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 Introduction 

 One of the major challenges facing clinicians in mod-
ern medicine is how to effectively manage an excessive 
host immune response to pathogenic insults such as sep-
sis. This is demonstrated by the fact that despite over half 
a century of research efforts, sepsis and its spectrum of 
diseases (severe sepsis and septic shock) are still a major 
problem in the clinic and a leading cause of mortality, 
particularly for the elderly and the immunocompromised 
 [1] . The incidence of sepsis has been on the rise over the 
past 4 decades, and this is predicted to continue as a result 
of an aging population, an increase in invasive medical 
procedures and the prevalence of chronic health issues. 
In the USA, between 1979 and 2000, the number of re-
ported cases of sepsis increased by nearly 9%  [2] . A more 
recent study for the period 2004–2009 reveals an approx-
imate 13% national increase in the incidence of severe 
sepsis  [3] . However, there is evidence that mortality from 
sepsis has decreased in recent years. A retrospective study 
of patients with severe sepsis in Australia and New Zea-
land revealed that between 2000 and 2012, mortality de-
creased from 35 to 18.4%  [4] . Other studies have also re-
ported a decrease in sepsis mortality  [5–7] . It must be 
stated that sepsis survivorship can still be associated with 
significant socioeconomic burden  [8, 9]  and research ef-
forts towards mitigating the impact of sepsis are still par-
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 In spite of over half a century of research, sepsis still consti-
tutes a major problem in health care delivery. Although ad-
vances in research have significantly increased our knowl-
edge of the pathogenesis of sepsis and resulted in better 
prognosis and improved survival outcome, sepsis still re-
mains a major challenge in modern medicine with an in-
crease in occurrence predicted and a huge socioeconomic 
burden. It is generally accepted that sepsis is due to an ini-
tial hyperinflammatory response. However, numerous ef-
forts aimed at targeting the proinflammatory cytokine net-
work have been largely unsuccessful and the search for 
novel potential therapeutic targets continues. Recent stud-
ies provide compelling evidence that dysregulated anti-in-
flammatory responses may also contribute to sepsis mortal-
ity. Our previous studies on the role of regulatory T cells and 
phosphoinositide 3-kinases in sepsis highlight immunolog-
ical approaches that could be explored for sepsis therapy. 
In this article, we review the current and emerging concepts 
in sepsis, highlight novel potential therapeutic targets and 
immunological approaches for sepsis treatment and pro-
pose a biphasic treatment approach for management of the 
condition.  © 2016 S. Karger AG, Basel 
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amount. Additionally, sepsis constitutes a huge financial 
burden on health care delivery, with an annual cost in 
excess of USD 20 billion  [10] . Thus, while decades of re-
search involving several clinical and experimental studies 
have thrown more light on sepsis, leading to better out-
comes, any increase in knowledge of the immune system 
provides an opportunity for the use of immunotherapy in 
sepsis management.

  In this review, we highlight the general concepts about 
sepsis and discuss current knowledge of several biological 
and immunological processes that contribute to sepsis. 
We discuss the possibilities of the translation of knowl-
edge from bench to bedside and the development of nov-
el strategies for the treatment of sepsis.

  Development of Concept 

 Sepsis is generally understood to indicate the presence 
of microbes or their toxins in the blood or tissues. This 
initial emphasis on the role of pathogens in the mecha-
nisms of sepsis resulted in decades of research on antibi-
otic therapies for the clinical management of the disease. 
Increased understanding of the nature of immune re-
sponses during infection led to a change in paradigm and 
the prevailing view that the host immune response plays 
a major role in the progression of sepsis  [11] . In 1991, the 
American College of Chest Physicians (ACCP) developed 
a set of recommendations and guidelines for the diagno-
sis and treatment of sepsis, and laid out strict definitions 
of terms associated with sepsis syndrome in order to fa-
cilitate easy diagnosis and treatment and aid in the inter-
pretation of the results of basic research and clinical trials 
 [12] . Sepsis was subsequently defined as a systemic re-
sponse to an insult. If this response occurred in the ab-
sence of infection, the condition was described as system-
ic inflammatory response syndrome (SIRS). Over the 
years, as the knowledge of the pathophysiology of sepsis 
increased and also based on several clinical observations, 
these definitions of sepsis and its spectrum of diseases 
have been found to be unspecific and in need of modifica-
tion. In 2001, the International Sepsis Definition Confer-
ence (ISDC) was convened, with the intention of chang-
ing the definition of sepsis and basing it on biomarkers. 
However, participants at the conference agreed that the 
use of biomarkers for sepsis diagnosis is premature, and 
opted to let the definition of sepsis by ACCP stand. How-
ever, for the ease of sepsis diagnosis, they provided a stag-
ing system for sepsis called PIRO that stratified patients 
on the basis of their predisposing conditions, the nature 

and extent of the insult (infection, in the case of sepsis), 
the nature and magnitude of the host response and the 
degree of accompanying organ dysfunction  [13] .

  A major problem in the diagnosis of sepsis is the lack 
of an adequate biomarker. The current criteria for the di-
agnosis of sepsis greatly lack specificity. For instance, the 
parameters, white blood cell (WBC) count and body tem-
perature, can be misleading as WBC count may be higher 
or lower than the recommended value and the high body 
temperature may not be due to infection. This makes the 
requirement for a highly reliable biomarker for sepsis di-
agnosis essential.

