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domain 3, to be responsible for binding to YadA. Moreover, 
we found that Vn bound to the bacterial surface is still func-
tionally active and thus inhibits C5b-9 formation. In a mouse 
infection model, we demonstrate that Vn reduces comple-
ment-mediated killing of  Ye  O:9 E40 and, thus, improved 
bacterial survival. Taken together, these findings show that 
YadA-mediated Vn binding influences  Ye  pathogenesis. 

 © 2016 S. Karger AG, Basel 

 Introduction 

  Yersinia enterocolitica (Ye)  and  Yersinia pseudotuber-
culosis (Yps)  are enteropathogens causing enteric and sys-
temic diseases  [1, 2] . Besides the chromosomally encoded 
adhesins invasin (Inv) and Ail  [3–5] , the trimeric auto-
transporter adhesin (TAA)  Yersinia  adhesin A (YadA) is 
the decisive factor that determines the pathogenicity of  Ye  
 [6] . YadA forms rigid fibrous structures, which protrude 
approximately 23 nm from the cell surface  [7, 8] , and
mediates adhesion to extracellular matrix (ECM) pro-
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 Abstract 

 Complement resistance is an important virulence trait of  Yer-
sinia enterocolitica (Ye) . The predominant virulence factor ex-
pressed by  Ye  is  Yersinia  adhesin A (YadA), which enables 
bacterial attachment to host cells and extracellular matrix 
and additionally allows the acquisition of soluble serum fac-
tors. The serum glycoprotein vitronectin (Vn) acts as an in-
hibitory regulator of the terminal complement complex by 
inhibiting the lytic pore formation. Here, we show YadA-me-
diated direct interaction of  Ye  with Vn and investigated the 
role of this Vn binding during mouse infection in vivo. Using 
different  Yersinia  strains, we identified a short stretch in the 
YadA head domain of  Ye  O:9 E40, similar to the ‘uptake re-
gion’ of  Y. pseudotuberculosis  YPIII YadA, as crucial for effi-
cient Vn binding. Using recombinant fragments of Vn, we 
found the C-terminal part of Vn, including heparin-binding 
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teins such as collagen, fibronectin and laminin and also to 
complement factors  [9] . Being the prototype of the TAA 
family of proteins, YadA is characterized by a modular 
composition of several domains; the extracellularly locat-
ed N-terminal head domain is followed by a connector 
element (also called the neck region) leading into a coiled-
coil stalk. The stalk is connected to the C-terminal trans-
locator or membrane anchor domain, consisting of 4 
β-strands per monomer  [9] . To form a functional adhesin 
on the bacterial surface, 3 YadA monomers trimerize and 
form the pore of the translocator domain, which is insert-
ed into the outer membrane  [10] . The translocator en-
ables the transport of the passenger domains onto the bac-
terial surface, where they also form obligate trimers  [9] .

  YadA knockout strains of  Ye  are avirulent and do not 
cause infection in a mouse model  [11–13] . This striking 
effect has been attributed mainly to the reduced efficien-
cy of effector protein (Yop) delivery by a dedicated type 
3 secretion system (T3SS) which requires proper adhe-
sion to host cells; loss of adherence results in the inability 
to resist phagocytosis  [14, 15] . However, in  Yps , which is 
more closely related to  Yersinia pestis , YadA is dispens-
able for virulence and Yop injection  [16] . YadA of  Yps  
and  Ye  not only differ in their role during infection, but 
also in the sequence and binding repertoire of host ECM 
proteins and cellular receptors. YadA of  Yps  carries an 
additional stretch within its head region that enables en-
try into host cells  [17] . This important stretch is absent in 
YadA of several  Ye  serotypes and strains. Moreover, the 
binding capacities of YadA differ between  Ye , which 
binds collagen and laminin, and  Yps , which binds fibro-
nectin  [18] .

  By interacting with several complement factors, serum 
resistance is an important virulence trait of  Ye . It has been 
shown that factor H, C4b-binding protein (C4BP) and C3 
bind to the YadA stalk domain and thus inhibit comple-
ment killing  [19, 20] . Recently, we demonstrated a novel 
mechanism that contributes to serum resistance in  Ye  O:8 
WA-314, and amended the current model of direct factor 
H binding to YadA 0: 

 

 3  and YadA 0: 
 

 9 . We have shown that 
 Ye  binds C3b or iC3b and thereby attracts high amounts 
of factor H to the bacterial surface  [21] . This is different 
from the direct binding of factor H, which was shown 
earlier  [19, 20, 22] . Importantly, by binding these comple-
ment regulatory factors,  Ye  is able to interfere with com-
plement activity by inhibiting complement-mediated 
killing at an early stage of the cascade.

