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 Innate Immunity 

 The innate immune system is an evolutionarily con-
served host defense system with key features being shared 
between plants, invertebrates, and mammals  [1, 2] . In-
nate immune defenses in mammals encompass virtually 
all tissues, particularly barrier surfaces such as the skin or 
the mucosal surfaces of the respiratory and gastrointes-
tinal tract. Specialized myeloid and lymphoid sensor and 
effector cells  [3] , but also nonhematopoietic cells, can 
initiate and exert innate defense mechanisms and be-
come activated in response to tissue damage, infection, 
or genotoxic stress. The innate immune system can 
“sense” such situations through germline-encoded re-
ceptors (e.g. pattern recognition receptors [PRRs] such 
as toll-like receptors [TLRs]). Innate immune responses 
can be mediated through cell-dependent mechanisms 
(e.g. phagocytosis and cytotoxicity) or secreted factors, 
including antimicrobial peptides (AMPs)  [4–6] , comple-
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 Abstract 

 Innate immunity is a rapidly evolving field with novel cell 
types and molecular pathways being discovered and para-
digms changing continuously. Innate and adaptive immune 
responses are traditionally viewed as separate from each 
other, but emerging evidence suggests that they overlap 
and mutually interact. Recently discovered cell types, par-
ticularly innate lymphoid cells and myeloid-derived sup-
pressor cells, are gaining increasing attention. Here, we sum-
marize and highlight current concepts in the field, focusing 
on innate immune cells as well as the inflammasome and 
DNA sensing which appear to be critical for the activation 
and orchestration of innate immunity, and may provide nov-
el therapeutic opportunities for treating autoimmune, auto-
inflammatory, and infectious diseases. 
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ment factors  [7–9] , alarmins  [10, 11] , cytokines/chemo-
kines  [12] , chitinases/chitinase-like proteins  [13] , acute-
phase proteins, proteases, and other less-categorized 
molecules. Innate immune responses are typically rapid 
and can be triggered without the selective events that un-
derlie adaptive immunity, which is characterized by an-
tigen-specificity and immunological memory. In con-
trast, innate responses are traditionally described as lack-
ing in memory, and instead become activated gradually, 
depending on the PRR activation of the respective micro-
bial threat independent of previous exposure to patho-
gens. However, this paradigm has been recently chal-
lenged with the concept of “trained immunity”  [14] , and 
the demonstration of memory responses of natural killer 
(NK) cells and innate lymphoid cells (ILCs) [ 15–17 ; for 
a review, see  18 ]. At host-environment contact interfac-
es, such as the skin, the gut or the airways, microbial 
stimuli initially elicit the secretion of generic antimicro-
bial peptides (AMPs, such as defensins or cathelicidin/
LL-37) as well as organ-specific mediators (such as derm-
cidin for the skin  [19, 20] ). Innate immune PRRs, proto-
typically TLRs  [21, 22] , expressed by resident (epithelial) 
or recruited (hematopoietic) cells, sense pathogen-asso-
ciated molecular patterns (PAMPs) or, in the case of 
nonpathogenic microbes, more broadly termed “mi-
crobe-associated molecular patterns” (MAMPs), and 
trigger downstream effector programs. Besides TLRs, 
other innate PRRs include NOD-like receptors, comple-
ment receptors, scavenger receptors (e.g. CD36,
MARCO, SR-A, LOX-1, and dSR-C), intracellular nucle-
ic acid-sensing receptors (e.g. AIM2, MDA-5, RIG-I, and 
cyclic GMP-AMP synthetase [cGAS]) and C-type lectin 
receptors (CLRs, such as mannose-binding proteins, 
dectin-1, dectin-2, and DC-SIGN)  [23–27] . Upon micro-
bial exposure, these receptors induce the secretion of cy-
tokines and chemoattractants, such as IL-8 (CXCL8). At-
tracted by chemokine gradients, innate immune cells mi-
grate into the infected target organ  [28] . Chemokines 
recruit innate immune cells through cognate G-protein-
coupled chemokine receptors to sites of inflammation, 
and are termed according to their first cysteine residues 
into C, C-C, C-X-C, and CX 3 C chemokines, with C-C 
and C-X-C as the largest families  [12, 29] . Chemokines 
can be further classified as homeostatic and inflamma-
tory chemokines, depending on whether they play a role 
in basal homeostatic immune-cell trafficking or in in-
flammation. Neutrophils represent the earliest innate 
immune cells recruited to the site of inflammation 
through chemokine gradients, followed by monocytes 
and dendritic cells (DCs), which can then interact with 

tissue-resident myeloid and lymphoid cells. In this re-
view, we will provide an update on the key cell types of 
the innate immune system. In addition, we discuss the 
current concepts of the mechanisms of DNA sensing and 
the function of inflammasomes, which appear to be crit-
ical for the initiation and orchestration of multicellular 
innate immune responses.

  Innate Immune Cells 

 Innate immune cells comprise a broad and expanding 
range of myeloid and lymphoid cell types. Common to 
the majority of these cell types is that they originate from 
the hematopoietic system (with exceptions, e.g. epithelial 
cells), lack somatically recombined antigen-receptors and 
conventional immunological memory (see above and 
 [14] ), and exert antimicrobial or tissue-protective func-
tions. In the following section, we will review our current 
understanding of the development and functions of (i) 
neutrophils, (ii) macrophages, (iii) myeloid-derived sup-
pressor cells (MDSCs), and (iv) ILCs.