  An ideal biomarker should be able to accurately diag-
nose patients with sepsis. It should also be able to predict 
outcome, serve as a staging marker for the evaluation of 
disease severity, be relatively easy to measure, predict/
identify organ dysfunction, be economically feasible and 
possibly identify infecting organism. However, the het-
erogeneous and dynamic nature of sepsis has made the 
discovery of an adequate biomarker with a high degree of 
accuracy and sensitivity inherently difficult. Nearly 200 
sepsis biomarkers have been evaluated in different studies 
with limited success  [14] . This is not surprising since sci-
entists are faced with the onerous task of finding a spe-
cific marker for sepsis, which usually has an unspecific 
phenotype relative to other inflammatory conditions.

  The acute-phase protein, C-reactive protein (CRP), is 
a widely used marker for systemic inflammation and tis-
sue injury, and has been investigated as a biomarker for 
sepsis. It has been shown to be a good predictor for sepsis 
with sensitivity and specificity values of 98.5 and 75%, re-
spectively  [15] . It has also been shown to be able to dis-
tinguish between true bacteremia and contaminated 
blood cultures  [16] . Additionally, CRP is useful in the 
evaluation of the response of patients to sepsis treatment 
 [17]  and is a good predictor of sepsis mortality  [18] . Al-
though CRP alone is not sufficient for sepsis diagnosis, it 
is a better indicator of sepsis than WBC count and is a 
welcome addition to the treatment of sepsis patients.

  Recently, studies have shown that procalcitonin (PCT) 
is a better diagnostic marker for sepsis than CRP  [19] . 
PCT is a precursor peptide of calcitonin composed of 116 
amino acids and is produced by the C cells of the thyroid 
gland. Proteolytic cleavage of PCT gives rise to calcitonin 
 [20] . However, unlike calcitonin, PCT has a long half-life, 
which makes it a more desirable biomarker. Hohn et al. 
 [21]  showed that PCT is a good diagnostic marker for 
sepsis and that adherence to PCT protocol reduces the 
duration of antibiotic therapy. Other studies have shown 
that PCT is a good predictor of sepsis outcome  [22]  and 
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can be successfully used to rule out sepsis in the clinic 
 [23] . Conversely, Tang et al.  [24] , in their meta-analysis 
literature review, observed a low diagnostic performance 
for PCT and showed that PCT levels could not accurately 
differentiate sepsis from systemic inflammatory response 
syndrome. Nevertheless, the results obtained from stud-
ies on the use of PCT as a potential biomarker for sepsis 
are encouraging.

  Bioinformatics and the technology of ‘omics’ have 
great potential to identify a reliable biomarker for sepsis. 
Mickiewicz et al.  [25]  used nuclear magnetic resonance 
spectroscopy-based metabolomics for the diagnosis of 
pediatric septic shock. Although their data are compa-
rable to PCT measurement for sepsis diagnosis, they 
showed that their metabolomics approach was a better 
predictor of disease outcome. Kwon et al.  [26]  used pro-
teomics to analyze the secretome of endothelial cells fol-
lowing LPS stimulation and subsequently identified 
moesin and 19 new sepsis biomarker candidates. Nakada 
et al.  [27]  used bioinformatics approach to identify a sin-
gle nucleotide polymorphism on the  SVEP1  gene that is 
associated with increased sepsis mortality. More work is 
needed to identify a reliable biomarker for the diagnosis 
of sepsis. One that will be able to identify the different 
stages of sepsis (severe sepsis and septic shock) would be 
highly desirable. It may be that the use of multiple pa-
rameters instead of a single biomarker will lead to im-
proved accuracy and reliability, as shown by the work of 
Gibot et al.  [28] . In any case, biomarkers able to accu-
rately identify patients with sepsis are critical for the re-
duction of sepsis mortality.

  Pathogenesis of Sepsis 

 The normal immune response to pathogenic insult 
leads to the activation of host defense mechanisms to 
counter the pathogen and prevent colonization of the 
host by the microbe. This involves cellular activation, va-
sodilation, leukocyte recruitment and increased endothe-
lial permeability  [29, 30] . Simultaneously, there are feed-
back mechanisms that are in place to prevent overactiva-
tion of the host immune responses and ensure a return to 
homeostasis. Dysfunction in immune regulation can lead 
to an overwhelmingly high and mismatched immune re-
sponse, resulting in a sustained proinflammatory state, 
the end result of which is tissue injury and organ dysfunc-
tion  [31] . Immune dysfunction can also lead to a sus-
tained anti-inflammatory state of the immune system re-
sulting in anergy and immunosuppression  [32] .