  The human glycoprotein Vn is synthesized in the liv-
er and secreted into plasma  [23] , where it is present as a 
monomer (65 and 75 kDa) at high concentrations (200–

400 μg/ml)  [24] . Vn also exists as an extravascular cell-
bound multimeric form in several tissues, and Vn mRNA 
can be detected in high concentrations in the liver, brain, 
heart and adipose tissue but is rare or absent in the kid-
ney and spleen  [25] . It comprises an N-terminal somato-
medin-binding domain, consisting of 43 amino acid (aa) 
residues, followed by the host cell integrin receptor-
binding motif RGD (Arg-Gly-Asp). In addition to 4 he-
mopexin-like domains with unknown function, Vn also 
contains 3 heparin-binding domains (HBDs) which span 
aa 82–137 (HBD-1), aa 175–219 (HBD-2) and aa 348–
361 (HBD-3)  [26, 27] . Vn is an important regulator of 
complement activity at the level of terminal complement 
complex (TCC) formation and a component of the ECM, 
and it also fulfills functions in cell migration and tissue 
repair  [27] .

  At the level of TCC formation, Vn regulates comple-
ment activity by directly binding to the protein complex 
C5b-7 or to C9  [28] . The exact mode of regulation is not 
fully understood. It has been postulated, however, that 
Vn binds the nascent precursor complex C5b-7, resulting 
in a Vn-C5b-7 complex that is unable to insert into the 
cell membrane  [27, 28] . Vn can also directly bind C9 and 
thereby inhibit C9 polymerization. This binding takes 
places through HBD-3 whereas the binding site for the 
nascent C5b-7 is still unknown  [27–29] .

  A wide variety of bacteria bind Vn via various surface 
proteins. The respiratory pathogens  Moraxella catarrha-
lis (Mc)  and  Haemophilus influenzae (Hi)  as well as the 
urogenital pathogen  Haemophilus ducreyi  express pro-
teins belonging to the TAA family. These proteins are the 
ubiquitous surface protein A2 (UspA2) of  Mc , the  Hae-
mophilus  surface fibrils (Hsf) and the  Haemophilus  adhe-
sin (Hia) of  Hi  or the  H .  ducreyi  serum resistance protein 
A (DsrA)  [9, 30–36] . In the invasive bacterial pathogen 
 Neisseria   meningitidis  the 3 proteins Opc, Opa and Msf 
interact with Vn  [37–40] . However, to date, no entero-
pathogenic bacteria have been reported to use Vn to es-
cape complement-mediated attack and thus mediate se-
rum resistance.

   Ye  has evolved a multitude of mechanisms to evade the 
host immune system. Amongst these, serum resistance is 
of uttermost importance. The significance of the comple-
ment regulator Vn in complement evasion and modula-
tion of host cell interaction with bacterial and fungal 
pathogens has recently been recognized  [27, 30–32, 37, 
39–44] .  Ye  is able to bind several regulators of comple-
ment activity. The role of Vn in  Ye  host cell interaction 
and in pathogenicity has not yet been addressed in detail, 
but it was shown in previous studies that YadA from  Ye  
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O:8 does not bind Vn under stringent assay conditions 
 [45] . In this study, we systematically investigated (1) Vn 
binding of different  Ye  strains, (2) which components of 
 Ye  might enable this binding and (3) how this interaction 
modulates  Ye  serum resistance, host cell interaction and 
overall pathogenicity. Importantly, we were able to dem-
onstrate a novel mechanism that facilitates  Ye  serum re-
sistance mediated by the surface adhesin YadA binding to 
Vn. We found that subtle differences within the YadA 
head domain of different  Yersinia  strains determine the 
efficacy of the Vn binding. An additional stretch in  Ye 
 YadA O:9 , which is similar to the ‘uptake region’ of  Yps
 YadA YPIII   [18] , was identified as a crucial region for the 
high-affinity binding of Vn. Moreover, we located HBD-
3 within Vn as the YadA binding site. Notably, bound Vn 
is active on the bacterial surface and protects bacteria 
from complement-mediated lysis by the inhibition of C9 
polymerization. This mechanism allows the enhanced 
survival of  Ye  O:9 E40 during the early phase of a mouse 
infection in vivo.

