potential of fmOMV as 
a prophylactic agent for the defense against influenza virus 
infection. © 2019 The Author(s)
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Introduction

Currently available influenza vaccines have effectively 
reduced disease incidence; however, 3–5 million cases of 
severe illness, with 250,000–500,000 deaths, are reported 
annually, worldwide [1]. One of the reasons for high in-
cidence is constant genomic changes in the virus, termed 
as antigenic drift or shift, which allows the virus to evade 
the antibody response generated by vaccination [2]. These 
genetic changes elicit new, highly pathogenic strains, 
which have the potential to cause a pandemic [3]. For 
these, new seasonal vaccines need to be formulated annu-
ally, which is a time-consuming process. Therefore, there 
is a need for the development of a broad-spectrum anti-
viral agent that is effective against a large variety of viral 
strains and elicits antiviral effect immediately.

Innate immunity can confer broad-spectrum and im-
mediate defense against various pathogens including in-
fluenza virus. Innate immune responses are initiated 
mainly by recognition of pathogen-associated molecular 
patterns (PAMPs) in the pathogen via pattern recogni-
tion receptors such as Toll-like receptors (TLRs) [4–6], 
and TLR-stimulated innate immune cells protect the host 
against the pathogen’s first attack as well as subsequent 
reinfections, which is termed “trained immunity” [7, 8]. 
Based on these findings, various PAMPs such as lipopoly-
saccharide (LPS), palmitoylated peptides, and the un-
methylated CpG oligodeoxynucleotide have been utilized 
to induce anti-influenza innate immunity [9–14]. How-
ever, the effects achieved so far are insufficient to protect 
against infection by a wide spectrum of viral strains. For 
example, LPS protects the host against a lethal dose of 
PR8 virus, but the effect was significantly reduced in the 
SpHA/WSN virus infection model [11, 15], and the stim-
ulation of TLR2 also required supplement of a TLR9 li-
gand for the significant protection [12]. Another study 
reported that stimulation of TLR3 by synthetic liposomal 
polyriboinosinic-polyribocytidylic acid resulted in mod-
erate survival rates (70 and 63% after infection by PR8 
and H5N1, respectively) [13]. These previous studies in-
dicate the requirement for a sophisticated strategy or 
novel agent to achieve broad-spectrum anti-influenza ef-
ficacy involving activation of innate immunity.

Outer membrane vesicles (OMVs) are phospholipid 
bilayer vesicles produced naturally by Gram-negative 
bacteria. Since OMVs contain various bacterial antigens 
[16], they have been studied as a vaccine candidate against 
pathogenic bacteria such as Vibrio cholerae and Borrelia 
burgdorferi [17, 18]. Notably, the OMV from Neisseria 
meningitidis was the first to be licensed for humans as a 

vaccine component [19]. In addition to bacterial proteins, 
these vesicles also contain TLR ligands such as LPS, lipo-
proteins, and flagellin [16, 20], and in this regard, OMVs 
augmented adaptive immune response to the coadminis-
tered antigens via activation of innate immunity [5, 6]. 
Previously, we generated fmOMV, which stands for fur-
ther-modified OMV, of which lipid A is a dephosphory-
lated and underacylated species that resulted from both 
expression of the LpxF 4′-phosphatase and deletion of the 
msbB/pagP lipid A myristoyl/palmitoyltransferase genes. 
This OMV showed a significant adjuvant effect on a sea-
sonal influenza vaccine exhibiting much attenuated 
TLR4-stimulating activity in vitro and endotoxicity in 
vivo [21, 22]. Although the adjuvant effect of OMVs has 
been reported in various antigen models, the antiviral ef-
fects via activation of innate immunity have not yet been 
addressed.

In this study, we showed that fmOMV elicits host in-
nate immune response against influenza virus infection. 
Intranasal administration of fmOMV resulted in the re-
cruitment and activation of macrophages in the lung tis-
sue, and these macrophages sufficiently protect infection 
from different influenza viruses; pH1N1, PR8, H5N2, and 
highly pathogenic H5N1. These findings suggest the po-
tential of fmOMV as a novel antiviral agent against infec-
tion from broad-spectrum influenza viruses.