  Microbes such as bacteria, fungi, viruses and parasites 
have distinct molecular components that trigger immune 
responses in the host. These molecular structures are 
commonly referred to as pathogen-associated molecular 
patterns (PAMPs) or microbial-associated molecular 
patterns (MAMPs) since they also occur in nonpathogen-
ic microbes  [33] . The detection of PAMPs by germ-line-
encoded pattern recognition receptors (PRRs) triggers 
the initiation of a cascade of host immune responses. 
Four classes of PRR have been described: (1) Toll-like re-
ceptors (TLRs), (2) nucleotide-oligomerization domain 
leucine-rich repeat proteins (NOD-LRR), (3) cytoplas-
mic caspase activation and recruiting domain helicases 
such as retinoic acid-inducible gene I-like helicases and 
(4) C-type lectin receptors expressed on dendritic and 
myeloid cells  [34, 35] . The most studied PRRs are the 
TLRs, which are expressed by a variety of innate immune 
cells including endothelial cells, macrophages, dendritic 
cells and monocytes. In the case of Gram-negative bacte-
rial infection, TLR4 recognizes lipopolysaccharide (LPS), 
an endotoxin found on the cell wall of Gram-negative 
bacteria. The recognition of LPS through TLR4 involves 
the interaction of several proteins including LPS-binding 
protein (LBP), CD14 and MD-2  [36] . MD-2 is noncova-
lently associated with TLR4, forming the TLR4/MD-2 re-
ceptor complex. The ligation of TLR4 by LPS leads to the 
activation of several intracellular signal transduction 
pathways involving hemodynamic changes, the recruit-
ment of leukocytes such as neutrophils and macrophages 
to the site of infection and the systemic release of cytokine 
mediators such as tumor necrosis factor (TNF), interleu-
kin (IL)-1, IL-6 and IL-8  [37, 38] . TNF and IL-1 induce 
vasodilation, facilitate the release of secondary mediators 
such as nitric oxide (NO), platelet activation factor (PAF), 
prostaglandins and leukotrienes as well as the activation 
of the complement system  [39, 40] . When there is an 
overwhelming immune response, these inflammatory 
mediators cause endothelial damage and capillary leak-
age. Cytokines also activate the coagulation pathway, 
leading to capillary microthrombi, tissue hypoperfusion 
and end-organ ischemia  [41] . The sustained and continu-
ous release of these proinflammatory mediators results in 
multiple organ dysfunction syndrome (MODS), as seen 
in severe sepsis, and eventually results in hypotension 
that leads to septic shock.

  In addition to the proinflammatory state initiated by 
the immune response to infection, anti-inflammatory 
mediators such as IL-4, IL-10 and transforming growth 
factor β (TGF-β) are also released to ensure that the im-
mune system returns to homeostasis. Initially, the roles of 
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these anti-inflammatory mediators in sepsis were ne-
glected. Accumulating evidence indicates that septic-
shock patients exhibit signs of immunosuppression  [32, 
42] . This is because homeostasis can only be achieved if 
anti-inflammatory mediators are released in optimal 
amounts. If these mediators are released in excess, they 
will dampen the host immune responses, leading to an 
inability to fight the infection. This phenomenon has 
been termed compensatory anti-inflammatory response 
syndrome (CARS)  [32] . IL-4 promotes Th2 cell respons-
es, inhibits Th1 cell activity and suppresses macrophage 
activity  [43] . IL-10 is a potent anti-inflammatory cyto-
kine and inhibits the cytokine activity of several immune 
cells  [43, 44] . TGF-β suppresses T and B cell proliferation 
and differentiation  [45, 46]  and limits the production of 
TNF and IL-1-induced NO production  [47] . The end re-
sult of a high anti-inflammatory response is a dampened 
immune state, which will lead to the inability to clear the 
infection and increase susceptibility to nosocomial or sec-
ondary infections.

  Sepsis is a systemic and dynamic syndrome, and 
knowledge about the mechanisms of disease progression 
is increasing over the years. In addition, the roles that cy-
tokines and inflammatory pathways play in sepsis patho-
genesis are gradually being elucidated  [48, 49] . The ap-
plication of bioinformatics and computerized mathemat-
ical models has also contributed to greater knowledge of 
the pathogenesis of sepsis  [27, 50] . It is hoped that these 
novel discoveries will tremendously improve the out-
come of the critically ill patient.

  Current research efforts are aimed at targeting impor-
tant steps in the host immune response to infection rath-
er than the pathogen itself. Nevertheless, research into 
sepsis treatment has been barely successful, with numer-
ous clinical trials in sepsis having failed and the task of 
developing adequate pharmacological intervention in 
sepsis proving to be Herculean. However, with the in-
crease in knowledge and advances in technology, it is 
hoped that more novel therapeutic interventions will lead 
to effective and efficient treatment of sepsis syndrome. 
Below, we discuss some potential therapeutic targets in 
sepsis.

  Targeting Inflammation 

 One of the earliest anti-inflammatory therapies against 
sepsis was the use of corticosteroids  [51] . However, after 
more than half a century of corticosteroid administra-
tion, its benefits to septic-shock patients have been re-

peatedly questioned, with some researchers arguing 
against its use  [52] . The use of corticosteroids in sepsis 
treatment is partly justified by the evidence of adrenal in-
sufficiency in sepsis patients  [53] , and numerous reports 
on experimental animal models of sepsis show that it is 
indeed beneficial  [54, 55] . In a randomized double-blind 
multi-center clinical trial, Annane et al.  [56]  showed that 
low-dose corticosteroids significantly reduced the risk of 
death in all patients with septic shock, especially those 
with relative adrenal insufficiency. This finding led to a 
much larger trial, the CORTICUS (Corticosteroid Ther-
apy of Septic Shock) trial. However, this trial failed to 
demonstrate any significant survival benefit of low-dose 
hydrocortisone therapy in patients with septic shock re-
gardless of whether they have relative adrenal insufficien-
cy  [57] . The failure of the trial further strengthened the 
pessimism associated with the administration of cortico-
steroids to patients with sepsis. Recently, Boonen et al. 
 [58]  showed that patients in the ICU have greater cortisol 
production, reduced cortisol metabolism and suppressed 
corticotropin response compared to control subjects. 
Their finding is significant because it shows that the daily 
administration of 200 mg of hydrocortisone as used by 
Annane et al.  [56]  and in the CORTICUS trial is 3 times 
too high and that critically ill patients have normal pro-
duction of cortisol. Hence, a low cortisol response to cor-
ticotropin stimulation does not necessarily mean adrenal 
insufficiency. The potential benefit of corticosteroid ad-
ministration to patients with sepsis is still of significant 
interest. The ADRENAL (Adjunctive Corticosteroid 
Treatment in Critically Ill Patients with Septic Shock) 
clinical trial is currently underway in Australia and New 
Zealand (clinicaltrials.gov identifier NCT01448109). A 
larger study like the ADRENAL trial may end up showing 
a benefit of corticosteroid administration to at least a se-
lect group of patients with sepsis.

