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 CF Lung Disease 

 Cystic fibrosis (CF) lung disease, the most common 
inherited lethal disease in Caucasians  [1] , is characterized 
by an early  [2] , nonresolving  [3]  and harmful  [3, 4]  acti-
vation of the innate immune system. CF is caused by mu-
tations in the CF transmembrane conductance regulator 
 (CFTR)  gene, mainly expressed at the apical membrane 
of epithelial cells  [5] . However, besides  CFTR , other genes 
(‘modifier genes’) also appear to play a significant role in 
modulating lung disease severity and immune response 
 [6–9] , particularly genetic variants of transforming 
growth factor β1 (TGF-β1)  [10–12] , mannose-binding 
lectin (MBL2)  [13]  and interferon-related developmental 
regulator 1 (IFRD1)  [14, 15] . Exome sequencing has re-
vealed that the variants in dynactin protein, DCTN4, are 
linked with the chronic infections in CF  [16] . A more re-
cent meta-analysis  [17]  has identified 5 loci:  MUC4/
MUC20 ,  SLC9A3 ,  HLA Class II  and  AGTR2/SLC6A14  to 
be associated with the lung function in CF. Labenski et al. 
 [18]  have reported 2 cytokine receptor genes,  INFGR1  
and  IL1B , and a transcription factor, STAT3, which is as-
sociated with the basic  CFTR  defect as candidate modi-

 Key Words 

 Cystic fibrosis · Lung disease · Host defense · Immune 
response  · Neutrophils · Pattern recognition receptors · 
Toll-like receptor  

 Abstract 

 Cystic fibrosis (CF) lung disease is characterized by chronic 
infection and inflammation. The inflammatory response in 
CF is dominated by the activation of the innate immune sys-
tem. Bacteria and fungi represent the key pathogens chron-
ically colonizing the CF airways. In response, innate immune 
pattern recognition receptors, expressed by airway epithe-
lial and myeloid cells, sense the microbial threat and release 
chemoattractants to recruit large numbers of neutrophils 
into CF airways. However, neutrophils fail to efficiently clear 
the invading pathogens, but instead release harmful prote-
ases and oxidants and finally cause tissue injury. Here, we 
summarize and discuss current concepts and controversies 
in the field of innate immunity in CF lung disease, facing the 
ongoing questions of whether inflammation is good or bad 
in CF and how innate immune mechanisms could be har-
nessed therapeutically.  © 2016 S. Karger AG, Basel 
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fier genes in a study comparing F508del homozygous CF 
patient subsets. Some lesser-known genetic variations 
linked to CF lung disease are  EDNRA   [19] ,  IL-8   [20]  and 
 SERPINA1   [9] .

  Studies from regions with CF newborn screening indi-
cate that the innate immune system, as reflected proto-
typically by neutrophil products present in CF airway flu-
ids, is operative in infants with CF and predicts the later 
outcome of irreversible pulmonary disease  [2] . Based on 
these and other studies, innate immune cells have come 
into the focus of understanding and treating CF lung dis-
ease  [3] . Whilst there are several studies supporting the 
notion that unopposed neutrophil products, such as ex-
tracellular elastase, are detrimental for tissue integrity 
and innate immune cell receptors  [3, 21]  and can be used 
as noninvasive biomarkers for CF airway inflammation 
 [22, 23] , therapeutic approaches to dampen excessive 
neutrophilic inflammation in CF lung disease have re-
mained largely unsuccessful  [24] . Neutralizing neutro-
phil elastase (NE) by using antiproteases showed some 
effects in preclinical and clinical studies; however, the 
benefits for lung function are so far not convincing  [25] . 
Interfering with neutrophil recruitment through CXCR2 
antagonists was safe and showed anti-inflammatory po-
tential, yet no beneficial effects on lung function were 
found  [26] . As CF airways are chronically colonized with 
bacteria and fungi  [27] , completely abrogating neutrophil 
recruitment into the lung bears the inherent risk of un-
leashing bacterial and fungal infections. Collectively, in-
nate immune pathways are activated early in CF and seem 
to cause more harm than good within the pulmonary mi-
croenvironment; however, the therapeutic implications 
of these insights remain a matter of debate. To dissect the 
innate immune response in CF and develop future phar-
macotherapeutic strategies, we have composed this re-
view, embedded in a thematic CF series in the  Journal of 
Innate Immunity . 