Materials and Methods

Purification of fmOMV
fmOMV was produced by transforming E. coli W3110 ΔmsbB/

ΔpagP mutant strain with pWSK29-LpxF plasmid as previous- 
ly reported [23]. After removing the bacteria by centrifugation 
(11,000 g), the supernatant was filtered using a 0.22-μm pore filter 
(Merck, NJ, USA). fmOMV in the filtrate were precipitated in 390 
g/L ammonium sulphate solution, and the collected pellets were 
centrifuged again at 16,000 g for 15 min. The pellets were ultracen-
trifuged in a sucrose gradient solution for further purification.

Fig. 1. Modified outer membrane vesicle (fmOMV) stimulates di-
verse Toll-like receptors (TLRs). a Structure of lipid A moiety on 
fmOMV. b HEK293 cells expressing mouse TLR2, TLR4, TLR5, or 
TLR9 were cultured with indicated amounts of fmOMV or corre-
sponding ligand (PAM3 100 ng/mL; LPS 100 ng/mL; flagellin 100 
ng/mL; or CPG 100 ng/mL) for 24 h. The extent of fmOMV- or 
TLR ligand-induced TLR stimulation was determined by mea
suring secreted embryonic alkaline phosphatase activity using 
QUANTI-Blue colorimetric enzyme assay. Data are presented as 
mean ± standard deviation from triplicate culture wells, at optical 
density (OD) of 570 nm. *** p < 0.001, ** p < 0.01.

(For figure see next page.)
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TLR Signaling Assay 
HEK-BlueTM mTLR2, mTLR3, mTLR4, mTLR5, or mTLR9 (In-

vivogen, CA, USA) cell lines were maintained in RPMI1640 media 
(Life technologies, MA) supplemented with 10% fetal bovine se-
rum (FBS; GE Healthcare, UK) and 1× antibiotics (Life Technolo-
gies). During activation, each cell line was resuspended in HEK-
BlueTM Detection media (Life Technologies), seeded at 5 × 104 
cells/well in 96-well plates, and treated with fmOMV or control 
reagents; Pam3Cys-Ser-(Lys)4 (Pam3, 1.0 µg/mL; Merck Millipore, 
Germany), poly I:C (10 µg/mL), LPS (100 ng/mL), flagellin (1.0 µg/
mL), or CpG ODN 1826 (CpG, 1.0 µg/mL) (Invivogen). After 24-h 
incubation, the secreted alkaline phosphatase activity was mea-
sured at 630 nm.

Viruses
Influenza A/California/04/2009 (pandemic H1N1, pH1N1), 

influenza A/Puerto Rico/8/1934 (PR8), influenza A/aquatic bird/
Korea/CN2-MA/2009 (H5N2), and influenza A/Environment/
Korea/W149/2006 (H5N1) viruses were cultivated in the allantoic 
cavities of embryonated chicken eggs. Viruses were titrated by cal-
culating the 50% egg infectious dose (EID50) and stored at –80  ° C 
until use. 

Animals and Experimental Schedule
Seven-week-old, female C57BL/6 mice were kept in pathogen-

free, biosafety level-2 or -3 facilities at Korea Research Institute of 
Bioscience and Biotechnology (KRIBB) or Chungbuk National 
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Fig. 2. Antiviral activity of fmOMV is independent of the adaptive 
immune response. Mice (n = 10) were intranasally immunized 
with the trivalent split influenza vaccine mixed with fmOMV or 
cholera toxin, and then challenged with pH1N1 virus at 5 and 14 
days after the injection. a After challenge, the mice were monitored 
for changes in body weight and survival rate for 14 days. b Sera 
were collected before virus challenge, and the virus-specific anti-
body response was determined by ELISA. c–f Mice (n = 8) were 
injected with fmOMV alone. At 3, 7, or 14 days after the injection, 
the mice were infected with pH1N1 virus. The vaccinated group 
was immunized intramuscularly with pH1N1 split vaccine fol-