  The understanding of the immunopathogenesis of 
sepsis led to the development of more anti-inflammatory 
therapies targeting specific proteins known to initiate 
and/or participate in the induction of inflammatory re-
sponse. LPS, the major component of the cell wall of 
Gram-negative bacteria, is one of the most potent activa-
tors of the immune system. The recognition of LPS 
through its interaction with the TLR4/MD2 complex trig-
gers the initial proinflammatory immune state in sepsis, 
and the inhibition of LPS-induced proinflammatory cy-
tokine production is protective in experimental sepsis 
 [59, 60] . Studies also show that an increased level of en-
dotoxin correlates with the severity of illness in sepsis 
 [61] . Hence, inhibition of LPS signaling is a veritable ap-
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proach to sepsis therapy. Indeed, blocking TLR4, the re-
ceptor for LPS, was found to be protective in animal mod-
els of sepsis  [62, 63] . The TLR4 small-molecule inhibitor, 
eritoran, was found to be protective in experimental hu-
man endotoxemia  [64, 65] , even though a recently con-
cluded randomized clinical trial found it to have no im-
pact on sepsis mortality  [66] .

  An alternative approach to inhibition of endotoxin 
signaling is to directly target the endotoxin itself. The an-
tibiotic, polymyxin B (PMXB), binds to endotoxin and 
neutralizes its activity  [67] . There is significant interest in 
the use of PMXB for sepsis treatment. However, intrave-
nous infusion of PMXB in humans leads to neurotoxicity 
and nephrotoxicity, thereby limiting its use. To circum-
vent this problem, a novel approach was developed 
whereby PMXB was adsorbed to polystyrene fibers to cre-
ate an extracorporeal direct hemoperfusion device – 
toraymyxin  [68] . Toraymyxin is currently available for 
the treatment of sepsis in Japan and Europe, and results 
have been encouraging. A review of the literature shows 
that direct hemoperfusion with PMXB fibers leads to an 
overall improvement in the clinical parameters of sepsis 
patients including mortality  [69] . A nonblinded random-
ized clinical trial of PMXB hemoperfusion (EUPHAS) 
showed improved hemodynamics, decreased organ dys-
function and reduced 28-day mortality in patients with 
severe sepsis and/or septic shock from intra-abdominal 
Gram-negative bacterial infections  [70] . A much larger, 
blinded trial of PMXB hemoperfusion in septic-shock pa-
tients (EUPHRATES) is currently ongoing in North 
America  [71] . Since Gram-negative bacterial infections 
are the major cause of sepsis  [72] , endotoxin therapy 
holds promise for an improvement in outcome for pa-
tients with sepsis.

  Recently, there is interest in the manipulation of the 
immune response to enable the clearance of pathogenic 
lipids like LPS by the immune system. Upon interaction 
with transfer proteins like LPS-binding protein (LBP), 
LPS is first sequestered in high-density lipoproteins 
(HDL) and then transferred to low-density lipoproteins 
(LDL) for clearance by hepatic cells  [73, 74] . The interac-
tion of LPS with lipoproteins is significant because this 
leads to LPS inactivation and the subsequent suppression 
of the inflammatory response  [75] . Therefore, increasing 
LPS sequestration and inactivation by lipoproteins is a 
reasonable approach for the treatment of Gram-negative 
infections. The proprotein convertase, subtilisin/kexin 
type 9 (PCSK9), is a regulatory molecule that inhibits the 
clearance of endogenous lipids from the blood. PCSK9 
binds to LDL receptor (LDLR) on hepatic cells, thereby 

promoting its internalization and lysosomal degradation 
as well as preventing its recycling to the cell surface  [76] . 
Hence, PCSK9 activity decreases LDL clearance and in-
creases the levels of LDL cholesterol in the plasma. In line 
with this, gain-of-function of the  PCSK9  gene is associ-
ated with an increased risk of cardiovascular disease and 
myocardial infarction  [77] . These observations led to the 
development of PCSK9 inhibitors, which increase LDL 
clearance and reduce the risk of cardiovascular disease 
 [78] . Since the processes of elimination of endogenous 
lipids and pathogen lipids are similar, it is possible that 
inhibition of PCSK9 activity will be beneficial to patients 
with sepsis. Indeed, Walley et al.  [79]  showed that mice 
lacking PCSK9 activity showed a diminished inflamma-
tory response to LPS and increased LPS clearance. They 
also showed that in patients with septic shock, loss-of-
function variants of the  PCSK9  gene were associated with 
decreased cardiovascular dysfunction and mortality. 
More studies are needed to ascertain the benefit of inhibi-
tion of PCSK9 activity in patients with sepsis. It is worthy 
of note that the inhibition of PCSK9 activity holds prom-
ise, not only for patients with Gram-negative bacterial in-
fections, but also for patients with Gram-positive bacte-
rial infections and fungal infections.