  Neutrophils 
 Traditionally, neutrophils are regarded as short-lived 

and terminally differentiated phagocytes without consid-
erable gene expression and lacking regulatory roles in 
adaptive immunity. However, these classical views of 
neutrophil biology and functions have recently been chal-
lenged by several observations in the field  [30] : (i) in vivo 
tracing in healthy volunteers revealed an average circula-
tory neutrophil lifespan of 5.4 days, at least 10 times lon-
ger than previously reported  [31] ; (ii) neutrophils were 
found to extrude their own nuclear or mitochondrial 
DNA as neutrophil extracellular traps (NETs), a phe-
nomenon termed “beneficial suicide”  [32] ; (iii) neutro-
phils can act as MDSCs  [33] , thereby suppressing adap-
tive T cell functionalities, such as T cell proliferation or 
cytokine production; (iv) neutrophils move in the inter-
stitial space in swarm-like formations  [34, 35] , and (v) 
neutrophil ageing is modulated by the gut microbiome 
 [36] . Collectively, these novel findings raise a variety of 
questions about neutrophil functions, heterogeneity, 
plasticity  [30] , and interspecies differences. 

  The fastest response of neutrophils to microbial expo-
sure is phagocytosis, which occurs within minutes and is 
frequently followed by phagocytosis-induced cell death. 
While opsonization and phagocytosis are primarily rele-
vant for the engulfment of smaller bacteria, larger mi-
crobes, including bacteria and fungi, elicit neutrophilic 
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granule release. Granule release occurs sequentially in 
neutrophils  [37] : first, secretory vesicles which contain 
surface receptors are mobilized, followed by the release of 
tertiary granules containing matrix metalloproteases to 
facilitate migration through the extracellular matrix. Sec-
ondary and primary granules are mainly extruded in re-
sponse to strong sterile or infectious stimuli leading to the 
release of AMPs and proteases that can degrade bacterial 
and fungal proteins efficiently. After prolonged pathogen 
contact, neutrophils undergo specific forms of cell death, 
including apoptosis, necroptosis, or NET formation  [38, 
39] . These distinct neutrophil fates shape the further pro-
cess of innate immune cell activation. 

  NET formation was initially described as an extracel-
lular form of antimicrobial host defense against bacteria 
 [40] . Emerging evidence indicates that the relevance of 
NETosis reaches far beyond microbial killing to autoim-
mune/rheumatic and autoinflammatory disease condi-
tions  [41–43] . NETs contain DNA, histones, and distinct 
granule proteins, which can be used as markers for NET 
formation. Several aspects of NETosis, however, remain 
enigmatic and are under controversial discussion in the 
field  [44] : (i) Are mainly nuclear or also mitochondrial 
NETs released?  [45]  (ii) Is NET formation another form 
of cell death, or is it, as recently suggested by mainly mu-
rine studies, also executed by living cells?  [46–48]  (iii) Do 
extruded NETs really kill microbes or just immobilize 
them? (iv) Besides microbial size  [49] , which criteria de-
termine whether neutrophils form NETs? 

  When viewing murine and human data in combina-
tion, the results obtained on NET formation seem to crit-
ically depend on the species as well as the assays and the 
quantitative read-outs used. Simply measuring free DNA 
is, however, unable to distinguish NET-derived DNA 
from necrosis-derived DNA. In vivo imaging studies are 
essential to understand the kinetics and biodistribution 
of neutrophils in the living body, but frequently lack high-
resolution proof of bona fide NET strands. Another layer 
of complexity is added by interspecies differences. While 
murine neutrophils were initially reported to generate 
NETs after a substantially longer period of stimulation 
compared to their human counterparts  [50] , recent stud-
ies on live-cell NET formation challenge this concept and 
suggest that neutrophils can simultaneously chemotax, 
perform NET formation and phagocytosis in a collabora-
tive manner  [47, 51] . When viewed in combination, the 
mechanisms underlying NET formation and the patho-
physiological relevance for human disease conditions re-
main complex and multifaceted and need to be defined in 
future studies.