  Current Controversies in Innate Immunity of CF Lung 

Disease 

 Innate immunity comprises both cellular and humor-
al factors. Here, we focus on the cellular components of 
innate immunity and their pathogenic, diagnostic and/or 
potentially therapeutic role in CF lung disease. However, 
before considering innate immune cells as pharmaco-
therapeutic targets, one must understand their activation 
and effector functionalities. Therefore, we start with sum-
marizing and discussing the mechanisms by which innate 

immune cells sense and are activated by CF pathogens. 
Based on this, we focus on the role of neutrophils, prob-
ably the key type of innate immune cell in CF lung dis-
ease, including their distinct innate immune receptor 
profiles and phenotypes in the proinflammatory CF air-
way microenvironment. Overall, our review should stir a 
discussion of the following controversies in the field:
  • Is inflammation good or bad in CF lung disease? The 

correlation between neutrophil activation and irre-
versible lung tissue remodeling (bronchiectasis)  [2]  
suggests a harmful role, but without functional neu-
trophils (as exemplified in patients with the primary 
immunodeficiency chronic granulomatous disease), 
we cannot efficiently defend against bacteria and fun-
gi. Consequently, dampening neutrophil activation 
would be reasonable, while completely abrogating 
neutrophil influx or function might be dangerous. 

 • How does harmful proinflammatory neutrophil acti-
vation in CF get dampened? Harmful unopposed neu-
trophil functions, such as unopposed protease release 
and neutrophil extracellular trap (NET) formation 
should be controlled, but how? Antiproteases show 
limited success so far, but studies are ongoing. NET 
formation still represents a controversial area  [28] . On 
the one hand, NETs can entrap pathogens and may 
therefore act beneficially. On the other hand, abun-
dant NETs, as found in CF airways, can obstruct the 
airway lumen and correlate with decreased lung func-
tion in CF patients  [29] . Recombinant DNase (Dor-
nase alfa) is clinically effective in CF patients by cleav-
ing DNA strands and facilitating airway mucus clear-
ance  [30] . A recent study suggested that the majority 
of extracellular DNA in CF airways is derived from 
NETs  [31] . Thus, the clinical effectiveness of recombi-
nant DNase might support the concept that the preva-
lence of NETs causes more harm than good in CF lung 
disease. However, DNases cleave extracellular DNA 
and do not prevent de novo NET generation or release. 
Approaches how to target NET generation may in-
volve interfering with reactive oxygen species (ROS) 
or MAPK, which have been found important for NET 
formation  [32, 33] . Studies comparing the effect of in-
hibiting intracellular NET generation versus cleaving 
free extracellular DNA strands would shed more light 
on the kinetics and dynamics of NET-pathogen inter-
actions in lung disease and beyond. Alternatively, spe-
cific neutrophil phenotypes, such as olfactomedin-4- 
or CD177-expressing neutrophil subsets, could be tar-
geted  [28] . Their functional role and CF disease 
relevance remains to be defined.  
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 • When should inflammation be targeted? At first 
glance, the earlier, the better, in order to prevent in-
flammation-associated tissue damage and avoid irre-
versible pulmonary tissue remodeling as soon as pos-
sible in the course of disease. On the other hand, neu-
trophils could be essential in early host-pathogen 
interactions by restricting airway pathogen coloniza-
tion in the first years of life, when the airways are in-
tensively exposed to environmental microbes and vac-
cinations are performed. Further investigations into 
CF lung disease are required to define the time win-
dows when inflammation could be targeted safely 
without significantly impairing the protective innate 
immune defenses.  