  The possibility of blocking cytokine activity was ini-
tially welcomed with excitement for its potential in sepsis 
therapy, but the excitement has gradually waned. For ex-
ample, TNF inhibitors have been effective as therapeutic 
anti-inflammatory agents and several TNF inhibitors 
have been approved by the US FDA for the treatment of 
rheumatoid arthritis, psoriatic arthritis and Crohn’s dis-
ease, resulting in market sales of over USD 13 billion dol-
lars in 2008  [80] . However, clinical trials of anti-TNF 
therapy in sepsis have not been successful  [81, 82] . In ad-
dition to anti-TNF therapy, several research efforts have 
been dedicated to investigating the potential of therapies 
targeting proinflammatory cytokines in sepsis. Recently, 
Weber et al.  [49]  reported on the role of IL-3 in sepsis and 
that IL-3 deficiency protects mice from sepsis. This adds 
to reports that blockade of high-mobility group box 1 
(HMGB1)  [83] , IL-17  [84] , IL-1  [85]  and many other cy-
tokines was protective in experimental models of sepsis. 
However, more than 40 clinical trials on anti-inflamma-
tory therapeutic agents have failed, implying a significant 
disconnect between experimental and clinical sepsis  [86] .

  Paradoxically, there is emerging interest in the use of 
the proinflammatory approach for sepsis treatment. Since 
many studies have shown that patients with sepsis exhib-
it signs of immune suppression, immune activation is 
therefore a veritable approach in sepsis therapy. The con-
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cept of endotoxin tolerance, which shows that pretreat-
ment with endotoxin leads to reduced mortality upon 
secondary lethal challenge, has been known since the 
1960s  [87] . The response of the immune cells of sepsis 
patients suggests that endotoxin tolerance occurs during 
sepsis. For example, studies have shown that monocytes 
from patients with sepsis are hyporesponsive and have a 
reduced expression of HLA-DR, which leads to a dimin-
ished antigen presentation ability  [88, 89] . Indeed, there 
is evidence of monocyte ‘reprogramming’ by endotoxin 
from a proinflammatory to an anti-inflammatory pheno-
type  [90, 91] . The concept of T cell exhaustion, whereby 
T cells exhibit diminished effector functions upon stimu-
lation, has also been reported in sepsis  [92, 93] . Addition-
ally, studies have shown that apoptosis of immune cells is 
a hallmark of sepsis and contributes to mortality  [94–96] . 
Further evidence of immune suppression in sepsis is 
demonstrated by the reactivation of latent viruses in pa-
tients with prolonged sepsis, a phenotype characteristic 
of a weakened immune state  [97] . These observations 
suggest that therapies aimed at boosting the immune re-
sponse may be beneficial for sepsis patients. Indeed, 
blocking apoptosis was shown to improve survival in ex-
perimental sepsis  [96, 98] . Other approaches to improve 
the immune response of patients with sepsis are discussed 
below.

  Immune Activation 

 There is compelling evidence showing that immune 
activation may be beneficial to sepsis patients. Indeed, 
studies have shown that it improves recovery from sepsis. 
For example, the cytokine IL-7, known to improve T cell 
expansion and proliferation and decrease lymphocyte 
apoptosis  [99, 100] , has been shown to be effective in re-
juvenating the immune system. IL-7 signals via the IL-7 
receptor (IL-7R) which consists of a heterodimer of IL-
7Rα (CD127) and the common cytokine receptor γ chain 
(γc; CD132)  [99] . T cells express IL-7Rα and defects in 
IL-7Rα abolish T cell development  [101] . Recombinant 
human IL-7 (rhIL-7) is currently being investigated in the 
clinic as a therapy for cancer and HIV with promising re-
sults  [100] . IL-7 has also been shown to have beneficial 
effects in human and animal model of sepsis. Unsinger et 
al.  [102]  showed that IL-7 therapy improved sepsis sur-
vival by decreasing lymphocyte apoptosis and improving 
lymphocyte effector functions such as proliferation and 
IFN-γ cytokine production. Venet et al.  [103]  showed 
that ex vivo stimulation with rhIL-7 also improved lym-

phocyte proliferation and IFN-γ cytokine production and 
increased expression of the antiapoptotic protein B cell 
lymphoma 2 (Bcl-2). Other studies have reported the 
benefit of IL-7 therapy in sepsis  [104, 105] .

  Granulocyte-macrophage colony stimulating factor 
(GM-CSF) is another cytokine that has been shown to 
hold promise for sepsis immunotherapy. It promotes the 
differentiation of granulocytes and monocytes from stem 
cells and thereby expands these populations of immune 
cells critical for fighting infection. In line with this, GM-
CSF therapy was able to restore macrophage activity after 
cecal ligation and puncture (CLP) in mice  [106] . In fact, 
a phase II clinical trial of GM-CSF was found to decrease 
the length of supportive care and length of stay in the ICU 
for sepsis patients  [107] .