  Macrophages  
 More than 100 years ago, the Nobel Prize laureate Elie 

Metchnikoff described macrophages as “the phagocytic 
component of the immune system.” In the last century, 
these cells were fundamental to the understanding of the 
basic principles of the innate immune response and host 
defense, with their canonical functions including the 
phagocytosis of microorganisms, the engulfment of ap-
optotic/dead cells, and the production of inflammatory 
cytokines. However, it is now well accepted that macro-
phages have several additional key functions. They con-
tinuously scan the tissue in which they reside, and 
actively participate in maintaining homeostasis and in-
tegrity  [52] . Due to this key role, it is not surprising that 
abnormal macrophage behavior has been implicated in 
the pathophysiology of several human disease conditions, 
including cancer, atherosclerosis, inflammatory bowel 
disease, rheumatoid arthritis, fibrosis, neurodegenerative 
disorders, and chronic inflammatory lung diseases (e.g. 
asthma, COPD, cystic fibrosis, and fibrosis)  [53–55] . The 
variety of plasma membrane and intracellular receptors 
expressed by distinct subsets of macrophages explains 
their capacity to sense the surrounding environment and 
respond promptly to environmental cues (e.g. MAMPs/
PAMPs/microorganisms, DAMPs, pH, and oxygen con-
centrations)  [52, 55] . Once activated, macrophages are 
armed with several mechanisms to negatively regulate the 
innate immune response, triggering anti-inflammatory 
pathways and facilitating the phagocytosis of apoptotic 
cells, events required to reestablish tissue homeostasis 
 [56, 57] . Furthermore, macrophages coordinate the stress 
response through crosstalk with other neighboring cell 
types in the surrounding tissue. Alveolar macrophages, 
for example, abundantly secrete cytokines, chemokines, 
and growth factors, as well as microvesicles containing 
anti-inflammatory mediators (e.g. SOCS1)  [58] ; this en-
sures a rapid and effective paracrine communication with 
epithelial, stromal, dendritic, and T regulatory cells in the 
pulmonary environment  [59, 60] . Macrophages also es-
tablish direct cell-to-cell contacts through receptors and 
gap junction formation with the surrounding respiratory 
epithelium. This enables the distribution of specific sig-
nals throughout the tissue and helps to coordinate the 
tissue response to insults and injury  [61, 62] . 

  It is estimated that humans have approximately 0.2 
trillion macrophages throughout the body which can be 
identified in almost every tissue compartment  [63] . The 
tissue-resident macrophages have a slower turnover rate 
under steady-state conditions, but this population rap-
idly and dynamically changes during tissue stress (e.g. in-
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fection). The conventional concept is that tissue-resident 
macrophages originate from blood-circulating mono-
cytes, which arise from a myeloid-committed precursor 
in adult bone marrow (BM). However, this traditional 
concept was recently challenged. The current revised un-
derstanding is that distinct tissue-resident macrophages 
(e.g. in the lungs, liver, and brain) are established prior to 
birth during the embryonic and fetal waves of hematopoi-
esis. Even more striking, it is now clear that these macro-
phages are capable of self-renewing themselves inside the 
tissue. However, if the local population is completely de-
pleted (e.g. by irradiation), recruited circulating mono-
cytes can seed the tissues and adopt a resident macro-
phage phenotype  [64] . The self-renewal capability is not 
conserved by all macrophages. In fact, macrophages de-
rived from the intestine, pancreas, dermis, and heart seem 
to be continuously replaced by circulating monocytes 
(circulating Ly6C hi  monocytes) in a CCR2-dependent 
manner (review  [65, 66] ). Macrophages from different 
tissues have a well-defined epigenetic landscape and tis-
sue-specific transcriptional profiles  [67] . The epigenetic 
“imprinting” of tissue-resident macrophages is mainly 
programmed by the surrounding environment. If macro-
phages derived from the yolk sac, fetal liver, or adult BM 
are transferred into the lung alveolar space, they are re-
programmed to express alveolar-macrophage-specific 
sets of genes. However, once macrophages have been ful-
ly committed by their environment (e.g. Kupffer cells in 
the liver), they lose this “plasticity” and can no longer ac-
quire a lung signature when exposed to the lung niche 
 [64] . Tissue macrophage populations evolve continuous-
ly during the life of an organism. Each time they are ex-
posed to stress, tissues are rapidly populated by waves of 
circulating monocytes  [68] . These monocytes are first in-
volved in mounting a robust proinflammatory response 
to fight the microorganism and then, in a time-dependent 
manner, they give rise to macrophages with high scaveng-
ing and anti-inflammatory capabilities. These macro-
phages will then facilitate the resolution of the inflamma-
tory response, together with tissue repair and regenera-
tion. Interestingly, a recent study suggests that circulating 
monocytes may not be the only source of macrophages 
during tissue stress. In fact, peritoneal-cavity macro-
phages also serve as a reservoir for mature macrophages 
in a murine model of sterile inflammation of the liver 
 [69] . 

  During stress, the local tissue microenvironment un-
dergoes dynamic changes, including the presence of 
PAMPs, cytokines, growth factors, and alarmins. These 
changes dictate and orchestrate the phenotypic and func-

tional adaptation of both recruited and resident macro-
phages. If the activation and priming processes for these 
cells are not controlled effectively, then persistent inflam-
mation and aberrant repair processes can lead to tissue 
damage and fibrosis  [70] . In in vitro settings, macrophages 
have been classified into 2 distinct main subphenotypes. 
M1 (or classically activated macrophages) are primed by 
Th1 cytokines, e.g. interferon (IFN)-γ and bacterial prod-
ucts. M2 (or alternatively activated macrophages) are 
primed by Th2 cytokines (e.g. IL-4 and IL-13). M1 mac-
rophages are primarily relevant for antibacterial defense, 
while M2 macrophages are involved in anti-inflammato-
ry, allergic, and tissue repair processes. However, this sim-
plification of macrophage plasticity does not translate to 
in vivo studies, where macrophages are likely exposed to 
a cocktail of Th1 and Th2 cytokines and microbial prod-
ucts, at various concentrations and in a dynamic fashion 
 [71, 72] . The currently emerging concept is that macro-
phage activation and priming gives rise to a continuous 
spectrum of phenotypes rather than a few distinct subsets, 
implying that different phenotypes are not mutually ex-
clusive  [73] . Moreover, comprehensive genomic studies 
have revealed an epigenetic mechanism by which macro-
phages fine-tune gene expression during activation and 
priming. Macrophages have also been shown to retain a 
certain degree of epigenetic plasticity after activation  [74, 
75] . Importantly, researchers have revised the conven-
tional belief that, as part of the innate immune system, 
macrophages have only an unspecific response and do not 
acquire “memory.” Instead, macrophages exposed to bac-
terial products undergo epigenetic programming that es-
tablishes an “innate immune memory,” which will ulti-
mately shapes the organism’s immune response to subse-
quent external insults  [76] . Given the key role of mac-
rophages in maintaining tissue health under steady-state 
and stress conditions, strategies to target these cells may 
have potential for treating several diseases. Thanks to this 
prospect, enormous efforts are being dedicated to a better 
understanding of the complex biology of these fascinating 
cells of the innate immune system.