 Innate Immune Activation in CF Lung Disease 

 Sensitive microbial detection mechanisms as well as 
tailored immune responses are required to efficiently 
protect the host from pathogens. Simultaneously, inflam-
mation has to be tightly controlled and limited to avoid 
overshooting immune responses and collateral tissue in-
jury. In 1989, Janeway  [34]  proposed the pattern recogni-
tion theory, stating that the microbial presence is sensed 
by the host innate immune system through the detection 
of distinct molecular structures called pathogen-associat-
ed molecular patterns (PAMPs) that are expressed by the 
pathogen but are absent in the host. To sense the presence 
of microorganism, the cells of the immune system possess 
germline-encoded pattern recognition receptors (PRRs) 
with 4 different families having been currently identified. 
These families include transmembrane proteins such as 
Toll-like receptors (TLRs) and C-type lectin receptors 
(CLRs) as well as cytoplasmic proteins such as the reti-
noic acid-inducible gene  (RIG) -I-like receptors (RLRs) 
and NOD-like receptors (NLRs). Apart from PAMPs, 
PRRs also recognize host-derived patterns/molecules, 
termed damage- or danger-associated molecular patterns 
(DAMPs).

  CF lung disease is mainly characterized by bacterial 
and fungal colonization and infection. Therefore, in the 
sections below, we will focus on these 2 microbial entities 
and the corresponding innate immune responses. 

  Bacterial Recognition: TLRs 
 The main bacteria commonly identified in CF lungs 

in early disease/infancy are  Staphylococcus aureus  and 
 Haemophilus influenzae , followed in adolescence and 
adulthood by the major CF pathogen  Pseudomonas ae-

ruginosa . However, beyond these ‘classical’ CF bacteria, 
microbiome studies indicate that a much broader variety 
of bacterial species, including anaerobes, colonize CF air-
ways  [35–37] . TLRs are the main innate immune recep-
tors (PRRs) to sense bacteria. Ten and 12 TLRs have been 
identified in humans and mice, respectively, and TLR1–
9 are conserved in both species  [38] . The PRRs respon-
sible for the recognition of  P. aeruginosa  in CF lung dis-
ease are TLRs, Asialo-GM1 receptors  [39]  and the 
NLRC4/IPAF inflammasome  [40] . TLR2, TLR4, TLR5 
and/or TLR9 have been reported to sense  P. aeruginosa  
 [41] . The bacteria-derived ligands known to bind TLR2 
are lipoproteins, components of the extracellular capsule 
and secreted toxin, ExoS, with C-terminal-specific inter-
action  [42–44]  .  Reports have shown a role for TLR2 in 
the recognition of mannuronic acid polymer, a major 
component of the alginate capsule and slime GLP, pro-
duced by mucoid and nonmucoid strains of  P. aerugi-
nosa   [45, 46] . Lipopolysaccharide (LPS) is mainly sensed 
through TLR4 and, after recognition, the TLR4/LPS 
complex is rapidly endocytosed and trafficked for lyso-
somal degradation in order to terminate further inflam-
matory cascades  [47] . The lipid A component of LPS li-
gates TLR4, inducing a potent immune response  [48] , 
with the hexacyclated form being a strong activator of 
TLR4-mediated signaling in humans  [49] . Hexacylated 
lipid A is often produced by bacterial strains adapted to 
the chronic CF microenvironment  [50, 51] , leading to 
escape from the host antimicrobial peptides and in-
creased recognition by human TLR4. In contrast to this 
structural peculiarity, a recent study by Di Lorenzo et al. 
 [52]  sheds new light on the activation mechanism of 
TLR4/MD2 complex by penta-acylated lipid A produced 
by the CF isolates of  Burkholderia cenocepacia.  TLR5 
specifically binds to flagellin, a primary constituent of 
flagella important for microbial motility  [53] . However, 
the correlation between bacterial motility and immune 
evasion by  P. aeruginosa  remains controversial  [54] . An 
in vivo study highlighted the proinflammatory role of 
flagellin-mediated TLR5 activation  [55] . Descamps et al. 
 [56]  reported that TLR5, rather than TLR4, is essential 
for bacterial phagocytosis and killing by murine alveolar 
macrophages (AMs) in vitro and in vivo. The authors 
also demonstrated that nonflagellated  P. aeruginosa  or 
mutants defective in TLR5 activation are resistant to AM 
clearing, which is dependent on TLR5 signaling and IL-
1β production. The intracellular function of TLR9 is 
characterized by detection of unmethylated CpG motifs 
in bacterial DNA  [57, 58] . Synergistic effects of TLR2, 
TLR6 and TLR9 have been reported using in vivo studies 
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 [59] . Further studies report a resistant phenotype of 
TLR9 –/–  mice to  P. aeruginosa  infection compared to 
wild-type mice  [60] . These unexpected findings are at-
tributed to increased airways cytokine production lead-
ing to effective bacterial clearance in the lungs of the 
TLR9 –/–  mice. 

