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Abstract

Purpose of review—Sensitive, scalable and affordable assays are critically needed for 

monitoring the success of interventions for preventing, treating and attempting to cure HIV 

infection. This review evaluates current and emerging technologies that are applicable for both 

surveillance of HIV drug resistance (HIVDR) and characterization of HIV reservoirs that persist 

despite antiretroviral therapy and are obstacles to curing HIV infection.

Recent findings—Next-generation sequencing (NGS) has the potential to be adapted into high-

throughput, cost-efficient approaches for HIVDR surveillance and monitoring during continued 

scale-up of antiretroviral therapy and rollout of preexposure prophylaxis. Similarly, improvements 

in PCR and NGS are resulting in higher throughput single genome sequencing to detect intact 

proviruses and to characterize HIV integration sites and clonal expansions of infected cells.

Summary—Current population genotyping methods for resistance monitoring are high cost and 

low throughput. NGS, combined with simpler sample collection and storage matrices (e.g. dried 

blood spots), has considerable potential to broaden global surveillance and patient monitoring for 

HIVDR. Recent adaptions of NGS to identify integration sites of HIV in the human genome and to 

characterize the integrated HIV proviruses are likely to facilitate investigations of the impact of 

experimental ‘curative’ interventions on HIV reservoirs.
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INTRODUCTION

Sensitive, scalable and affordable assays are urgently needed for monitoring the success of 

interventions for preventing, treating and attempting to cure HIV infection. Eighteen million 

individuals are currently on antiretroviral therapy (ART), and recent UNAIDS targets aim to 

increase that number to 90% of all infected individuals [1]. Concurrently, preexposure 
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prophylaxis (PrEP) roll out with oral tenofovir/emtricitabine, which is also a key component 

of first-line ART, is planned for thousands of at-risk individuals throughout sub-Saharan 

Africa, Europe and the United States. The spread of drugesistant HIV remains the greatest 

threat to undermining the public health benefit of ‘Test and Treat’ [2] and PrEP rollout [3], 

yet resistance monitoring is not currently widely available because of high cost and low 

throughput. This situation is unlikely to change without technological advances that have 

major effects on cost and capacity.

Although ART and PrEP have the potential to lower HIV incidence, both approaches require 

drug adherence and continual drug supply, which are resource-intensive. The report of the 

‘Berlin Patient’ in 2009, who was cured of HIV infection [4], galvanized worldwide efforts 

to achieve an affordable and scalable cure of HIV that would reduce HIV transmission 

without the need for lifelong ART. A major obstacle to progress toward an HIV cure has 

been difficulty in quantifying and characterizing the HIV reservoir that leads to viral relapse 

after ART is stopped. Next-generation sequencing (NGS) is now being adapted to help 

identify intact (replication competent) HIV proviruses and their integration sites in the 

human genome. The latter application led to the recognition that clonal expansions of HIV 

infected cells are common. Further refinements of NGS assays should facilitate the 

assessment of efficacy of experimental interventions aimed at reducing HIV reservoirs and 

controlling HIV.

The current review discusses limitations of current assays for drug resistance surveillance 

and HIV cure research, recent advances in application of NGS as potential solutions and 

important improvements that are needed to realize the full potential of NGS assays.

LIMITATIONS OF CURRENT HIV DRUG RESISTANCE SURVEILLANCE 

TECHNOLOGIES

Current assays to identify HIV-1 drug resistance mutations have relied on population 

sequencing of the HIV-1 protease (pro) and reverse transcriptase genes or on identifying 

specific point mutations in HIV-1 reverse transcriptase associated with resistance (Table 1).

Standard genotyping

Population genotyping remains the current clinical standard for assessment of HIV drug 

resistance (HIVDR) mutations in individuals who seroconvert while using PrEP, for 

individuals starting ART (i.e. pretreatment or transmitted resistance) and for individuals on 

failing ART regimens. The Abbott Molecular ViroSeq HIV-1 is the only commercially 

available genotyping system for HIVDR assessment since Siemens discontinued TruGene 
HIV-1 in 2014 [6■■]. Standard genotyping assays have a high cost per sample (>150 USD), 

require high minimum viral loads (2000 copies/ml), have limited gene coverage (up to 

codon 335 in HIV-1 reverse transcriptase), are variably successful in genotyping nonsubtype 

B HIV-1, and only detect resistant variants that comprise more than 20% of the virus 

population in a sample [5,19–22]. Several in-house assays have reported improved 

performance for sequencing nonsubtype B HIV-1 and have significantly reduced the cost 
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over commercial assays (to approximately 50–150 USD), but these methods remain labor-

intensive with a high burden of manual data analysis and lack scalability [5,8–10].