  Myeloid-Derived Suppressor Cells 
 MDSCs are defined as cells of myeloid origin that sup-

press T cell responses. Phenotypically, MDSCs can be 
subdivided into neutrophilic/granulocytic and monocyt-
ic MDSCs  [33, 77, 78] . In mice, both subsets can be phe-
notypically classified based on CD11b expression and 
Ly6C (monocytic) versus Ly6G (neutrophilic) surface 
markers, whereas the distinction in the human system is 
less precise. Both monocytic and neutrophilic/granulo-
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cytic MDSCs in humans express the myeloid markers 
CD11b and CD33. Human monocytic MDSCs are CD14-
positive and have been described as expressing low 
amounts of/no MHC-II, while neutrophilic/granulocytic 
MDSCs are CD14-negative/low in CD14, express CD15 
and CD66b, and have been described as having a lower-
density gradient centrifugations (i.e. “low-density neu-
trophils/granulocytes” compared to their conventional 
“high-density” neutrophilic counterparts)  [79, 80] . Since 
these surface markers are not restricted to MDSCs, hav-
ing also been found on other immune cells, their bona 
fide distinction from other cells requires functional assays 
that demonstrate that MDSCs suppress T cell responses. 
For a more in-depth discussion of the MDSC nomen-
clature, phenotypes, and functionalities, we refer to a re-
cently published review  [81] . Controversy still exists 
around the hematopoietic lineage origin of MDSCs, par-
ticularly neutrophilic/granulocytic MDSCs. Are these 
merely immature neutrophils? Or postactivated neutro-
phils, as supported by the high expression of the second-
ary granule marker CD66b on their cell surface? Or do 
neutrophilic/granulocytic MDSCs represent an early dis-
tinct subtype of neutrophilic myeloid cells? For human 
MDSCs in particular, these questions remain to be an-
swered in the future, possibly utilizing myeloid lineage 
tracing technologies. 

  A further aspect of MDSCs that needs to be defined is 
their precise cellular suppressive effector mode of action. 
While murine studies have involved a plethora of mecha-
nisms and pathways underlying the generation of and 
suppressive functionalities of MDSCs, including GM-
CSF, IL-6, signal transducer and activator of transcrip-
tion 3 (STAT3), indole amine 2,3 dioxygenase (IDO), cal-
cium-binding S100 proteins, IL-1β, high-mobility group 
box 1 (HMGB1), IL-6, arginase-1, inducible nitric oxide 
synthase (iNOS), and the production of nitric oxide (NO), 
reactive oxygen species (ROS), TNF-α, hypoxia-induc-
ible factor 1 α (HIF-1α) (summarized in recent reviews 
specifically dedicated to MDSCs  [78, 79, 82–84] ), evi-
dence of these putative mechanisms in humans is scarce. 
Initially only described as dampening T cell proliferation, 
follow-up studies extended this view by showing that 
MDSCs can also regulate NK, NKT, DC, and neutrophil 
responses. Thus, MDSCs can be regarded as a key type of 
innate immune cell that dampens the activation and func-
tion of adaptive (T cells) and innate (NK cells) immune 
cells. The therapeutic modulation of the generation of
or effector functions of MDSCs could pave the way for 
novel approaches for shaping specific immune responses 
in cancer, infections, and autoimmune disorders. In can-

cer and certain types of infection  [85] , MDSCs could be 
targeted to empower T cell host defense (similar to the 
anti-CTLA-4/anti-PD-1 checkpoint blockade in cancer 
immunotherapies). Conversely, the induction of immu-
nosuppressive MDSC activities could be harnessed to 
dampen overshooting autoimmune responses.