lowed by a booster injection after 2 weeks (n = 8). Two weeks after 
the second injection, the mice were challenged with the pH1N1 
virus. c The survival rates were monitored for 2 weeks after the 
pH1N1 viral challenge. d The lung tissues were collected at 7 days 
after the viral challenge and virus titers were determined. e Influ-
enza-specific IgG antibodies were measured by ELISA using sera 
collected on the day of virus challenge. f IFN-γ-secreting T cells 
were estimated by enzyme-linked immunospot assay, using sple-
nocytes harvested on the day of virus challenge. Data are present-
ed as mean ± standard error of mean. *** p < 0.001, * p < 0.05.

(Figure continued on next page.)
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University, respectively. Mice were injected intranasally with 
fmOMV (10 µg/mouse) once. Three, 7, or 14 days after fmOMV 
injection, mice were challenged with a 10 lethal dose 50 (LD50) of 
PR8, pH1N1, H5N2, or highly pathogenic H5N1 viruses and their 
mortality rates were monitored for 2 weeks. The trivalent split in-
fluenza vaccine containing A/California/7/2009 (H1N1), A/Victo-
ria/361/2011 (H3N2), and B/Massachusetts/2/2012 (1.0 μg of HA/
mouse, Green Cross, Korea) was immunized either intranasally 
(Fig. 2) or intramuscularly (Fig. 5) twice at a 2-week interval. The 
vaccine-immunized groups were challenged 2 weeks after the 
booster injection. For intranasal injection, the total volume was 
adjusted to 30 µL/mouse by using phosphate-buffered saline 
(PBS). A humane endpoint of 25% weight loss was used for this 
challenge study. 

Enzyme-Linked Immunosorbent Assay 
ELISA plates (ThermoFisher Scientific, MA, USA) were coated 

with vaccine antigen (200 ng/well), and then incubated with the 
serum samples. Bound antibodies were detected by sequential in-
cubation with peroxidase goat anti-mouse total IgG (Cell Signaling 

Technology, MA, USA) and 3,3′,5,5′-tetramethylbenzidine sub-
strate (BD Bioscience, CA, USA). Optical density was measured at 
450 nm wavelength using VICTOR3TM (PerkinElmer, MA, USA). 

Enzyme-Linked Immunospot (ELISPOT) Assay
Influenza-specific IFN-γ-producing cells were quantified using 

a mouse IFN-γ enzyme-linked immunospot set (BD Biosciences) 
on the day of virus challenge. Briefly, splenocytes (5 × 105 cells/
well) were incubated with inactivated pH1N1 virus on ELISPOT 
plates coated with IFN-γ capture antibody. After 40-h incubation, 
the plates were further incubated with biotinylated IFN-γ detec-
tion antibody and then horseradish peroxidase-conjugated strep-
tavidin. Spots were visualized by adding 3-amino-9-ethyl-carba-
zole substrate solution and counted using the BioSpot analyzer 
(Cellular Technology, OH, USA).

Virus Titration
Total lung homogenate samples were obtained at indicated 

time points, and then added to Madin-Darby canine kidney cells 
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Fig. 3. Macrophages but not neutrophils are associated with anti-
influenza effect by fmOMV. a Macrophages and neutrophils were 
measured by fluorescence-activated cell sorting analysis of lung 
tissue at 1 and 3 days after fmOMV injection. b The CD45+F4/80+ 
macrophage population was subdivided in terms of CD11b and 
CD11c expression. c The survival rate of macrophage- or neutro-

phil-depleted mice infected with pH1N1. After mice were injected 
with clodronate-liposome or anti-Ly6G, they were injected with 
fmOMV intranasally and infected with 10 LD50 of pH1N1 at 3 days 
after fmOMV injection. Data are presented as mean ± SEM and 
representative of at least three independent experiments. *** p < 
0.001, ** p < 0.01, * p < 0.05.
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with 10-fold serial dilution. Three days after infection, virus titer 
was determined with a hemagglutinin test and calculated by the 
method of Reed and Muench, as previously described [24]. Virus 
titer was expressed as log10 of the 50% tissue culture-infective dose 
(TCID50) per milliliter.

