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expression through the inhibition of mRNA translation 
and mRNA degradation  [2] . MiRNA regulation of the 
immune system has been a topic of intense investigation 
 [3, 4] . This review will discuss our current understanding 
of the contribution of miRNA to respiratory host defense 
against bacterial and viral pathogens. For a more in depth 
discussion of miRNA biology refer to the recent review 
articles by Valinezhad Orang et al.  [5] , and Ha and Kim 
 [6] . 

  Background on miRNA 

 miRNA are generally encoded in introns, and can be 
found in close proximity to the genes they regulate. While 
some miRNA share the same promotor as their target 
gene, this is not always the case. Therefore, identification 
of the miRNA target has been driven mostly by sequence-
based prediction. Known miRNA and their target genes 
have been tabulated in the miRNA database miRBase  [7, 
8] . miRNA are transcribed from the genome by RNA Pol 
II, and possibly by viral Pol III, resulting in the produc-
tion of primary miRNA, which are approximately 1 kb in 
size  [9] . The nuclear RNase III Drosha then cleaves the 
stem-loop structure forming a hairpin-shaped (approxi-
mately 65 nucleotide) pre-miRNA  [10] . The pre-miRNA 
then forms a complex with exportin 5 and GTP-bind-
ing nuclear protein RAN-GTP, which shuttles the pre-
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 Abstract 

 The immune response to respiratory pathogens must be ro-
bust enough to defend the host yet properly constrained 
such that inflammation-induced tissue damage is avoided. 
MicroRNA (miRNA) are small noncoding RNA which post-
transcriptionally influence gene expression. In this review, 
we discuss recent experimental evidence of the contribu-
tion of miRNA to the lung’s response to bacterial and viral 
pathogens.  © 2016 S. Karger AG, Basel 

 Introduction 

 The immune response to pathogens in the lung is 
tightly regulated, requiring numerous checks and balanc-
es to ensure adequate inflammatory signaling while not 
damaging host tissues via excessive inflammation. Cells 
use multiple mechanisms to regulate gene expression, in-
cluding histone modification, DNA methylation, long-
noncoding RNA expression and microRNA (miRNA) 
 [1] . A key regulatory system capable of modulating most 
cellular pathways, miRNA are a family of small RNAs ap-
proximately 22 nucleotides in length that regulate gene 
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miRNA into the cytoplasm where the GTP is hydrolyzed 
and the pre-miRNA is released. The final step in miRNA 
formation occurs here in the cytoplasm where it is cleaved 
by Dicer and incorporated into the RNA-induced silenc-
ing complex, where it interacts with its target RNA.

  Host cells activate miRNA transcription following
the recognition of pathogen-associated molecular pat-
terns (PAMPs) by receptors such as the Toll-like family 
 [11–14] . Downstream of PAMP receptors, signaling 
pathways, including molecules such as NF-κB (nuclear 
factor kappa-light-chain-enhancer of activated B cells), 
mitogen-activated protein kinases, signaling transducer 
and activator of transcription, regulate the transcription 
of miRNA along with their target genes  [15–19] . The 
miRNA then act to limit the production of the target gene, 
acting as an internal break on gene transcription. This 
review focuses on recent findings on the contribution of 
miRNA to the response of host cells to respiratory patho-
gens. 

  miRNA in Specific Cell Populations 

 Epithelium 
 The airway epithelium, while not traditionally consid-

ered a component of the immune system, is uniquely po-
sitioned to significantly contribute to host defense against 
respiratory pathogens. The primary function of the epi-
thelium is as a barrier separating ‘‘dirty’’ air from the 
‘‘clean’’ blood stream. However, the epithelium is more 
than just a barrier. The epithelium is located such that it 
is constantly exposed to potential pathogens, and there-
fore has a critical role in initiating and coordinating host 
defense responses  [20] . Its role in host defense is high-
lighted clinically by the increased infection rates of smok-
ers and individuals with chronic obstructive pulmonary 
disease (COPD) and cystic fibrosis (CF), each associated 
with altered epithelial cell function  [20–23] .

  miRNA are involved in all aspects of epithelial regula-
tion. In order to maintain the physical barrier separating 
out from in, the epithelium is required to rapidly replace 
any dying or dead cells such that pathogens cannot cross 
the breach created by cell loss. During wound healing or 
mechanical stretch, the expression of a large number of 
miRNA is altered, suggesting a coordinated response to 
the physical stress through miRNA regulation  [24, 25] . 
Epithelial renewal following injury is dependent on the 
transcription factor c-Myc, which in turn regulates a fam-
ily of approximately 17 unique miRNA, including miR-
126, miR-34c, miR-130a, miR-574, miR-193b, miR-19b, 

miR-125b, miR-17, miR-214, and miR-34b  [26] . These 
miRNA were predicted to target essential components of 
cellular proliferation, including polo-like kinase 4, tenas-
cin C, and ubiquitin specific peptidase 1. 