  Materials and Methods 

 Mice 
 C57BL/6 wild-type (WT) mice were purchased from Harlan 

Winkelmann (Horst, The Netherlands). B6.129S2(D2)- Vtn  tm1Dgi /J 
mice (http://jaxmice.jax.org/strain/004371.html) with a C57BL/6 
background were purchased from Jackson Laboratories (Bar Har-
bor, Maine, USA). All mice were bred under specific pathogen-

free conditions in individually ventilated cages with access to wa-
ter and food ad libitum. Experiments were performed with female 
mice (aged 6–8 weeks) according to German law with the permis-
sion of the Regierungspräsidium Tübingen (permission No. 
H4/15).

  Plasmids  
 Plasmids used in this study are listed in  table 1 .

  Bacterial Strains and Culture Conditions 
 All  Yersinia  strains were cultivated in lysogeny broth medium 

with supplements (antibiotics as listed in  table  2 ) overnight at 
27   °   C. To promote YadA expression, a 1:   20 dilution of the over-
night culture was made with fresh medium and incubated for 3 h 
at 37   °   C.  Moraxella  strains were grown overnight at 37   °   C in brain-
heart infusion medium. All bacteria were washed twice with PBS, 
and the optical density at 600 nm was determined. The number of 
bacteria used for the individual experimental setups are indicated 
in the respective sections. All bacterial strains used in this study are 
listed in  table 2 .

  Serum 
 Normal human serum (NHS) was collected from at least 4 

healthy volunteers and pooled. Aliquots were stored at –80   °   C and 
thawed only once. Heat-inactivated serum (HIS) was generated by 
incubation at 56   °   C for 30 min immediately before use.

  Antibodies 
 Antibodies used in this study are listed in  table 3 .

  Purified Proteins Used in This Study 
 Purified monomeric and multimeric Vn was purchased from 

BD Bioscience (Heidelberg, Germany) and Millipore (Schwalbach, 
Germany), respectively. Vn fragments were expressed and purified 
as described previously  [35, 54] .

 Table 1.  Plasmids used in this study

Plasmid name Description Resistance Reference

pBla expression of YopE aa 1–53 β-lactamase hybrid protein under control 
of the YopE promoter

kanamycin 46

pACYC184 EGFP EGFP expressed under control  of a constitutive tac/lac promoter chloramphenicol 47

pASK-IBA4C_yadAO:8 yadA from Ye O:8 WA-314 cloned into pASK-IBA4C; expression under 
control of an anhydrotetracycline-inducible promoter

chloramphenicol this study

pASK-IBA4C_yadAO:9 yadA from Ye O:9 E40 cloned into pASK-IBA4C; expression under 
control of an anhydrotetracycline-inducible promoter

chloramphenicol this study

pASK-IBA4C_yadAO:9/
O:8 hybrid

plasmid for inducible expression of a hybrid protein consisting of the 
N-terminal aa 1–89 of yadA from Ye O:9 E40 fused to aa 55–422 of 
yadA from Ye O:8 WA-314; expression under control of an 
anhydrotetracycline-inducible promoter

chloramphenicol this study

pASK-IBA4C_yadAO:9 
Δuptake region

plasmid for inducible expression of yadA from Ye O:9 E40 lacking aa 
60–86 comprising the uptake region; expression under control of an 
anhydrotetracycline-inducible promoter

chloramphenicol this study
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 Table 2.  Bacterial strains used in this study

Bacterial strain Description Resistance Reference

Ye O:3 6471/76 serotype O:3, fecal isolate, WT – 48
(GI:48607)

Ye O:8 8081 serotype O:8, fecal isolate, WT – 49
(GI:122815846)

Ye O:8 WA-314 YadAwt coding sequence of YadA WA-314 O:8 was reinserted into a YadA0 
strain

Nal, Kan, Spec 12
(GI:310923211)

Ye O:9 E40 pBla Ye O:9 E40 Δasd transformed with pMK-Bla Nal, Kan, Ars 46
(GI:972903261)