Point mutation assays

Several real-time PCR-based point mutation assays (PMA) including allele-specific PCR 

[13], oligo-ligation assay [23], one-step ligation on RNA amplification [17] and pan-

degenerate amplification and adaptation [24] have improved sensitivity (0.01–5%), lower 

cost per sample (<5 USD) and higher throughput capacity relative to standard genotyping 

(Table 1). However, large-scale implementation of PMAs has stalled due to issues with 

primer binding site polymorphisms and mutant codon variants, such as E138E/A/G/K that 

compromise assay specificity and increase assay complexity and cost [25,26]. Although 

recent advances in PMAs can accommodate the simultaneous detection of multiple 

mutations, analysis of mutation combinations, such as thymidine analog mutations for 

zidovudine resistance, remains challenging [27].

NEXT-GENERATION SEQUENCING FOR PREEXPOSURE PROPHYLAXIS 

AND ANTIRETROVIRAL THERAPY RESISTANCE MONITORING

NGS has the potential to be adapted into a high-throughput, low-cost HIVDR assay with low 

frequency mutation detection at 1–5% [5,28■■,29]. For NGS to be implementation-ready 

for HIVDR surveillance, improvements in nucleic acid preservation and simplification of 

assay procedures and data analysis are needed.

Current next-generation sequencing assays for sensitive detection of low-frequency 
resistance

NGS has the capacity to simultaneously obtain reads from millions of copies of HIV 

genomes per run enabling the potential detection of low-frequency viral quasispecies. The 

addition of patient identifiers (index sequences) enables multiplexing of samples to increase 

throughput and reduce cost per genotype relative to standard sequencing [30,31].

Earlier studies using the 454 platform could detect mutants at 1% frequency, but accuracy 

was compromised by PCRbias and sequencing errors. The newer Illumina platform has 

increased fidelity and reliability with shorter, more processive reads during NGS and can 

generate a greater number of reads per run [32]. Two recent advances have increased the 

sensitivity and accuracy of NGS by correcting for PCR resampling, recombination during 

PCR and sequencing errors. The addition of unique PrimerlDs composed of degenerate 

bases during cDNA synthesis can correct for preferential PCR amplification by tagging all 

the sequences derived from a single RNA template. Using bioinformatics, sequences with 

identical PrimerIDs are collapsed into one consensus, and sequences with gaps, errors or 

ambiguous bases indicative of PCR error, recombination or sequencing error are removed 

[11■,33,34]. Recent improvements of sample processing were made by adding the 

sequencing adaptors with an oligo-ligation step rather than through PCR amplification, 

which reduces the potential for recombination and lowers the mutant detection frequency to 

less than 0.1% [35].
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The future of next-generation sequencing for resistance monitoring

Although there have been several technical innovations to improve NGS accuracy and 

precision, further modifications are still needed to simplify sample processing, NGS library 

preparation and bioinformatics analysis of sequences. Dried blood spot (DBS) technology is 

currently the WHO-recommended sample collection method in low–middle-income 

countries (LMIC) for plasma HIV-1 RNA and genotyping assays and has been shown to 

preserve specimens at ambient temperatures in sufficient quantities for population-based 

NGS on the 454 plat-form [12,36,37,38■]. There is potential, however, for improvements in 

DBS; for example, impregnating the filter paper with antioxidants and inhibitors of RNases 

to preserve HIV RNA templates [39]. Though novel blood storage devices such as 

HemaSpot (Spot On Sciences, Inc.; Austin, Texas, USA) [40] and Primestore Molecular 

Transport Media (Longhorn Vaccines and Diagnostics, LLC, Bethesda, Maryland, USA) 

[41] have improved recovery of HIV nucleic acids over DBS, their cost is too high for 

widespread use in LMIC. Additional advances in sample throughput could be accomplished 

by automated sample extraction (e.g. Abbott m2000sp, Abbott Molecular, Des Plaines, 

Illinois, USA) or by replacing laborious sample preparation steps with liquid-handling 

equipment. Adaptor ligation steps, necessary for sensitive and accurate allele detection by 

NGS [34,35], could be simplified with commercial adaptor ligation kits and automated 

liquid handling. Finally, PrimerID bioinformatics scripts that are required for data analysis 

could be integrated into an automated internet-accessible pipeline processing application. 