Fluorescent Labeling of fmOMV
fmOMV was labeled with Alexa Fluor 488 fluorescent dye (Al-

exa488) according to the manufacturer’s instructions (Thermo-
Fisher Scientific). In brief, 1 M sodium bicarbonate buffer was add-
ed to fmOMV diluted in PBS, and then Alexa488 tetrafluorophenyl 
ester was added to the mixture. After incubation for 15 min at 
room temperature, unreacted dye was removed using a spin filter 
containing Bio-Gel P-6 fine resin.

Flow Cytometry
Samples were resuspended in fluorescence-activated cell sort-

ing buffer (PBS containing 2.5% FBS and 0.1% sodium azide) and 
incubated with Fc-block (anti-CD16/CD32; eBioscience, CA, 
USA). After washing, the cells were stained for CD11b, CD11c, 
SiglectF, CD40, CD45, CD80, CD86, MHC class II, F4/80, and 
Ly6G (eBioscience). Samples were acquired on GalliosTM (Beck-
man Coulter, CA, USA) and analyzed using FlowJo software (Tree 
Star, OH, USA).

Depletion of Neutrophils and Macrophages
Neutrophils were depleted by intraperitoneal injection of anti-

mouse Ly6G antibody (500 μg/mouse, 1A8 clone; Biolegend, CA, 
USA) 24 h before fmOMV treatment. For macrophage depletion, 
empty or clodronate-encapsulating liposomes (FormuMax, CA, 
USA) were administered via intravenous routes (1.0 mg/mouse) at 
2 days before fmOMV administration. 

Quantitative RT-PCR
RNA was isolated from the lung tissue using TRIzol (Invitro-

gen) and was reverse-transcribed with Moloney murine leukemia 
virus reverse transcriptase and oligo-d(T) according to the manu-
facturer’s instructions. Quantitative RT-PCR was performed using 
specific primers (IFN-α: sense, 5′-ATGGCTAGGCTCTGTGC
TTTCCT-3′, antisense, 5′-AGGGCTCTC CAGACTTCTGCT
CTG-3′; IFN-β: sense, 5′-CCCTATGGAGATGACGGAGA-3′, 
antisense, 5′-TCCCACGTCAATCTT TCCTC-3′; HPRT: sense, 
5′-CAGACTGAAGAG CTACTGTAATGATCA-3′, antisense, 5′-
TCA ACA ATCAAGACATTCTTTCCA-3′) and SYBR Premix  
Ex Taq (Takara Bio) on a Dice TP800 Thermal Cycler (Takara 
Bio). The mRNA levels were normalized relative to the expression 
of Hprt mRNA. 

Multiplex Cytokine Immunoassay
Bronchoalveolar lavage fluid (BALF) samples were harvested 

3 days after fmOMV treatment. The cytokine levels were mea-
sured using a multiplex cytokine immunoassay system (Bio-Rad 
Laboratories, CA, USA) according to the manufacturer’s instruc-
tions. 

Statistical Analysis
Statistical differences among groups were assessed using a 

2-tailed Student’s t test or a log-rank test with GraphPad Prism 
software. p values of < 0.05 were considered statistically significant. 

Results

fmOMV Stimulates Diverse TLRs 
Activation of various TLR signaling has been reported 

to initiate antiviral innate immunity [4]. Based on the fact 
that OMVs contain diverse bacterial components which 
can stimulate TLRs [23, 25, 26], we previously generated 
a modified OMV harboring less endotoxic LPS (fmOMV, 
Fig. 1a) and investigated its safety and adjuvant effect us-
ing an influenza vaccine model [21]. In this study, we test-
ed whether fmOMV initiates TLR 2, 3, 4, 5, and 9 signal-
ing simultaneously, using HEK-Blue cells expressing in-
dividual TLRs. Treatment with fmOMV induced TLR2, 
TLR3, TLR4, TLR5, and TLR9 signaling in a dose-depen-
dent manner (Fig. 1b). These data suggest that fmOMV 
treatment elicits innate immunity required to generate 
antiviral host immunity via simultaneous triggering of 
various TLR signaling.