  Epithelial wounding/healing is associated with the ac-
tivation of signaling pathways, such as p38 MAP kinase 
and myosin light chain kinase, which promotes actin po-
lymerization and epithelial regeneration  [27–30] . Activa-
tion of this p38 in epithelial cells suppresses miR-17–92, 
therefore suppressing a negative regulator of lung devel-
opment  [31] . Two other key miRNA, miR-155 and miR-
23a, are downregulated in epithelial cells infected with 
 Klebsiella pneumoniae . These 2 miRNA act through high 
mobility group nucleosomal-binding domain 2 and nu-
clear factor 1 to regulate α5β1 integrin expression and 
actin polymerization at the cell surface, and to restrict
 K. pneumoniae  adhesion  [32] .

  The epithelium is also able to respond to pathogens 
by producing cytokines responsible for recruiting pro-
fessional phagocytes such as neutrophils and by produc-
ing antimicrobial peptides to directly kill pathogens. 
miRNA are involved in both pathogen survival and in-
nate immune function. The respiratory syncytial virus 
downregulates miR-221 in epithelial cells, reducing epi-
thelial apoptosis and increasing viral replication, while 
influenza A downregulates miR-17-3p as well as miR-
221, which also promotes viral replication  [33, 34] . The 
downregulation of miR-276 during viral influenza A in-
fection promotes epithelial apoptosis and viral clear-
ance; therefore, a balance must exist to properly regulate 
the influence of miRNA on epithelial apoptosis. Patho-
gen killing is influenced by miRNA. For example, during 
influenza A infection, upregulation of miR-136 pro-
motes IFN-β accumulation in an A549 epithelial cell 
model, promoting viral killing  [35] . In response to bac-
teria such as  Mycobacterium bovis ,  Staphylococcus au-
reus , or  Pseudomonas aeruginosa  altered expression of 
miR-21, miR-124, and miR-93 regulates production of 
inflammatory cytokines, such as IL-8, by the epithelium 
 [36–38] . 

  Macrophages 
 Respiratory macrophages, both resident alveolar mac-

rophages and recruited inflammatory monocytes, have 
essential roles in the host defense against respiratory 
pathogens. Depletion of resident macrophages impairs 
host defense against a range of bacterial pathogens, in-
cluding  S. aureus ,  K. pneumoniae , and some  P. aerugi-
nosa  isolates, as well as viral pathogens, respiratory syn-
cytial virus and influenza A  [39–43] . These cells are also 
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capable of promoting tissue damage during infections by 
pathogens such as ExoS+  P. aeruginosa  and metapneu-
movirus  [44, 45] . 

  Macrophage binding to pathogens facilitates not only 
uptake and killing, but also antigen processing for the de-
velopment of memory immune responses. Conversely, 
the attachment of viruses to the cell surface enables inva-
sion of the cytoplasm and viral replication. Therefore, it 
is important that host cells are capable of tuning the ex-
pression of surface proteins involved in these processes 
such that phagocytic killing is enabled while viral replica-
tion is prevented. MiR-155 directly influences the phago-
cytosis of bacterial pathogens such as  P. aeruginosa  and 
 S. aureus  by modifying expression of the scavenger recep-
tor MARCO  [46] . Another scavenger receptor, CD163, 
enables the invasion and replication of PRRSV (porcine 
reproductive and respiratory syndrome virus)  [47] . Al-
veolar macrophages suppress CD163 by upregulating 
miR-181 in response to this virus, thereby limiting viral 
replication  [48] . Once the virus is internalized, miR-125b 
targets the NF-κB to further limit PRRSV replication  [49] . 
Therefore, by limiting surface binding and targeting
signaling activated in response to internalized viruses, 
miRNA act to prevent the propagation of viral infection 
by limiting viral replication.