Overall, the future is promising for higher throughput, lower cost and automated NGS plat-

forms that will greatly increase accessibility of resistance monitoring for epidemiologic 

surveillance and patient management.

LIMITATIONS OF CURRENT ASSAYS FOR HIV CURE

The HIV reservoir consists of HIV-infected cells carrying intact (replication-competent) 

proviruses, which are the source of rebounding virus after ART interruption. HIV reservoir 

assays attempt to either directly quantify intact proviruses or indirectly measure a biomarker 

that is strongly correlated with the viral reservoirs. The first major challenge of detecting 

reservoir cells is that they are very rare in peripheral blood or tissues in patients who 

initiated therapy early [42–44] or who have been on long-term suppressive therapy.

Although total HIV-1 DNA quantity correlates well with the number of infected cells [45], 

more than 90% of HIV-1 DNA is defective as a result of deletions, insertions, point 

mutations or apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 

(APOBEC)-mediated hypermutation [46■■]. Such defective proviruses accumulate rapidly 

after acute infection [46■■]. As a consequence, assays of total HIV-1 DNA grossly 

overestimate the size of the HIV reservoir (Fig. 1). By contrast, the gold standard cell 

culture-based quantitative viral outgrowth assay (QVOA), which is most specific for the HIV 

reservoir, underestimates the reservoir relative to intact proviral sequences by as much as 60-

fold because not all intact proviruses can be activated with a single round of cell activation 

[47]. Additional rounds of stimulation increases the yield but still only activate a small 

proportion of competent proviruses [48■]. Use of QVOA for assessing HIV reservoirs is 

also limited by large blood volume requirements, high-cost and low throughput. Simplified, 
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culture–based and inducible virus recovery assays are more practicable and sensitive than 

QVOA but do not detect replication-competent virus [49,50■]. Similarly, current assays to 

detect intact provirus that rely on limiting dilution PCR and sequencing have low throughput 

and limited sensitivity (Table 2).

RECENT DEVELOPMENTS THAT HAVE IMPROVED UPON HIV 

PERSISTENCE ASSAYS

Improvement in highly sensitive plasma HIV-1 RNA assays requires sufficiently large 

volume plasma processing, viral concentration and efficient exclusion of PCR inhibitors and 

detection of inhibition. This has enabled the detection of low-level viral persistence at levels 

of less than 1 copy per milliliter of plasma [51]. Similarly, for HIV-1 DNA detection, greater 

sampling through large blood volume draws or leukapheresis improves the chance of 

detecting rare HIV-infected cells, whereas the background human DNA signal can be 

reduced by purification of CD4+ cells or resting CD4+ memory cells [52■■].

Analytical improvements in HIV DNA/RNA detection

High HIV diversity contributes to reduced sensitivity by delaying the threshold cycle when 

primers or probes mismatch a viral template [53■■]. To address this, the choice of 

conserved genome targets in integrase [51], gag or the long terminal repeat (LTR) region 

have improved assay performance and the inclusion of more than one genome target in a 

multiplex assay has reduced the risk of mismatches to all targets [54,55]. Digitalization of 

PCR reactions into individual nanoliter or picoliter reactions, followed by detection of the 

number of positive reactions, has been reported to be more robust to primer mismatches [56] 

but has limited throughput and is prone to background signal that could be reduced by 

touchdown PCR [57].

An innovative approach combining the principles of quantitative PCR with digitalization is 

the use of real-time PCR with multiple replicates at the highest dilution. This is less prone to 

non-specific background and does not rely on the cycle threshold for the quantification of 

the highest dilutions [54].

Importance of postanalytical standardization of reporting

When reporting cure assay results, it is important to report the denominator of cells actually 

assayed [52■■]. This could be achieved by parallel quantification of a human reference 

gene, which controls for all assay steps.

NEW ASSAYS THAT WILL IMPROVE OUR UNDERSTANDING OF VIRAL 

PERSISTENCE AND IMPROVE MONITORING OF CURATIVE 

INTERVENTIONS

Advances in NGS, single cell and fractional expression assays, and assays of integrated 

provirus are providing new tools to characterize HIV reservoirs.
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Next-generation single genome sequencing

Improvements in PCR and NGS will result in higher throughput assays for intact provirus. 

DNA polymerases with improved processivity and proofreading (3′–5′ exonuclease 

activity) allows amplification of near–full-length amplicons, but when relying on multiple 

Sanger sequencing reactions, have limited throughput. Recent NGS platforms (e.g. Pacific 

Bio-sciences, Menlo Park, California, USA) have improved template read length that allows 

the sequencing of whole HIV genomes [58■■]. This high-throughput approach has the 

potential to characterize individual full-length viral genomes and determine which are intact. 