Antiviral Activity of fmOMV Is Independent of the 
Adaptive Immune Response 
Previously, we reported that OMV injection with a vac-

cine antigen increases vaccine-induced antibody respons-
es using ovalbumin and influenza vaccine antigens [21, 
23]. Since rapid induction of protective immunity in par-
ticular is required for vaccines against highly transmissi-
ble infectious diseases such as influenza, we first tested 
whether fmOMV could induce protective efficacy of an 
influenza vaccine at early time points after the injection. 
When mice were challenged both 5 and 14 days after im-
munization, the mice coimmunized with fmOMV exhib-
ited reduced body weight loss and an increased survival 
rate, which were significantly higher than those achieved 
by vaccination without fmOMV (Fig.  2a). Intriguingly, 
the antigen-specific antibody was not detected in sera 5 
days after immunization (Fig. 2b). This discrepancy be-
tween the protection rate and antibody response at day 5 
after vaccination led to the possibility that fmOMV in-
duces a protective response before the vaccine-induced 
antibody response is generated. To verify this hypothesis, 
mice were inoculated intranasally with fmOMV alone and 
then challenged with pH1N1 influenza virus at 3, 7, or 14 
days after fmOMV administration. All fmOMV-injected 
mice survived at 3 days after fmOMV injection (Fig. 2c); 
however, survival rates decreased with an increase in the 
interval between fmOMV injection and pH1N1 virus 
challenge (day 7: 80%, day 14: 20%). Additionally, the viral 
titer in the lungs was the lowest at 3 days after fmOMV 
injection (Fig. 2d). To investigate whether the protective 
effect of fmOMV was associated with adaptive immunity, 
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we measured antigen-specific antibody and T cell re-
sponses on the day of virus challenge. As expected, neither 
the antibody response nor the interferon (IFN)-γ-secreting 
T cell response specific for the vaccine were detected at 3, 
7, or 14 days after fmOMV injection (Fig. 2e, f), indicating 
that the fmOMV-induced antiviral effect is not associated 
with adaptive immunity. 

Macrophages but Not Neutrophils Are Associated with 
Anti-Influenza Effect by fmOMV
Given that the fmOMV-induced antiviral effect was 

independent of adaptive immunity, we hypothesized that 
the antiviral activity is associated with innate immunity. 
Since previous reports showed that macrophages and 
neutrophils comprise the majority of innate immune cells 
responsible for the antiviral response in an influenza in-
fection model [27], we measured the change in counts of 
macrophages and neutrophils in the lungs after fmOMV 
injection. Both cell counts significantly increased after 
fmOMV injection (Fig.  3a). Additional analysis of the 
change in macrophage phenotypes showed that major 
population of F4/80+ cells in the lungs was CD11bhiCD-
11clo-int (Fig. 3b) [28]. 

To identify which innate immune cells mainly contrib-
uted to the antiviral activity by fmOMV, we monitored 
the survival rate of fmOMV-injected mice under neutro-
phil- or macrophage-depleted conditions. Depletion of 
macrophages by clodronate-liposome injection com-
pletely abrogated the antiviral effect by fmOMV admin-
istration (Fig. 3c), indicating that macrophages play an 
important role in the antiviral effect by fmOMV against 
influenza virus infection (Fig. 3c, left). After neutrophil 
depletion by anti-Ly6G antibody injection, the antiviral 

effect by fmOMV was not affected, showing that neutro-
phils are not associated with antiviral effect by fmOMV 
(Fig. 3c, right). These data suggest that the antiviral effect 
by fmOMV injection is associated with an increase in 
macrophages in the lungs.

fmOMV Activates Macrophages and Induces Antiviral 
Cytokines in the Lung Tissue
It has been known that alveolar macrophages (AMs) 

are the major population that firstly recognizes foreign 
materials and induces subsequent immune activation in 
the lungs. To investigate whether fmOMV-induced anti-
viral effect was mediated by direct interaction of fmOMV 
with AMs, we injected Alexa488-labelled fmOMV 
(fmOMV-Alexa488) and quantified the fluorescence sig-
nal in AMs. At 3 h after fmOMV-Alexa488 injection, 
94.2% of CD45+SiglecFhiCD11bloCD11chiF4/80+ cells 
were Alexa488-positive (Fig. 4a), showing direct interac-
tion of fmOMV with AMs. 