  Innate Lymphoid Cells 
 In addition to the innate myeloid cells described above, 

many mucosal tissues harbor ILCs. These lineage-nega-
tive CD127+CD90+ cells can execute functional and 
transcriptional programs that were originally described 
in the context of adaptive Th cells  [18, 86] , but are con-
sidered “innate” with regard to their lack of somatically 
recombined antigen receptors. Secretion of the “helper” 
cytokines IFN-γ, IL-13 or IL-17, in a manner dependent 
on T-bet, GATA-3 or RORγt, respectively, led to the clas-
sification of ILCs. Group 1 ILCs consist of Tbet+ ILC1 
and Tbet+ Eomes+ NK cells. GATA-3 hi  ILC2 produces 
IL-4, IL-5, and IL-13. Group 3 ILCs consist of RORγt+ 
IL-17- and IL-22-producing subsets of ILC3, as well as 
lymphoid tissue inducer cells (LTi)  [86] . NF-κB-activating 
IL-1 family cytokine members, such as IL-1β, IL-18 or IL-
33, in combination with STAT signaling pathways en-
gaged via IL-23, IL-12, IFN-α/β or TSLP, efficiently trig-
ger the production of “helper” cytokines in ILCs. Because 
adaptive and innate-like T cells can also execute these 
functions in both a cognate and noncognate manner, it is 
important to examine the redundant versus specific func-
tions of ILCs  [18, 87] . The major unanswered questions 
in the field pertain to nonredundant, activating, and in-
hibitory receptors that may regulate specific ILC func-
tions. For example, it has been proposed that NKp46, an 
activating receptor expressed on NK cells, ILC1, and sub-
sets of ILC3, plays a critical role in the sensing of adipose 
tissue “stress”  [88] . One emerging theme is that ILCs in-
teract with both local hematopoietic cells and nonhema-
topoietic stromal and epithelial cells, thereby contribut-
ing to the physiologic mechanisms of tissue homeostasis, 
metabolism, epithelial repair, and barrier function, e.g. 
through the secretion of amphiregulin, IL-4/IL-13, and 
IL-22  [89–92]  and reciprocal interactions with local mac-
rophages  [88, 93, 94] . Consistent with the idea of ILCs 
being local sentinels and keepers of tissue homeostasis, 
these cells are found most prominently in nonlymphoid 
tissues and at mucosal sites, where they exist as tissue-
resident cells that may expand locally during acute in-
flammation  [95, 96] . While these observations suggest 
that ILCs may self-renew within tissues, ILC progenitors 
in adult BM can reconstitute the ILC compartment upon 
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transplantation and likely contribute to the regeneration 
of ILCs, e.g. during chronic inflammation  [95, 97, 98] . 
Distinct from T cells, which exist in lymphoid organs as 
naïve cells and need to be “primed” to differentiate into 
the various helper subsets that gain effector function and 
can then locate to specific nonlymphoid tissues, it appears 
that ILCs acquire effector function and tissue localization 
developmentally  [18, 99] . 

  Interestingly, ILCs exhibit functional and develop-
mental plasticity  [100] , which may have evolved as a 
mechanism to rapidly adopt the functions of resident 
lymphocyte pools without requiring the recruitment or 
differentiation of additional cells. These differences in ac-
quisition of effector function and tissue localization raise 
the possibility that ILCs have critical functions early dur-
ing immune responses, but also early in life. ILCs (similar 
to subsets of innate-like T cells) seed nonlymphoid or-
gans early during ontogeny, and could then be the domi-
nant providers of “helper” cytokines, while adoptive T 
cells will complement these peripheral lymphocyte pools 
later in life, raising the possibility of extensive collabora-
tion and interactions between innate and adaptive lym-
phocytes  [101, 102] . T cells may activate or regulate ILCs, 
e.g. by modulating the availability of IL-2  [103, 104] . Vice 
versa, it has been suggested that ILCs play a role in the 
primary and recall responses of adaptive T cells  [105–
107] . Interestingly, ILCs may also participate in the regu-
lation of T cells through mechanisms reminiscent of my-
eloid or thymic epithelial cells. ILC3 can phagocytose and 
process antigens for MHC-II-mediated presentation, and 
mediate the negative selection of commensal bacteria-
specific CD4+ T cells, preventing severe intestinal pathol-
ogy in mice  [102, 108] . Whether the phagocytic activity 
of ILCs is linked to pattern recognition or innate sensing 
is a matter currently under investigation. It is also not 
clear whether ILCs may contribute more generally to an-
tigen presentation and T cell regulation, and where anti-
gen-dependent interactions with T cells occur. Interest-
ingly, ILCs have been identified in the BM and the sec-
ondary lymphoid organs, and have been proposed to 
migrate from the intestine to the mesenteric lymph nodes 
 [109] . Recent demonstrations of memory-like features of 
NK cells  [16, 17]  and ILC2  [15]  raise the possibility that 
the pool of ILCs is fundamentally altered through expo-
sure to environmental challenges. A major question is 
whether ILCs, if long-lived, acquire epigenetic modifica-
tions consistent with the concept of “trained immunity” 
 [76]  or exhibit adaptive-like features of specificity as de-
scribed for NK cells  [16, 17] . Future studies will address 
how the functions of ILCs and their ability to modulate 

tissue homeostasis and innate and adaptive immunity can 
be targeted to treat inflammatory diseases. For additional 
discussion of ILCs, we refer to recently published in-
depth reviews  [100, 110–112] . 