  The NLRC4 and NLRP3 Inflammasomes 
 NLRs are cytosolic proteins that respond to a variety 

of ligands, from bacterial and viral components to par-
ticulate matter and crystals. The mammalian NLR fam-
ily comprises >20 members, containing a C-terminal leu-
cine-rich repeat domain, a central nucleotide-binding 
NACHT domain and an N-terminal protein-protein in-
teraction domain composed of a caspase activation and 
recruitment domain (CARD) or Pyrin domain  [61–63] . 
The transmembrane secretion systems of intracellular 
pathogens or bacteria serve as cytosolic microbe-associ-
ated molecular patterns (MAMPs) that may interact with 
NLRs  [64–66] . Regarding human pulmonary pathogens, 
NLRC4 and NLRP3 are the 2 most widely studied NLRs 
that orchestrate immune responses  [67–69] . In addition 
to TLR5, bacterial flagellin is sensed by NLRC4  [70, 71] . 
Sutterwala et al.  [40]  have further described that NLRC4 
triggers the activation of the inflammasome upon infec-
tion with  P. aeruginosa , resulting   in macrophage cell 
death and the secretion of the proinflammatory cyto-
kines, IL-1β and IL-18. This activation cascade was 
shown to be IPAF-dependent, but flagellin-independent. 
Moreover, in vivo studies revealed an increased suscep-
tibility of NLRC4-deficient mice against  P. aeruginosa  
infection  [72] . In addition to  Pseudomonas , other Gram-
negative bacteria, such as  Salmonella ,  Legionella  and  Shi-
gella , have also been found to activate the NLRC4 inflam-
masome  [73–75] . In a recent study, the role of NLRP3 
inflammasome activation in the CF lung has been de-
scribed in association with elevated levels of ceramide 
 [76] . The authors demonstrated an upregulation and re-
cruitment of the adapter protein apoptosis-associated 
speck-like protein (ASC) and caspase-1 in the lungs of 
CF mice. The activation of NLRP3 is characterized by a 
canonical two-step deubiquitination mechanism that is 
initiated by priming through TLR signaling (e.g. TLR4), 
inducing NF-κB-dependent NLRP3 protein synthesis, 
followed by a second signal leading to full NLRP3 inflam-
masome assembly  [77] . In CF airway epithelial cells,  P. 
aeruginosa  infection has been shown to trigger mito-
chondrial dysfunction and enhance mitochondrial Ca 2+  
uptake, leading to NLRP3 inflammasome activation  [78, 
79] . 