Upon activation, AMs secrete proinflammatory che-
mokines which in turn lead to recruitment of diverse im-
mune cells ([29]), as shown in Figure 3a, b. Given that 
macrophages are indispensable for the fmOMV-mediat-
ed antiviral effect (Fig. 3c, left), we next investigated the 
characteristics of infiltrated macrophages in lung tissue 3 
days after fmOMV injection. The activation markers, 
such as CD40, CD80, CD86, and MHC class II on macro-
phages, were upregulated after fmOMV injection 
(Fig.  4b). We also analyzed the levels of antiviral cyto-
kines and chemokines after fmOMV injection. The level 
of IFN-α and β, IL-1β, and C-C motif chemokine ligand 
2 (CCL2, MCP-1) in the lung tissue was increased by 
fmOMV injection (Fig.  4c, d), indicating that fmOMV 
activated the innate immune system leading to antiviral 
soluble factors. Given that fmOMV induces significant 
production of type I IFNs, we further investigated wheth-
er type I IFNs contributed to fmOMV-mediated protec-
tion using mice lacking a type I IFN receptor (IFNAR-
1KO). When IFNAR1KO mice were treated with fmOMV 
and then challenged with a lethal dose of PR8 virus, all 
mice lost weight and eventually died (Fig. 4e), indicating 
that type I IFNs play an important role in the fmOMV-
mediated antiviral effect.

fmOMV Provide Broad and Potent Protection against 
Diverse Influenza A Viruses 
To further examine whether fmOMV protects against 

a broad spectrum of influenza virus subtypes, we addi-
tionally challenged fmOMV-injected mice with PR8, 
H5N2, and highly pathogenic H5N1 viruses. Eighty to 

Fig. 4. fmOMV activates macrophages and induces antiviral cyto-
kines in the lung tissue. a Mice were intranasally administered with 
10 µg of Alexa Fluor 488 (Alexa488)-labeled fmOMV. After 3 h, 
the population of Alexa488 and F4/80-positive cells were deter-
mined by flow cytometry, gated on CD45+SiglecFhiCD11bloCD11chi 
bronchoalveolar lavage cells. b The expression of activation mark-
ers on macrophages (upper panels) and neutrophils (lower panels) 
in the lungs were analyzed at 3 days after fmOMV injection.  
c, d The levels of type I interferons, IL-1β, and C-C motif chemo-
kine ligand 2 (CCL2) in the lungs were determined by RT-PCR and 
multiplex cytokine immunoassay, respectively. e Type I IFN re-
ceptor 1 knockout (IFNAR1KO) mice (n = 4 or 6) were injected 
with fmOMV. Three days after the injection, the mice were in-
fected with PR8 virus, and the survival rates were monitored for 2 
weeks after the viral challenge. Data are presented as mean ± SEM 
and representative of at least three independent experiments.  
*** p < 0.001, ** p < 0.01, * p < 0.05.
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one hundred percent of the fmOMV-injected mice sur-
vived the PR8, H5N2, and H5N1 viral challenge at 3 days 
after fmOMV injection (Fig. 5a). The protective effect of 
fmOMV was compared with other TLR ligands: Pam3, 
LPS, flagellin, and CpG, which have been reported to pro-
tect against influenza viruses [11, 12, 30]. Interestingly, 
while the TLR ligands except CpG were ineffective, 
fmOMV (3 and 10 µg) completely protected against lethal 
influenza virus challenge (Fig. 5b). Although CpG com-
pletely protected the viral challenge in terms of the sur-
vival rate (Fig. 5b, right), the body weight of mice admin-
istered CpG significantly declined upon viral challenge 
compared to that of mice administered fmOMV (Fig. 5b, 
left). Consistent with a previous report [21], the mobility, 
food intake, and body weight of the mice were normal, 
and inflammation in the lung tissue was not observed 
when fmOMV was intranasally injected (data not shown). 
These data indicate that fmOMV provide broad and po-
tent protection against diverse influenza A viruses (IAVs) 
without endotoxic inflammation.