  miRNA have been implicated in the regulation of
multiple macrophage responses to respiratory patho-
gens. Toll-like receptors (TLR) are major receptors for 
pathogens, and they are directly influenced by miRNA 
 [50] . MiR-124 targets TNF receptor-associated factor 6 
(TRAF6), which is necessary for signaling downstream of 
TLRs  [38] . Other miRNA alter the expression of signaling 

regulators, such as dual specificity protein phosphatase 1 
(DUSP1), targeted by miR-429, interleukin-1 receptor-
associated kinase 4(IRAK4), targeted by miR-302b, and 
phosphatase and tensin homolog (PTEN), targeted by 
miR-26b  [14, 51, 52] . Macrophages also activate antimi-
crobial signaling pathways in nearby immune cells. One 
such pathway is the IL-23/IL-17 pathway shown to con-
tribute to the host response to numerous pathogens  [53, 
54] . Multiple miRNA target this pathway, including miR-
146 and miR-155  [55–57] . These miRNA are therefore 
able to regulate the alveolar macrophage’s response to 
multiple pathogens by influencing proteins central to 
multiple signaling pathways. 

  Neutrophils 
 Neutrophils are the most abundant of the immune 

cells, estimated to comprise up to 80% of the total im-
mune cell population, although in an uninfected host 
most of these cells reside in lymphoid tissue, such as the 
bone marrow and spleen, or are adherent to the vascular 
endothelium (marginating pool). Primarily studied in the 
context of bacterial and fungal infection, neutrophils are 
essential for proper defense against most pathogens  [39, 
58, 59] . Clinical diseases such as chronic granulomas dis-
ease are associated with defects in neutrophil function, 
and as such these patients are highly susceptible to infec-
tion, especially with bacterial ( S. aureus ,  Klebsiella  spe-
cies,  P. aeruginosa ) and fungal ( Aspergillus  and  Candida 
 species) pathogens  [60] . While the role of neutrophils is 
less studied in the context of respiratory viral infection, it 
is clear that neutrophils also play a protective role in a va-
riety of viral pneumonias  [61–63] . 

Epithelial wound healing/
cell proliferation

Bacterial/viral
attachment/replication Cytokine production

Macrophage TLR
expression/cytokine

production 
Phagocytosis/

viral attachment
Neutrophil recruitment/

proliferation

NET formation/
phagocytosis

  Fig. 1.  Immune functions influenced by 
miRNA in the lung. NET, neutrophil extra-
cellular trap; TLR, Toll-like receptor. 
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  Regulation of neutrophil function is required to pre-
vent neutrophil-mediated host damage. As part of their 
antimicrobial arsenal, neutrophils release multiple pro-
inflammatory mediators including cytokines, proteases, 
and DNA. If left unregulated overwhelming inflamma-
tion can result in tissue damage. miRNA play a central 
role in neutrophil regulation. Neutrophil recruitment is 
influenced by miR-155 and miR-223, which reduce che-
mokine production in response to pathogens  [64] . miR-
223 is also able to prevent granulocyte proliferation, lim-
iting the numbers of neutrophils available to respond to 

infection  [65] . Antimicrobial function is directly influ-
enced by miRNA. miR-146a and miR-328 negatively reg-
ulate neutrophil elastase, phagocytosis, and reactive oxy-
gen species production, limiting the killing capacity of the 
neutrophil  [66, 67] . Neutrophil extracellular traps, or ex-
truded DNA used by neutrophils to trap and kill patho-
gens, are in part driven by IFN-γ. This process is regu-
lated by miRNA, although the specific miRNA have yet 
to be determined  [68] . Loss of miRNA regulation of neu-
trophil function therefore has the capacity to severely im-
pair host defense in the lung.