  Inflammasomes and the Activation of Innate 

Immunity 

 Inflammasomes are macromolecular platforms for the 
recruitment and activation of inflammatory caspases in 
the context of stress or danger signals  [113] . Several dis-
tinct inflammasomes have been identified accordingly to 
the unique sensor molecule responsible for detecting a 
specific trigger (PAMPs or DAMPs). These intracellular 
receptors belong to the nucleotide-binding domain leu-
cine-rich repeat containing (NLR) protein family or to 
AIM2-like receptor (ALR) members  [114, 115] . These 
proteins have an N-terminal pyrin domain (PYD) in com-
mon, required for homotypic interaction with the PYD 
domain of the bipartite adaptor ASC, which contains a 
CARD domain essential for the recruitment of inactive 
caspases  [116] . In particular, inflammatory caspase-1 is 
responsible for cleaving the immature pro-IL-1β and pro-
IL-18 into their bioactive forms before they can be re-
leased outside the cells  [113] . In addition, active caspase-1 
triggers pyroptosis, an inflammatory form of cell death 
characterized by the rupture of cell membranes and the 
release of cytoplasmic contents  [117, 118] . Human in-
flammatory caspase-4 and caspase-5 (corresponding to 
caspase-11 in mice) can trigger pyroptosis when engaged 
by direct binding of intracellular LPS to form a so called 
“non-canonical inflammasome”  [119, 120] . Recently, the 
N-terminal-cleaved fragment of the intracellular protein 
gasdermin D was identified as a crucial driver of pyropto-
sis generated upon the activation of inflammatory caspas-
es, but the cellular mechanism of death requires further 
investigation  [121, 122] . Other noninflammatory caspases 
have been described in the context of inflammasome acti-
vation. In addition to apoptosis, caspase-8 can directly 
control IL-1β processing in the absence of caspase-1 or 
also modulate the expression of inflammasome compo-
nents through a not well understood mechanism  [123] .

  Among different NLR sensors, NLRP3 is probably the 
most well characterized inflammasome  [124] . NLRP3 in-
flammasome activation has been considered to follow a 
2-signal model: the first signal, also called the priming 
step, upregulates immature pro-IL-1β and pro-IL-18, to-
gether with NLRP3 protein. This process is typically reg-
ulated by LPS-mediated activation of the TLR4-MyD88-
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NF-κB pathway. Signal 1-induced deubiquitination and 
dephosphorylation of NLRP3 by BRCC3 and PTPN22, 
respectively, have been proposed to be necessary for the 
licensing of NLRP3  [125, 126] , and Ca 2+ -sensitive cAMP 
has been shown to act as an intracellular inhibitor of 
NLRP3  [127] . The second signal is less defined, but in-
volves potassium efflux, calcium mobilization from intra-
cellular store compartments, and the production of ROS 
 [124] . A novel “alternative inflammasome” pathway 
which does not require 2 signals has been recently de-
scribed in human and porcine primary monocytic cells 
 [128] . In these cells, engagement of TLR4 by extracellular 
LPS triggered IL-1β secretion without pyroptosis or the 
need for “signal 2.” This pathway, in addition to NLRP3, 
ASC and caspase-1, requires TRIF-, RIPK1-, and FADD-
dependent caspase-8 activation and, interestingly, is not 
conserved in mice  [129] . This pathway is distinct to the 
described intracellular sensing pathway for LPS by cas-
pase-11/-4/-5 mechanism which also leads to inflamma-
some formation  [122, 130] . How the different pathways, 
especially those upstream of NLRP3, relating to the acti-
vation of the NLRP3 inflammasome are explained on the 
molecular level, i.e. by involving additional binding part-
ners, has remained largely elusive. 

  Recent discoveries relating to NLRP3 biology include 
Bruton’s tyrosine kinase  [131]  and NEK7  [132] , findings 
which may help to further unlock the molecular function-
ing of the NLRP3 inflammasome. Recent studies further 
highlight that reprogramming or perturbation of distinct 
metabolic pathways can trigger inflammasome activa-
tion, representing an emerging research area in the field 
of immunometabolism  [133–138] . Interestingly, while 
located in the cytoplasm of myeloid cells, NLRP3 can lo-
calize in the nucleus of Th2 cells, where it has been shown 
to act as a transcription factor essential for Th2 polariza-
tion and, in a complex with IRF4, to promote IL-4 pro-
duction, relevant for asthma and melanoma  [139] .

  Although the different inflammasomes and their com-
ponents have been primarily been studied in myeloid lin-
eages, their roles in lymphoid cells and nonhematopoietic 
cells are now beginning to emerge. In the epidermis, kera-
tinocytes are the first nonimmune cells where NLRP3, 
NLRP1, and AIM2 inflammasomes expression and activ-
ity have been studied. UVB irradiation activates the 
NLRP3 inflammasome, with subsequent IL-1β secretion 
that is dependent on the release of calcium from intracel-
lular stores  [140] . In psoriasis, patients display increased 
concentrations of cytosolic DNA that activates the AIM2 
inflammasome  [141] . In the central nervous system, 
NLRP3 has also been shown to play a role. Inflamma-

some-deficient mice were protected from disease progres-
sion in experimental au toimmune encephalitis, a mouse 
model of multiple sclerosis  [142] . More recently, T cell-
intrinsic NLRP3-ASC activities have been shown to be im-
portant for caspase-8-mediated IL-1β secretion in the 
context of Th17-mediated neuroinflammation, extending 
the role of the inflammasome to the lymphoid cells  [143] .