Discussion

Emerging infectious diseases caused by yet unidenti-
fied viruses or new variants of known viruses are a con-
stant threat to human health, as exemplified by Middle 
East respiratory syndrome coronavirus and influenza vi-
ruses. These pandemic or epidemic outbreaks necessitate 
the availability of therapeutics and vaccines. However, 
factors such as lack of information regarding the virus 
and the time-consuming developmental process have re-
sulted in an urgent need for an effective antiviral agent 
that protects against a broad spectrum of viruses imme-
diately. In this study, we demonstrated that intranasal in-
jection of fmOMV not only protects against infection by 
a broad spectrum of influenza viral strains, but also elicits 

this antiviral effect as early as 3 days after administration. 
Cell depletion and subtype analysis studies revealed that 
an increase and activation of macrophages by fmOMV 
injection provided broad-spectrum antiviral effects.

Previous reports showed that AMs play an indispens-
able role in the protection against airway infection with 
influenza viruses [31–34]. Upon infection with influenza 
viruses, AMs primarily produce type I IFNs that play an 
important role in the protection against influenza viruses 
by both inhibiting viral replication and suppressing ex-
cessive tissue inflammation [35, 36]. In this study, we ob-
served activation of TLR3 and 4, which are known to in-
duce type I IFNs via interferon regulatory factor 3, in vitro 
(Fig. 1b), and significant increase in type I IFNs in vivo 
after fmOMV treatment (Fig.  4c). In addition to LPS, 
OMVs contain bacteria-derived RNA molecules and ac-
tivate TLR3, which coincides well with our observation 
[25, 37]. It is possible that type I IFNs induced by fmOMV 
promote antiviral molecular milieu in lung epithelial 
cells, and these “pre-armed” epithelial cells effectively 
suppressed influenza virus replication regardless of the 
evading mechanism of influenza virus in this study. 

We observed that F4/80+CD11bhiCD11clo-int cells 
massively infiltrated into the lungs 3 days after fmOMV 
injection (Fig. 3b) and that these macrophages are indis-
pensable for the antiviral effect of fmOMV (Fig. 3c, left). 
When AMs are activated, they produce CCL2, resulting 
in the recruitment of bone marrow-derived macrophages 
to the lungs [29]. In this study, we showed that fmOMV 
increased the level of CCL2 in BALF (Fig. 4d, right), sug-
gesting that massive infiltration of macrophages was in-
duced by AM-derived chemokines. Inflammatory mac-
rophages suppress viral replication after influenza virus 
infection [38]. In particular, stimulation of various TLRs 
using LPS, imiquimod, peptidoglycan, or β-glucan is 
known to transform macrophages to a state called “trained 
immunity” that is hyperresponsive to pathogenic re-in-
fection [8, 39]. Specifically, TLR stimulation induces a de-
crease in repressive histone H3K9me2 marks via phos-
phorylation of ATF7. This epigenetic change causes an 
increase in basal expression of genes required for protec-
tion against pathogens by macrophages. Considering that 
fmOMV can stimulate various TLRs (Fig. 1b), fmOMV 
injection may transform recruited macrophages to the 
hyperresponsive state presumably via epigenetic changes.