Ye O:9 E40 ΔpYV pBla Ye O:9 E40 Δasd without virulence plasmid transformed with pMK-Bla Nal, Kan 46
Ye O:9 E40 ΔInv pBla Inv mutant strain obtained by recombinational integration of suicide 

plasmid pMS154 into E40 Δasd, transformed with pMK-Bla
Nal, Kan, Ars, 
Tet

47

Ye O:9 E40 ΔYadA pBla pYV-Δasd strain was transformed with pLJM4029 (YadA-) and with 
pMK-Bla

Nal, Kan, Ars, 
Strep

47

Ye O:9 E40 ΔInv ΔYadA pBla pYV-Δasd ΔInv strain was transformed with pLJM4029 (YadA-) and 
with pMK-Bla 

Nal, Kan, Ars, 
Tet, Strep

47

Ye O:9 E40 ΔΔ + pASK-IBA4C_yadAO:8 Ye O:9 E40 Δasd lacking expression of both YadA and Inv transformed 
with pASK-IBA4C_yadAO:8

Nal, Kan, Ars, 
Strep, Cm

this study

Ye O:9 E40 ΔΔ + pASK-IBA4C_yadAO:9 Ye O:9 E40 Δasd lacking expression of both YadA and Inv transformed 
with pASK-IBA4C_yadAO:9

Nal, Kan, Ars, 
Strep, Cm

this study

Ye O:9 E40 ΔΔ + 
pASK-IBA4C_yadAO:9/O:8 hybrid

Ye O:9 E40 Δasd lacking expression of both YadA and Inv transformed 
with pASK-IBA4C_yadAO:9/O:8 hybrid

Nal, Kan, Ars, 
Strep, Cm

this study

Ye O:9 E40 ΔΔ + pASK-IBA4C_yadAO:9 
Δuptake region

Ye O:9 E40 Δasd lacking expression of both YadA and Inv transformed 
with pASK-IBA4C_yadAO:9 Δuptake region

Nal, Kan, Ars, 
Strep, Cm

this study

Ye O:9 E40 pBla eGFP Ye O:9 E40 pBla transformed with pACYC184 EGFP Nal, Kan, Ars, 
Cm

47

Ye O:3 01 clinical isolate derived from fecal sample – this study
Ye O:3 02 clinical isolate derived from fecal sample – this study
Ye O:3 03 clinical isolate derived from swine (tongue) – this study
Ye O:8 04 clinical isolate derived from fecal sample – this study
Ye O:5,27 06 clinical isolate derived from fecal sample – this study
Ye O:5,27 07 clinical isolate derived from fecal sample – this study
Ye O:9 08 clinical isolate derived from fecal sample – this study
Ye O:9 09 clinical isolate derived from fecal sample – this study
Ye O:9 10 clinical isolate derived from fecal sample – this study
Ye O:9 11 clinical isolate derived from fecal sample – this study
Ye O:9 12 clinical isolate derived from fecal sample – this study
Ye O:9 13 clinical isolate derived from blood sample – 50
Ye O:9 14 clinical isolate derived from fecal sample – this study
Yps YPIII Yps WT strain, pIB1 – 51
Yps YP46 pIB1 yadAΔ53-83 Kan, Amp 18
Yps YP47 pIB1 yadA− Kan 17
Ec omp2 + pASK-IBA4C Ec BL21 lacking expression of ompF transformed with 

pASK-IBA4C
Cm this study

Ec omp2 + pASK-IBA4C_yadAO:8 Ec BL21 lacking expression of ompF transformed with 
pASK-IBA4C_yadAO:8

Cm this study

Ec omp2 + pASK-IBA4C_yadAO:9 Ec BL21 lacking expression of ompF transformed with 
pASK-IBA4C_yadAO:9

Cm this study

Ec omp2 + 
pASK-IBA4C_yadAO:9/O:8 hybrid

Ec BL21 lacking expression of ompF transformed with 
pASK-IBA4C_yadAO:9/O:8 hybrid

Cm this study

Ec omp2 + pASK-IBA4C_ yadAO:9 
Δuptake region

Ec BL21 lacking expression of ompF transformed with 
pASK-IBA4C_ yadAO:9 Δuptake region

Cm this study

Mc RH4 WT Mc WT strain – 52
Mc RH4 ΔUspA2H Mc lacking expression of UspA2H Zeo 53