  Another strategy to boost the immune response is the 
blockade of immune checkpoints. This involves block-
ing the activity of molecules that are known to down-
regulate the immune response. For example, antibodies 
against the inhibitory molecule, cytotoxic T-lympho-
cyte-associated antigen 4 (CTLA-4), is currently being 
used in cancer therapy  [108] . Recently, there is emerging 
interest in the inhibitory molecule programmed cell 
death protein 1 (PD-1) and its ligand (PD-L1). PD-1 is 
expressed on activated T cells while PD-L1 is expressed 
on antigen-presenting cells. Blockade of PD-1/PD-L1 
signaling has been shown to boost immune responses 
and increase the survival of cancer patients  [109] . It is 
anticipated that blockade of immune checkpoints in sep-
sis would be beneficial because, similar to cancer, pa-
tients with sepsis exhibit signs of suppressed immune 
function  [110] . Indeed, inhibition of PD-1 signaling has 
been attempted in experimental sepsis with encouraging 
results. Brahmamdam et al.  [111]  showed that inhibition 
of PD-1 signaling improves survival in murine CLP. 
Similarly, Chang et al.  [112]  showed that blockade of ei-
ther PD-1 or CTLA-4 improves survival in fungal sepsis. 
Clinical studies of the effect of PD-1 or CTLA-4 block-
ade will be useful to ascertain the benefit of this therapy 
for sepsis patients.

  Immune Activation versus Immune Suppression 

 Based on these observations, one may ask, which ap-
proach to sepsis treatment is most appropriate? Should 
the approach be to activate the immune system or to sup-
press it? We contend that either approach can be correct 
depending on the degree of disease progression. In this 
regard, an accurate biomarker and staging criteria for pa-
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tients with sepsis are essential. Patients in the early stage 
of sepsis may have their immune system tilted towards a 
proinflammatory state and will therefore require thera-
pies aimed at suppressing the immune response. On the 
contrary, patients in the later stages of sepsis may have a 
suppressed immune state and will require their immune 
system to be activated. Since sepsis is a heterogeneous and 
dynamic syndrome, it is expected that treatment should 
be case-specific. The failure of several clinical trials may 
be partly due to their use of similar criteria for the assess-
ment of individuals with divergent presentations.

  Additionally, blocking one cytokine may not be an ef-
fective clinical approach for sepsis. This is because there 
are several cytokines with redundant functions and ac-
tivities that contribute to a network of inflammatory sig-
nals involved in the pathogenesis of sepsis. As a result, 
eliminating the effects of one cytokine hardly abolishes 
the effects of numerous others involved in the process. In 
this regard, modulating biological pathways like the phos-
phoinositide 3-kinase (PI3K) pathway or directly utiliz-
ing a subpopulation of immune cells like regulatory T 
cells (Tregs) may be more beneficial in sepsis therapy. 
These are discussed in greater detail below.

  We propose a 2-phase treatment of sepsis, i.e. the sup-
pression-activation approach ( fig. 1 ). The first phase in-
volves the reduction of the initial hyperinflammatory re-
sponse by targeting the essential elements involved in this 
process. Indeed, success may be obtained in this phase 
and recovery achieved. If that is not the case and the pa-
tient shows considerable progress to severe sepsis, anti-
inflammatory therapy should be discontinued and factors 
involved in immune suppression should be targeted, with 
the aim of activating the host immune responses. The use 
of biomarkers for the identification of patients in a par-
ticular phase will be highly beneficial.

  The Role of Regulatory T Cells 

 CD4+ T cells that constitutively express CD25 and the 
transcription factor Foxp3 have been described as natural 
Tregs. These cells are generated in the thymus through 
the altered negative selection of self-peptides and play a 
major role in the maintenance of peripheral tolerance to 
self- and foreign antigens  [113, 114] . The suppressive na-
ture of Tregs has been described both in vivo and in vitro; 
they play a critical role in regulating the pathogenesis of 
several autoimmune diseases  [115] . An increase in the 
frequency of Tregs has been reported in clinical and in 
animal models of sepsis  [116, 117] . However, whether 
Tregs play a protective role in sepsis by downregulating 
inflammation or whether they contribute to immune dys-
function by suppressing effector T cells is unclear  [118] . 
Scumpia et al.  [119]  reported that inhibition of Treg activ-
ity either by antibody depletion or genetic ablation has no 
effect on sepsis-associated mortality. Carrigan et al.  [120] 
 reported that antibody depletion of Tregs had no effect 
on acute lung infection caused by  Pseudomonas aerugi-
nosa . Additionally, several studies have demonstrated 
that Tregs contribute to immune suppression in sepsis 
and that the inhibition of Treg activity may be beneficial 
in sepsis  [117, 121, 122] . Conversely, Heuer et al.  [123]  
reported that the adoptive transfer of in vitro stimulated 
Tregs increased bacterial clearance and improved surviv-
al in a murine CLP model of sepsis, thereby demonstrat-
ing the beneficial role of Tregs in a clinically relevant 
model of sepsis. Cambos et al.  [124]  showed that Tregs 
help to control excessive inflammation in lethal  Plasmo-
dium chabaudi adami  infection, in which mortality is as-
sociated with a systemic inflammatory response. In line 
with the observation of Heuer et al.  [123] , our laboratory 
recently showed that the immunological or genetic inhi-

Therapies:
anti-inflammatory treatment
antibiotic treatment
anticoagulation
Treg activation

Therapies:
immune activation: IFN- , IL-12, GM-CSF
 IL-7, PD-1/PD-L1 inhibition
Treg inhibition

Phase I: cytokine secretion Phase II: anergy/immune paralysis

Homeostasis

  Fig. 1.  Different phases of sepsis require 
different therapeutic approaches: phase I is 
identified as the cytokine secretion phase 
and phase II is the immune paralysis phase. 
Suggested therapies are outlined in each 
given phase. 