  Dysregulation of inflammasome activation drives 
pathological inflammation in the context of an increasing 
number of disease conditions. Prototypically, gain-of-
function mutations in NLRP3 cause a human syndrome 
called CAPS (cryopyrin-associated periodic syndrome), 
characterized by spontaneous episodes of fever and sterile 
systemic autoinflammation in its milder form, but also 
manifesting with hearing loss and bone deformities in 
more severe cases  [144] . In addition, inflammasomes con-
tribute to the chronic inflammation typical of neurode-
generative diseases such as multiple sclerosis, Alzhei mer 
disease, and Parkinson disease, and metabolic disorders 
including atherosclerosis, type 2 diabetes, and obesity, and 
therefore represent an excellent target for therapeutic ap-
proaches  [145] . The clinical relevance of pyroptotic cell 
death has been demonstrated recently in the context of 
HIV infection where it drives CD4 T cell depletion in cells 
expressing chemokine CCR5  [146] . Recently, inflamma-
some activity was visualized in subcapsular sinus macro-
phages in vivo, which impacted neutrophils and NK cell 
recruitment in the draining lymph node upon infection 
with modified vaccinia Ankara (MVA) virus, a double-
stranded DNA poxvirus evaluated as a recombinant vac-
cine vector  [147] . These findings are consistent with the 
idea that inflammasome-dependent IL-18 production is 
critical for the orchestration of multicellular innate im-
mune responses during viral or bacterial infection  [148] .

  In summary, the recent discoveries of “non-canonical” 
and “alternative” inflammasome pathways have revital-
ized the field and added new layers of complexity to our 
understanding of extracellular versus intracellular, two-
step versus one-step, and interspecies differences in in-
flammasome activation. A recently described inflamma-
some inhibitor, MCC950  [149] , may aid the study of this 
interesting innate immune process in greater detail in vi-
tro and in vivo.

  DNA Sensing  

 Sensing of nucleic acids in different cellular compart-
ments is a key mechanism of the innate immune system 
to mount an immune response against microbial patho-
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gens. This phenomenon has been known for decades, but 
profound and significant progress in understanding its 
molecular mechanisms and potential disease implica-
tions has only recently been made. Recognition of nucle-
ic acids induces the expression of IFN type I (IFN-I) and 
other inflammatory cytokines required for the host de-
fense. In the endolysosomal compartment, TLRs recog-
nize nucleic acids  [150] . In the cytoplasm, dsRNA is rec-
ognized by MDA5, while RIG-I senses 5 ′  triphosphate 
RNA. Binding of these nucleic acid species leads to re-
cruitment of MDA5 and RIG-I to mitochondrial MAVS 
and the downstream activation of IRF3, MAPK, and NF-
κB  [151] . Several cytosolic DNA sensors including IFI16, 
DIA, and DDX41  [152–154]  have been described, but the 
mechanism of how these receptors mediate a DNA-de-
pendent immune response is not completely understood 
and requires further investigation. dsDNA binds to AIM2 
(absent in melanoma 2) in the cytoplasm, driving the ac-
tivation of the inflammasome, the expression of IL-1β 
and IL-18, and the activation of pyroptosis in a caspase-
1-dependent manner  [155, 156] . 

  Recently, it was discovered that cGAS is a major driver 
of IFN-I expression in response to dsDNA in the cyto-
plasm  [157, 158] . Upon recognition of dsDNA, mono-
meric cGAS forms a dimer and undergoes a conforma-
tional change that allows the binding and enzymatic con-
version of ATP and GTP into the second messenger, 
cyclic di-GMP-AMP (cGAMP)  [159–161] . cGAMP then 
binds to STING which resides in the endoplasmatic re-
ticulum. Interestingly, cGAS synthesizes cGAMP with 
unique 2′5 ′ -3 ′ 5 ′  phosphodiester linkages and binds with 
higher affinity to STING than the bacterial cyclic dinucle-
otides that contain conventional phosphodiester linkages 
 [160, 162–164] . Another interesting feature is the capa-
bility of cGAMP to bind to STING in neighboring cells 
after transfer via gap junctions, allowing antiviral re-
sponses in the cells in the absence of pathogen-derived 
nucleic acids  [165] . In addition, cGAMP can be trans-
ferred through viral particles that deliver it to newly in-
fected cells  [166, 167] . cGAMP binding to STING dimers 
induces a conformational change, and STING then binds 
to TBK1 and translocates to the perinuclear Golgi region 
 [168] . TBK1 phosphorylates STING, allowing the recruit-
ment of IRF3 which, after binding to STING, gets phos-
phorylated and activated by TBK1  [169] . In addition, 
TBK1 also activates the NF-κB pathway  [170] .

  Binding of DNA and activation of cGAS is sequence-
independent, and a wide spectrum of viral/bacterial 
pathogens, but also endogenous DNA, induce IFN-I re-
sponses. Several DNA viruses including herpes simplex 

virus 1 (HSV-1), hepatitis B virus (HBV), vaccinia virus 
(VACV), adenovirus, and Kaposi’s sarcoma-associated 
herpesvirus (KSHV) are recognized by the cGAS-STING 
pathway  [171–175] . Bacterial infection with  Mycobacte-
rium tuberculosis ,  Listeria monocytogenes ,  Chlamydia 
trachomatis ,   and  Francisella tularensis  activates IFN-I 
expression that is dependent on cGAS activity and bac-
teria-produced cyclic dinucleotides that act directly on 
STING  [176–182] . There is emerging evidence from 
monogenic interferonopathies and related mouse mod-
els that DNA sensing by the cGAS-STING pathway may 
be involved in the pathogenesis of autoinflammatory dis-
orders. Mutations in the Trex1 gene, a 3 ′  → 5 ′  DNA-spe-
cific exonuclease that can clear the cytoplasm from self-
DNA, have been identified in patients suffering from 
Aicardi-Goutières syndrome, who develop an inflamma-
tory disorder with onset in early childhood, familial chil-
blain lupus, and systemic lupus erythematous  [183] . In a 
mouse model of Aicardi-Goutières syndrome, Trex1 
knockout mice developed severe multiorgan inflamma-
tion  [184–186] . An additional deletion of either cGAS or 
STING prevented the induction of IFN-I, and the respec-
tive mice lacked signs of inflammation in different or-
gans  [184, 187, 188] .