  Fungal Recognition 
 With constant inhalation of fungal spores, the human 

airway immune system has evolved a plethora of fine-
tuned defense mechanisms for effective fungal clearance, 
involving, mainly, AM, neutrophils and antimicrobial 
peptides  [80–85] . With ageing and more intensified an-
tibiotic treatments, prevalence rates of fungal coloniza-
tion increase in CF lung disease, traditionally known to 
be mainly colonized by a bacterial community  [86–88] . 
The reported emerging rate of filamentous fungal spe-
cies, such as  Aspergillus fumigatus ,   in CF, is found to be 
most frequent; however, other important filamentous 
fungi including  Scedosporium  sp. and  Exophiala derma-
tiditis  have also been identified  [89, 90] . The sensitization 
of CF patients to the airway microenvironment presents 
a wide range of unresolved questions. However, previous 
reports have proposed a crucial role for dendritic cells 
and Th2-associated chemokines, like CCL17  [91] . Phago-
cytic cells play an essential role in protection against the 
fungal infections, and abrogation of these cells leads to 
increase susceptibility towards pathogens  [92] . The re-
ceptors involved in these processes include secreted fac-
tors such as pentraxin-3 (PTX3), C-type lectins, comple-
ment system and membrane PRRs such as TLRs  [93] . 
Previous reports have shown that  A. fumigatus  conidia 
are recognized by TLRs  [94, 95]  and β-glucan receptor 
dectin-1 on dendritic cells, AM and lung epithelial cells 
 [96, 97] . TLRs, in particular TLR2  [98, 99] , TLR4  [100, 
101]  or an interplay between TLR2, 4 and 9 via an MyD88-
dependent pathway  [96] , are described as playing an im-
portant role in the host immune response to  A. fumiga-
tus . The endocytic PRR dectin-1 is crucial in the recogni-
tion and internalization of specific morphotypes of  A. 
fumigatus  in AM  [102, 103] , and a novel mechanism of 
dectin-1 induction in human bronchial epithelial cells 
and its consequences for innate immune responses 
against  A. fumigatus  have been described by Sun et al. 
 [97] . Secreted receptor pentraxin PTX3 also plays an im-
portant role in the clearance of fungal burden in vivo af-
ter  A. fumigatus  pulmonary infection. PTX3 levels in a 
CF patient’s respiratory secretions and sputum samples  
were found to have decreased  [104] ; this could be one of 
the explanations for recurrent lung infections in CF 
lungs. Another study showed that a serum opsonin, H-
ficolin, modulates host immune response by binding to 
 A. fumigatus   [105]  .  The authors further showed that fol-
lowing pathogen recognition, there is an enhanced acti-
vation of the lectin complement pathway and fungal as-
sociation with lung epithelial cells. 
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  Innate Immune Cells 
 Airway epithelial cells form the first line of defense 