Injection of fmOMV induced IL-1β secretion in the 
lung tissue (Fig. 4d, left). In contrast to the case that LPS 
or flagellin located outside of the cells can only activate 
corresponding TLRs, the ligands introduced into the in-
tracellular compartment activate NLRP3 and the NL-

Fig. 5. fmOMV provide broad and potent protection against di-
verse influenza A viruses. a Mice (n = 8–9) were injected with 
fmOMV and challenged with 10 LD50 of PR8, H5N2, and highly 
pathogenic H5N1 influenza viruses at the indicated time points. 
The vaccinated group was immunized intramuscularly with the 
trivalent split influenza vaccine containing pH1N1 antigen twice 
at a 2-week interval (n = 8). Two weeks after the second injection, 
the mice were challenged with each virus. b Mice (n = 8) were in-
tranasally injected with each indicated TLR ligand (3 µg) and chal-
lenged with 10 LD50 of the pH1N1 virus. a, b The survival rates 
were monitored for 2 weeks after the viral challenge. These data 
are representative of two or three independent experiments.  
*** p < 0.001, ** p < 0.01, * p < 0.05.
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RC4-dependent inflammasome, respectively [40, 41]. 
Detection of IL-1β in BALF indicates that fmOMV enters 
the target cells, leading to a sequential activation of the 
inflammasome and proteolytic cleavage of IL-1β precur-
sor [42]. Consistent with our interpretation, it was recent-
ly reported that OMVs mediate cytosolic localization of 
LPS and activate caspase-11 [43]. 

Neutrophils have a protective role in influenza virus 
infection [44, 45]. In this study, however, depletion of 
neutrophils did not decrease survival rate in fmOMV-in-
jected and influenza-challenged mice, suggesting that 
neutrophils did not participate in antiviral activities pro-
vided by fmOMV in our experimental model (Fig.  3c, 
right). Antiviral activities of neutrophils are mainly asso-
ciated with secretion of antiviral molecules such as long-
chain pentraxin (PTX3), defensin, and formation of neu-
trophil extracellular traps after influenza virus infection 
[46–48]. These molecules are secreted from neutrophils 
after activation via interaction directly with influenza vi-
rus or virus-induced molecular inflammatory milieu. It  
is speculated that in fmOMV-injected mice, infiltrated 
macrophages have sufficiently suppressed disease sever-
ity after influenza virus infection. Therefore, viral load 
and inflammatory cytokines may have been insufficient 
to activate neutrophils to produce antiviral molecules af-
ter influenza virus infection in fmOMV-injected mice. 
Meanwhile, neutrophil activation is known to intensify 
disease severity during influenza infection [49]; however, 
this was not observed in the present study, in terms of 
change in body weight and survival rates of fmOMV-in-
jected mice (Fig. 2c, 3c, and 5a). This suggests that there 
was nil or relatively low activation of neutrophils upon 
influenza virus infection in fmOMV-injected mice, coin-
ciding well with our observation (Fig. 3c, right).

In our study, fmOMV pretreatment successfully pro-
tected the mice against diverse IAVs; PR8, pH1N1, H5N2, 
and highly pathogenic H5N1 (Fig. 2a and 5a). It has been 
reported that pretreatment with a single TLR ligand pro-
vided differential protective efficacy depending on the 
challenging influenza subtypes or strains [9, 11, 14, 30]. 
TLR4 activation alone was sufficient to protect H5 sub-
type, whereas simultaneous activation of TLR2 and 4 was 
required for the protection against PR8 (H1) subtype 
[11]. Pam2Cys, a TLR2 ligand, has been reported to elicit 
80% survival rate after PR8 virus infection [9, 30]. In ad-
dition, costimulation of TLR2 and TLR9 protects the host 
against H3N2 virus infection completely, but the effect 
was reduced up to 50% in an H1N1 virus infection mod-
el [12]. Since fmOMV used in this study is a complex of 
various TLR ligands and presumably capable of simulta-

neously activating TLRs and cytosolic pattern recogni-
tion receptors, it is probable that fmOMV leads to the 
higher protective efficacy against diverse IAVs. Further 
investigation is necessary to determine the underlying 
mechanisms for differential protective efficacy of each 
TLR signal against different virus strains.

In conclusion, we showed that fmOMV injection pro-
tected against infection by a wide spectrum of IAV strains 
and this antiviral effect was mediated by infiltrated mac-
rophages. Our findings show potential for development 
of an efficient and broad-spectrum antiviral agent against 
influenza as well as emerging infectious diseases.
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