Viral templates must be diluted to one template per PCR reaction to avoid artifacts from 

recombination between multiple viral genomes, but this endpoint dilution limits throughput.

Single cell and fractional expression assays

Recently, a limiting dilution assay has been developed to quantify cellular RNA levels 

expressed by individual cells, showing that the reduction of cellular HIV RNA during 

successful ART is not due to a smaller proportion of infected cells expressing HIV RNA but 

due to a smaller fraction of cells expressing high levels of RNA [59■■]. New developments 

in single cell assays will soon allow the simultaneous investigation of different 

characteristics of a single cell: the cellular phenotype, HIV-1 DNA and mRNA expression 

and virion production. Sequencing at a single cellular level could also investigate whether 

individual genomes are intact or defective [60■].

Assays of integrated provirus

Two assays to detect HIV integration sites have been developed. The one HIV integration 

site loop amplification assay makes use of primers that have a random 3′ decamer tail and 

an LTR U5-specific 5′ region, which through several steps generates a stem-loop structure 

with a known HIV-1 LTR sequence in the stem region and unknown human genome 

sequence in the loop region. Limiting dilution PCR and sequencing of the individual 

integration sites allow the design of integration-site specific primers, which together with 

envelope specific primers allow amplification and sequencing of integration sites and HIV 

3′ LTR to envelope. Although elegant, this approach is very labor-intensive and requires 

multiple PCR and Sanger sequencing reactions [61]. The other integration site assay (ISA) 

approach involves random ultrasonic shearing of HIV-1 DNA, blunt-end ligation of PCR 

linkers and amplification of the integration sites with and HIV-1 LTR-specific and linker-

specific primer followed by a heminested PCR with another internal HIV-1-specific LTR-

specific and linker-specific primer that enriches for HIV integration sites. Integration sites 

are then characterized by high-throughput Illumina sequencing. This provides an efficient 

approach but the very short HIV-1 sequence does not allow the linkage of the human 

genome integration site with specific proviral species [62]. Current proviral ISAs are too 

insensitive to examine the effect of curative interventions on individual clones and therefore 

need further development. Future assays should also link full HIV genomes to their 

integration sites. This will likely be facilitated by long fragment PCR and newer NGS 

platforms that allow single read sequencing of whole HIV genomes [58■■] to investigate 

the survival and expansion of cells with specific integrated proviruses (Table 2). This 

capability will accelerate the understanding of whether experimental interventions affect 
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most cells containing intact proviruses or only a subset as a consequence of variation in host 

cell and proviral biology.

CONCLUSION

Population-based Sanger sequencing of HIV provided essential, initial insights into HIVDR 

and has been used for patient monitoring in well resourced settings, but recent advances in 

sample collection, automated sample processing and sequencing technologies are poised to 

greatly expand availability of resistance monitoring. Because low-frequency mutations have 

recently been shown to affect treatment outcome, NGS plat-forms offer the additional 

advantage of greater sensitivity than population sequencing for detection of minor viral 

variants.

Higher-throughput quantitative assays of proviral competence are a high priority to assess 

the effects of interventions on the HIV reservoir size. Recent developments in full-length 

sequencing show promise and could identify intact proviruses, but have limited throughput. 

Current assays for HIV integration sites have increased our understanding of clonal 

expansion as a key mechanism of HIV persistence but further assay refinements are needed 

to assess the impact of curative interventions on individual clonal populations of infected 

cells. Such assay refinements and other advances will undoubtedly occur and provide much 

greater insight into HIV reservoirs and the impact of interventions designed to achieve an 

HIV cure.
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KEY POINTS

• The shortcomings of current methods for HIV drug resistance testing limit 

global access to resistance monitoring.

• Next-generation sequencing technology has the potential to be adapted into a 

high-throughput, low-cost assay that will expand resistance testing to that 

needed for ‘Test and Treat’ and PrEP rollout programs.

• Advances in DNA polymerase enzymes and next-generation sequencing 

technologies are providing new tools to characterize HIV reservoirs.

• Improvements in the interpretation and throughput of sequencing assays for 

intact proviruses and clonal expansions of infected cells are needed before 

they can be applied to assess the impact of experimental interventions on HIV 

reservoirs.
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FIGURE 1. 
What do reservoir assays measure? QVOA, quantitative viral outgrowth assay; TILDA, 

tat/rev induced limiting dilution assay; TVR, total virus recovery assay [49].
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