  DNase II is a lysosomal DNase involved in the frag-
mentation of DNA of phagocytosed apoptotic cells.
DNase-II-deficient mice are embryonic-lethal and be-
come severely anemic during embryo development. This 
defect in erythropoiesis is a result of high IFN-I expres-
sion of macrophages unable to digest DNA from phago-
cytosed erythrocyte precursors  [189, 190] . Consequently, 
mice that are deficient in IFNAR are rescued from DNase 
II deficiency-mediated lethality, but these mice develop 
chronic polyarthritis  [191] . Lethality in DNase II knock-
out mice and anemia are prevented by the deletion of ei-
ther cGAS or STING with protection from arthritis  [187, 
192] . Interestingly, STING-deficient mice crossed with 
lupus-prone MRL/Fas lpr/lpr  mice developed more severe 
disease  [193] . This was characterized by higher levels of 
autoantibodies, increased expression of IFN-induced 
genes, accelerated mortality, and hyperresponsiveness to 
TLR signaling. The above-mentioned studies show the 
severe consequences of an uncontrolled activation of the 
IFN-I response mediated by the cGAS-STING pathway. 
Cells have adopted mechanisms to regulate the potent in-
flammatory IFN-I response, and 2 recent studies describe 
the inhibitory regulation of cGAS. Reversible glu-
tamylation by tubulin tyrosine ligase-like (TTLL) glu-
tamylases inhibits cGAS synthase and DNA-binding ac-
tivity  [194] , and the phosphorylation of cGAS by Akt 
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dampens its activity  [195] . More regulatory mechanisms 
are likely to be discovered in the future. 

  In summary, DNA sensing by the cGAS-STING path-
way is a potent inducer of IFN-I and other inflammatory 
cytokines. Therapeutically, cGAS and STING are inter-
esting targets, and antagonizing cGAS or STING may al-
low the dampening of chronic inflammation in autoim-
mune diseases. Activating the cGAS-STING pathway 
may be beneficial in the context of infections and cancer. 

  Summary and Outlook  

 Our knowledge about innate immune cells and their 
functions is constantly evolving.  Figure 1  summarizes 
key effector and counterregulatory immune-cell subsets. 
Of the phagocytes, macrophages are the principal cells 
generating inflammasome-derived proinflammatory cy-

tokines, while neutrophils have a special potential to ex-
pel their own DNA, in the form of NETs, in order to cap-
ture and kill pathogens in the extracellular space. In ad-
dition to adaptive T and B cell subsets, lymphocytes 
encompass ILCs that belong to the innate immune sys-
tem. In analogy to Th1/Th2, ILCs comprise at least 3 ma-
jor groups of cells, termed ILC1, ILC2, and ILC3. The 
mutual interactions of these innate immune-cell types 
and other components of the immune system are still 
poorly understood  [18] . While novel pathways and cell 
types have recently been discovered and studied in mu-
rine disease models, their role and therapeutic potential 
in human diseases remains largely to be defined. In this 
context, it will be important to understand how environ-
mental factors, such as allergens and hazards, nutrition 
and lifestyle habits, and symbiotic microbiota shape the 
innate immune system. Several studies have demonstrat-
ed a close interaction between microbiota and innate im-
mune-cell components [for reviews, see  196–200 ]. The 
individual composition of the microbiota thus adds an-
other layer of complexity in the regulation and function 
of the innate immune system  [196, 201–204]  in both 
health and disease  [196, 205, 206] . Seminal findings sup-
port an impact of the microbiome on (i) innate immune 
cells (neutrophils  [36, 207]   , DCs  [208–217] , macro-
phages  [218–220] , ILCs  [198, 221–225] , NK cells  [226] , 
and NKT cells  [227] ), (ii) the complement system  [228] , 
and (iii) defensins  [196, 229, 230] . A major challenge in 
the field that remains is to define the critical microbiota-
to-host interfaces that fine-tune the human immune sys-
tem and to exploit their therapeutic potential.
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  Fig. 1.  Key immune effector cells (phagocytes and lymphocytes) 
and regulatory cells (T regulatory cells, Tregs; myeloid-derived 
suppressor cells, MDSCs). Macrophages show different pheno-
types, with M1 and M2 being the main subtypes. Beyond this plas-
ticity, macrophages are the main cells responsible for inflamma-
some activity (leading to proinflammatory IL-1β and IL-18 pro-
duction). Specific to neutrophils is the release of their own DNA, 
called neutrophil extracellular traps (NETs), which can entrap and 
immobilize pathogens. In addition to traditional adaptive T and B 
cell subsets, lymphocytes also encompass the innate lymphoid cells 
(ILCs) that belong to the innate immune system. In analogy to 
Th1/Th2, ILCs comprise at least 3 different subtypes, termed ILC1, 
ILC2, and ILC3.   
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