against microbial infections and serve as a central player 
in the mucociliary clearance of the lung. The key innate 
immune functions of the epithelium include (1) secretion 
of a variety of antimicrobial substances, (2) release of che-
mokines, cytokines and growth factors that mediate leu-
kocyte recruitment, (3) modulation of adaptive immu-
nity and (4) tissue repair and remodeling  [3, 106, 107] . 
Direct interaction between the CFTR protein and patho-
gens has been previously suggested, where CFTR serves 
as a receptor for  Salmonella typhi   [108]  and  P. aeruginosa  
 [109, 110]  when expressed on intestinal or airway epithe-
lial cells, respectively. Moreover,  A. fumigatus  spores are 
readily ingested by airway epithelial cells and the uptake 
and killing of conidia are both impaired in epithelial cells 
lacking CFTR  [111] . The bronchial epithelium has been 
previously shown to modulate its sensitivity towards mi-
crobial recognition by regulating receptor expression lev-
els  [112] . Upon pathogen recognition by specific PRRs, 
the activation of intracellular signaling cascades initiates 
proinflammatory and antimicrobial responses. Bacterial 
infection in CF can exacerbate lung inflammation by ex-
aggerating proinflammatory gene expression via TLR ac-
tivation in airway epithelial cells  [43] . In vitro   as   well as  
 in vivo studies have shown that excessive cytokine release 
upon  P. aeruginosa  exposure to CF airway epithelial cells 
is mainly mediated by TLR5/flagellin or TLR4/LPS inter-
actions  [113, 114] . In particular, intracellular TLR4 traf-
ficking seems to be dysregulated and attenuated in hu-
man CF airway epithelial cells compared to non-CF cells 
 [115–117] . Hyperresponsiveness of primary airway epi-
thelial cells to LPS, despite expressing normal levels of 
TLR4, has been attributed to the reduced surface expres-
sion of coreceptor CD14 and lower levels of the costimu-
latory molecule MD2  [118] . Conflicting studies have been 
reported regarding the localization of TLR5 on airway 
epithelial cells, with apical dominance on human and 
murine cells  [119–122]  and basolateral expression on po-
larized human nasal and bronchial epithelium  [123–125] . 
Specific cell source, modulation of culture conditions 
and/or specific stimuli might explain these discrepancies. 
A strong synergism between TLR2/PGN- and TLR4/LPS-
mediated IL-8 production and IL17A was found in hu-
man bronchial epithelial cell lines  [126] . Recently, geno-
typing of TLR polymorphisms revealed that CF airway 
epithelial cells are homozygous for TLR1 SNP 1602S and 
possess a diminished innate immune response towards 
 Mycobacterium abscessus  infection .   [127] . In a separate 
study, TLR SNPs were associated with CF lung function 

decline  [128] . A recent study  [129]  demonstrated that  S. 
aureus  filtrates inhibit  P. aeruginosa  filtrate-mediated 
IL-8 production. 

  The CF airways are characterized by a neutrophil-rich 
environment. Neutrophils have been mainly implicated 
in controlling bacterial and fungal infections, but can also 
lead to airway damage upon activation through the re-
lease of enzymes (proteases) and oxidants  [28] . Neutro-
phils are the first cell type recruited to the CF airway com-
partment. The recruitment of blood neutrophils into the 
airway compartment is mainly regulated through chemo-
kines, such as IL-8, and lipid-mediators, such as LTB 4 . 
The efficient antibacterial function of neutrophils in the 
CF airway micromilieu is impeded due to several mecha-
nisms, such as proteolytic damage of airway neutrophils, 
neutrophil cell death and bacterial/fungal biofilm forma-
tion that prevents phagocytosis  [3] . At the site of infec-
tion, neutrophils sense PAMPs or DAMPs via PRRs. Ex-
pression and functionality of TLRs in neutrophils have 
been studied in the context of CF lung disease. Collec-
tively, TLR2, TLR4 and TLR5 are suggested to be most 
essential for neutrophil- P. aeruginosa  interactions. CF 
airway neutrophils express remarkably high levels of 
TLR5, which correlates with lung function in CF patients 
 [130, 131] . In a separate study, TLR surface expression 
was investigated on circulating and induced sputum neu-
trophils in CF patients. Compared to healthy controls, 
decreased expression of TLR2 was detected on circulating 
neutrophils in CF patients  [132] . Furthermore, an inverse 
relationship between TNF-α serum levels and TLR2 sur-
face expression on circulating neutrophils has been de-
scribed  [130] . DAMPs such as proline-glycine-proline 
and high-mobility group box protein-1 (HMGB1) have 
been implicated in CF lung disease. A high concentration 
of these mediators is found in CF airways and they serve 
as neutrophil chemoattractants to drive lung inflamma-
tion  [133] . S100A12, a member of the S100/calgranulin 
family and a neutrophil-derived DAMP, was found in 
abundance in CF airway fluids leading to activation of 
downstream metabolic and stress pathways following 
neutrophil entry into CF airways  [134] .