Co
lo

r v
er

si
on

 a
va

ila
bl

e 
on

lin
e

http://dx.doi.org/10.1159%2F000442469


 Management of Sepsis in Critical Care 
Medicine 

 J Innate Immun 2016;8:156–170 
DOI: 10.1159/000442469

163

bition of Treg function, using an anti-CD25 monoclonal 
antibody treatment or mice lacking functional Tregs 
(CD25 KO mice), respectively, was detrimental in a sepsis 
model of bacterial infection or LPS-induced acute inflam-
matory response  [125] . This was accompanied by exag-
gerated production of proinflammatory cytokines in-
cluding IL-1β, IL-6, IL-12, TNF and CCL2. Strikingly, 
adoptive transfer of Tregs into CD25 KO mice before LPS 
challenge rescues mice from death  [125] . Furthermore, 
we demonstrated the mechanism by which Tregs regulate 
inflammation during sepsis. We showed that effector 
CD4+ T cells respond to LPS and that Tregs regulate the 
magnitude of response of effector CD4+ T cells to LPS 
 [126] . In the absence of Tregs, effector CD4+ T cells be-
come hyperresponsive to LPS and robustly activate mac-
rophages, leading to the excessive production of proin-
flammatory cytokines, SIRS and death  [126] . Collectively, 
our results indicate that, in the absence of adequate Treg 
function, effector CD4+ T cells exhibit increased cellular 

activity in response to LPS. This increased effector T cell 
activity leads to the exuberant activation of other immune 
cells such as macrophages, resulting in excessive inflam-
matory response, organ damage and mortality  [126]  
( fig. 2 ).

  One important implication of our work is the potential 
for using Tregs in the clinical management of sepsis. We 
showed that adoptive transfer of Tregs rescued mice from 
LPS-induced mortality  [125] . Treg therapy has also been 
established in animal models of several immune-mediat-
ed inflammatory diseases like type 1 diabetes  [127]  and 
graft-versus-host disease (GVHD)  [128] . Recently, Treg 
therapy has found its application in the clinic. Di Ianni et 
al.  [129]  performed the first human Treg infusion therapy 
for the prevention of GVHD in patients with HLA-un-
matched donors in bone marrow transplantation. Similar 
work has also been reported by Brunstein et al.  [130] . The 
use of Treg therapy for clinical sepsis is foreseeable in the 
future, particularly in the early stages of sepsis when ex-
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  Fig. 2.  Regulation of effector CD4+ T (Th) cell response to LPS by 
Tregs. Both Tregs and Th cells express TLR4 and respond to LPS, 
leading to their activation and proliferation. In the presence of ad-
equate Treg function, the proliferative capacity of Th cells is con-
trolled and their ability to activate macrophages is properly regu-

lated, leading to the resolution of infection. However, reduction in 
Treg function (due to either Treg depletion or genetic ablation) 
allows excessive and unrestrained activation and proliferation of 
Th cells and the subsequent hyperactivation of macrophages, lead-
ing to cytokine storm, organ failure and death. 
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cessive inflammation is a major concern ( fig. 1 ). A rea-
sonable approach will be to screen for markers associated 
with immune suppression, e.g. monocyte HLA-DR ex-
pression, and thereby identify patients who may benefit 
from Treg therapy. More work is needed to establish the 
role of Tregs in the pathogenesis of sepsis and septic 
shock and the possible therapeutic approaches involving 
Tregs in sepsis.

  The Role of PI3Ks 

 PI3Ks are family of lipid kinases that have the unique 
ability to phosphorylate the 3 ′ -hydroxyl group of phos-
phatidylinositol and phosphoinositides, leading to the ac-
tivation of signaling pathways associated with numerous 
cell functions such as growth, differentiation, prolifera-
tion, motility, metabolism, trafficking and survival  [131, 
132] . PI3Ks are classified into 3 groups (classes I–III) 
based on their substrate specificity and sequence homol-
ogy. Class I PI3Ks are the most studied and are further 
subdivided into class IA and class IB. Class IA PI3K is a 
heterodimer that consists of a p85 regulatory subunit and 
1 of the 3 p110 catalytic subunits (p110α, p110β and 
p110δ). The first 2 isoforms (p110α and p110β) are ex-
pressed in all cells, while p110δ is primarily expressed in 