  T Cells 
 T cells and natural killer T cells have been shown to 

both protect against respiratory infection as well as con-
tribute to inflammatory tissue damage during such in-
fections. These cells contribute to both the innate re-
sponse and adaptive immune response to respiratory 
pathogens, and therefore it is highly likely that miRNA 
contribute to the regulation of these cell populations. 
Currently, there is a paucity of data directly testing this 
hypothesis; however, a handful of studies have looked at 
miRNA regulation of these cells in the context of other 
respiratory diseases which are commonly associated 
with infection. The IL-22/IL-17 signaling axis can pro-
mote viral clearance when properly regulated, but high 
expression levels, or activation of this pathway, can re-
sult in inflammatory tissue damage  [69, 70] . Cellular 
regulators such as miRNA are therefore uniquely posi-
tioned to regulate this pathway, and in fact miR-323-3p, 
miR-19, and miR-22 have been shown to alter the IL-17 
pathway in the lungs of smokers and subjects who suffer 
allergic reactions and asthma  [71–73] . Therefore, while 
not directly tested, there is evidence to suggest that
miRNA regulate natural killer and T cell function dur-
ing respiratory infection. 

  miRNA in Inflammatory Respiratory Disease 
 Pulmonary diseases such as COPD and CF are asso-

ciated with pathogen-induced exacerbations or chronic 
infection  [12, 21, 74] . There is mounting evidence that 
miRNA expression is altered in these diseases, potentially 
impairing immunity against pathogens in the lung; how-
ever, few studies have been published describing the role 
of individual miRNA in these diseases  [75–77] . Microar-
ray analysis of COPD lung samples identified miRNA-
218-5p as being downregulated in the airway epithelium 
 [78] . Using a smoke-induced COPD murine model, 
Conickx et al.  [78]  showed that a miR-218-5p mimic pro-
tected against smoke-induced inflammation, confirming 

 Table 1.  Contribution of miRNA to cellular immune responses

Cell miRNA Function Reference

Epithelium miR-17 Proliferation 26
miR-19b
miR-34b
miR-34c
miR-125b
miR-126
miR-130a
miR-193b
miR-214
miR-574
miR-17-92 Actin polymerization/

lung development
31

miR-23a Actin polymerization/
integrin expression

32

miR-155
miR-221 Apoptosis 33
miR-17-3p Apoptosis/

viral replication
34

miR-221
miR-276
miR-136 IFN-β 35

Macrophage miR-155 Phagocytosis 46
mIR-181 Viral internalization 48
miR-125b Viral replication 49
miR-124 TRAF6/TLR signaling 38
miR-429 DUSP1 14
miR-302b IRAK4 51
miR-26b PTEN 52
miR-146 IL-23/IL-17 55 – 57
miR-155

Neutrophil miR155 Chemokine production 64
miR-223
miR-223 Granulocyte proliferation 65
miR-146a Antimicrobial processes/

phagocytosis, reactive 
oxygen species

66, 67

miR-328



 miRNA and Respiratory Immunity J Innate Immun 2017;9:243–249
DOI: 10.1159/000452669

247

its role in COPD-associated inflammation. In macro-
phages, the autophagy process has a central role in the 
response to phagocytosed pathogens, and miRNA have 
been identified as key regulators of autophagy  [79–82] . 
Recent work has identified a cluster of miRNA, miR17-
92, that is elevated in CF macrophages  [83] . These
miRNA negatively regulate the autophagy pathway and 
CFTR expression, impairing host response to CF-related 
pathogens such as  Burkholderia cenocepacia . Altered 
miR-31 in CF epithelial cells also contributes to the 
chronic inflammation associated with this disease  [37] . 
Reduced levels of miR-31 results in the uncontrolled pro-
duction of cathepsin S, which degrades essential antimi-
crobial peptides such as lactoferrin and β-defensins. Loss 
of these antimicrobial peptides makes the lung more sus-
ceptible to colonization with pathogens such as  P. aerugi-
nosa . Targeting miRNA in a therapeutic setting presents 
an exciting opportunity to correct some of the immune 
defects associated with these respiratory diseases  [84] . 

  Conclusions 

 miRNA act as key regulators of multiple cellular pro-
cesses; however, testing their contribution to pulmonary 
immunity has only recently begun. Multiple cell types 
contribute to host defense in the lung, and miRNA regu-
late processes in each, including epithelial cells, macro-
phages, neutrophils and T cells, among others ( Table 1 ; 
 Fig. 1 ). Our understanding of how individual miRNA are 
regulated and which genes they target is still being devel-
oped, which has hampered the targeting of miRNA in the 
clinic. The next phase of miRNA development for clinical 
application involves not only more detailed analysis of 
miRNA biology, but also the invention of a methodology 
to target miRNA modulators to specific cell types. The 
ability to tailor miRNA therapy such that their capacity 
can be harnessed in a cell-specific and regulated manner 
has the potential to benefit patients suffering from a myr-
iad of respiratory infections.
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