  Novel Therapeutic Concepts 

 Despite a plethora of proinflammatory innate immune 
pathways having been studied and determined as playing 
a significant role in CF lung disease, therapeutic exploita-
tion of these pathomechanisms remains scarce. For a 
broader and more in-depth discussion of this aspect, we 
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refer to thematic review articles  [24, 135] . Ibuprofen rep-
resents a clinically available anti-inflammatory drug that 
has been shown to slow lung function decline in pediat-
ric/adolescent CF lung disease  [136–139] , but its broad 
clinical usage outside the USA is restricted by drug-mon-
itoring requirements. Correlations between lung func-
tion and inflammatory markers in CF airway fluids (neu-
trophil counts, IL-8 and NE) have been demonstrated in 
multicenter CF patient cohorts  [22] , suggesting that tar-
geting neutrophil-related products may be beneficial in 
CF lung disease. However, clinical studies aiming to neu-
tralize free NE activity in CF airways by the delivery of 
antiproteases, such as α-1 antitrypsin, showed modulated 
airway inflammation but failed to show convincing ef-
fects on lung function  [25] . In contrast, the use of the oral 
antioxidant  N -acetylcysteine, as a strategy to rebalance 
antioxidant deficiencies in CF, shows beneficial effects on 
lung function, but has no effect on neutrophilic inflam-
mation  [140] . Future studies are required to reconcile 
these findings and to further assess the therapeutic poten-
tial of antiprotease or antioxidant approaches in CF lung 

disease  [24, 141] . The antibiotic azithromycin is known 
to have anti-inflammatory effects. A clinical trial  [142]  
showed that azithromycin treatment reduced circulating 
neutrophil counts and systemic blood biomarkers, in-
cluding C-reactive protein, serum amyloid A and calpro-
tectin, and was correlated with the improvement in lung 
function and weight gain. Other anti-inflammatory ther-
apeutic approaches include sildenafil (phosphodiesterase 
inhibitor)  [143] , CXCR2 inhibition  [26]  and others less-
advanced ones that are not discussed here. Collectively, 
therapeutic interventions to dampen inflammation in CF 
remain an appealing yet challenging approach. 

  Conclusions and Outlook 

 There is broad consensus about the concept that the 
innate immune system is activated early and strongly in 
CF lung disease, leading to the continuous recruitment of 
neutrophils into CF airways  [3] . These neutrophils re-
lease proteases that cause harm to the host by degradation 

  Fig. 1.  Innate immune activation in CF airways. Due to continuous production of cytokines and chemokines, 
especially IL-8, neutrophils are recruited into the CF airways. Bacterial and fungal PAMPs and host-derived 
DAMPs further activate downstream signaling pathways through the activation of PRRs, and lead to enhanced 
cytokine and chemokine production. Infiltrated neutrophils release proteases and oxidants, resulting in perpetu-
ated inflammation and tissue injury. 
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of the pulmonary tissue and the immune receptors ( fig. 1 ). 
However, controversy exists as to whether the targeting 
of innate immune pathways, by neutrophil recruitment 
and/or activation, represents a promising strategy in CF 
lung disease. On the one hand, there are clear relation-
ships between neutrophil products, prototypical NE and 
decreased lung function  [22]  as well as bronchiectasis  [2] . 
On the other hand, targeting excessive proteolytic activi-
ties in CF has clinically not been successful so far. Inter-
fering with neutrophil recruitment through CXCR2 inhi-
bition represents a causative anti-inflammatory approach 
 [26] , but has also not shown any clinical benefits for lung 
function. Novel strategies to dampen innate immunity in 
CF in the future could involve anti-inflammatory pro-
resolution lipid mediator pathways, such as resolvins 
 [144] , and the endocannabinoid system  [145] . However, 
most of these pathways have mainly been assessed in 

acute lung inflammation models and not in chronic CF 
lung disease. Both preclinical and clinical studies are war-
ranted to evaluate these and other anti-inflammatory 
mechanisms in the context of CF lung disease.
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