leukocytes. Class IB PI3K is also a heterodimer that con-
sists of a p101 regulatory subunit and p110 catalytic sub-
unit (p110γ)  [132, 133] . The PI3K signaling pathway has 
been implicated in inflammation and sepsis. Studies have 
shown that PI3K signaling plays a protective role in sepsis 
and that inhibition of PI3K signaling increases mortality 
in experimental sepsis  [134–136] . However, it must be 
stressed that most of these studies used pharmacological 
agents that globally inhibit PI3K signaling. Studies using 
specific inhibitors of PI3K isoforms will be more benefi-
cial in providing insight into the role of the individual 
isoforms of PI3K in the pathogenesis of sepsis. Ong et al. 
 [137]  showed that genetic deletion of the p110γ isoform 
of PI3K leads to increased infiltration of polymorphonu-
clear leukocytes in the lungs during sepsis, which contrib-
utes to sepsis-induced organ damage. Conversely, Martin 
et al.  [138]  showed that inhibition of p110γ activity im-
proves survival in sepsis. Unpublished data from our lab 
show that inhibition of p110δ activity leads to increased 
neutrophil activity and enhances mortality in sepsis. In-
terestingly, mice with an inactivating knock-in mutation 
in the p110δ gene (p110δ KI) have impaired function and 
dramatically fewer numbers of Tregs  [139] . Since Tregs 
have been shown to be beneficial in sepsis  [123–126] , it is 
conceivable that the enhanced susceptibility of p110δ KI 
mice might be related to this impaired function and re-

 Table 1.  Novel potential therapeutic agents for sepsis

Effector Target Reference

Macrophage migration inhibitory factor (MIF) antagonist MIF [147]
Complement factor C5a antagonist C5a [148]
Sphingosine kinase 1 antagonist (SphK1) SphK1 [149]
[3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole] guanylyl cyclase [150]
Statins pleiotropic [151]
Farnesyltransferase inhibitor farnesyltransferase [152]
Heparin apolipoprotein E [153]
Transient receptor protein melastatin 4 (TRPM4) antagonist TRPM4 [154]
(S)-1-(α-naphthylmethyl)-6,7-dihydroxy-1,2,3,4-
tetrahydroisoquinoline

pleiotropic [155]

CD24-SiglecG interaction inhibitor CD24-SiglecG interaction [156]
Gelsolin inflammatory signaling [157]
C1-esterase inhibitor pleiotropic [158]
Sildenafil cyclic guanosine monophosphate-specific phospho-

diesterase type 5
[159]

Tie2 agonist endothelium tie 2 [160]
Protocatechuic aldehyde inflammatory signaling [161]
Endotoxin absorber endotoxin [162]
PD-1/PD-L1 inhibitor PD-1/PD-L1 interaction [111]
PCSK9 inhibitor PCSK9 [79]
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duced Treg numbers. Indeed, we found that adoptive 
transfer of wild-type Tregs into p110δ KI mice rescued 
them from lethal LPS challenge. Since PI3K signaling is 
involved in several cellular processes that are important 
in the pathogenesis of sepsis, modulation of this pathway 
may be a potential therapeutic strategy for sepsis.

  Conclusion 

 Several novel potential targets for sepsis treatment 
have been reported in the literature and intensive re-
search efforts signal hope for sepsis treatment in the fu-
ture ( table 1 ). It is expected that these novel discoveries 
will be effectively translated for the treatment of critically 
ill patients. Since sepsis is a dynamic and heterogeneous 
condition, a single therapeutic target may not be feasible. 
A combinatorial approach, in which several aspects of the 
disease are targeted, might be of more benefit to patients. 
More importantly, as our knowledge of the pathogenesis 
of sepsis increases, approaches toward successful treat-
ment should be modified. Several therapies for sepsis fo-
cused on the control of the initial hyperinflammatory re-
sponse and resulted in limited success. The significance 
of the anti-inflammatory response that follows the initial 
inflammatory response in sepsis was hitherto ignored, 
but recent studies have shown that this could lead to a 
depressed immune state and contribute significantly to 
mortality in sepsis  [42] . In addition, the heterogeneity of 
sepsis patients has greatly contributed to the difficulty in 
translating research from bench to bedside  [140, 141] .

  Sepsis has been described as the graveyard for pharma-
ceutical companies, as a result of the failure of several 
clinical trials that were prompted by the encouraging re-
sults in animal models. One of the reasons for this is that 
animal models of sepsis do not adequately mimic the dis-

ease in humans  [142, 143] . The development of animal 
models that will effectively mimic the disease in humans 
is crucial for the success of future clinical trials and for the 
treatment of sepsis.

  A slight modification of the current treatment regimen 
may also be a reasonable approach to get the desired out-
come. For example, Barkhausen et al.  [144]  recently 
showed that selective inhibition of IL-6 was more benefi-
cial than its complete blockade. Immunotherapy is a rap-
idly emerging concept in sepsis treatment. Again, an ad-
equate staging system is essential for the characterization 
of the critically ill. In a hyperinflammatory immune state, 
immune cells like Tregs are essential to prevent endothe-
lial damage and aggressive immune response  [123–126] . 
In an immunosuppressive state, macrophage activation 
and therapies targeting suppressor mechanisms, like PD-
1, may be desirable  [112] .

  As our knowledge and understanding of the pathogen-
esis of sepsis increases, there is a bigger window for the 
discovery of therapeutic targets that will yield the desired 
result. Recently, systems biology is gaining traction as the 
method of choice for understanding the pathogenesis of 
diseases and for developing drugs. Its application in sep-
sis and trauma will be a welcome development. Indeed, 
some studies have applied systems biology in the mecha-
nistic profiling of sepsis. DNA microarrays and machine-
learning algorithms have been used to identify relevant 
pathways in the pathogenesis of sepsis  [145, 146] . In the 
future, it is expected that the menace of sepsis in intensive 
care medicine will be effectively curtailed.
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