 Amp = Ampicillin; Ars = arsenite; Cm = chloramphenicol; Kan = kanamycin; Nal = nalidixic acid; Spec = spectinomycin; Strep = streptomycin; Tet = 
tetracycline; Zeo = zeocine.
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  Binding Assay with Serum or Purified Proteins Analyzed by 
Flow Cytometry 
 To analyze the binding of purified Vn or Vn and factor H from 

HIS, a total of 1 × 10 7  bacteria per assay were incubated with 5–50% 
HIS or purified Vn (1–10 μg/ml) diluted with PBS (Life Technolo-
gies, Darmstadt, Germany) in a total volume of 100 μl for 30 min 
at 37   °   C. As an internal control, each strain was also treated with 
PBS only. Recombinant Vn fragments were used at 4 μg/ml. After 
washing with 1% BSA in PBS (washing buffer), bacteria were spun 
down and the pellet was resuspended in 200 μl 4% paraformalde-
hyde in PBS for 1 h at room temperature. Bacteria were washed 
once again and finally incubated with primary polyclonal antibod-
ies (pAb) directed against Vn or factor H overnight at 4   °   C. The 
next day, bacteria were washed once and incubated with suitable 
secondary antibodies for 1 h at room temperature. After a final 
washing step, bacteria were transferred to FACS tubes and ana-
lyzed with a Fortessa LSR II instrument. Data analysis was carried 
out using WinMDI v2.8. The PBS-only control was used to deter-
mine background staining using the same primary and secondary 
antibodies as for all other samples. Values obtained for the control 
samples were subtracted from the values obtained for the corre-
sponding samples that were incubated in serum or purified Vn. All 
flow cytometry figures show background subtracted values.

  Detection of Vn Binding or YadA Expression by Western Blot 
 To analyze Vn binding by immunoblotting, 5 × 10 8  bacteria 

(bacterial numbers were determined photometrically by measur-
ing the optical density at 600 nm; a volume corresponding to the 
desired number of bacteria was harvested by centrifugation, and 
the bacterial pellets were then used to carry out the assay) were in-
cubated in 100 μl of 50% HIS diluted in PBS as described above. 
Thereafter, bacteria were washed twice with washing buffer, once 

with PBS, and finally resuspended in 50 μl deionized water. For the 
detection of YadA, bacteria were simply washed after harvest. Af-
ter the addition of 25 μl 4× Laemmli buffer (Bio-Rad Laboratories, 
Munich, Germany), samples were boiled for 5 min at 95   °   C and 
separated in a 10% acrylamide SDS gel (Bio-Rad Laboratories). 
Each lane was loaded with an equal number of bacteria. After blot-
ting, the membranes were blocked with 3% BSA and 5% milk pow-
der in TBS for 1 h at room temperature. They were then incubated 
with the desired antibodies (a complete list of antibodies and 
working dilutions is given in table 3) for 1 h at room temperature 
or at 4   °   C overnight, washed with 0.1% TBS-T and then incubated 
with the suitable secondary antibody. Fluorescence signals were 
recorded using a LICOR Odyssey imaging system.

  Detection of Vn Binding by Blot Overlay Assay 
 Bacterial lysates were prepared as described above, separated 

by SDS-PAGE and blotted. After blocking with 5% milk, 3% BSA 
in PBS for 3 h at room temperature, the membrane was incubated 
with 7 μg/ml purified monomeric Vn in 3% BSA in PBS-T over-
night at 4   °   C. After washing with 0.1% TBST, Vn was detected with 
rabbit anti-Vn pAb and a secondary DyLight 680-conjugated goat 
anti-rabbit pAb. Fluorescence signals were recorded using a
LICOR Odyssey imaging system.

  Purification of DNA from Yersinia Colonies 
  Yersinia  strains were streaked on the LB agar plates without 

antibiotics. The next day, a single colony was used for DNA extrac-
tion using the Qiagen QIAmp DNA mini kit according to the man-
ufacturer’s protocol. DNA was finally eluted in 100 μl of ultrapure 
water.

 Table 3.  Antibodies used in this study

Conjugate Clone Manufacturer Working 
dilutions

Primary antibodies
Goat anti-factor H – polyclonal Complement Technology 1:100
Rabbit anti-Vn – polyclonal Complement Technology FACS 1:100; 

WB 1:1,000
Rabbit anti-Ye YadA – polyclonal Lab antibody; I. Autenrieth 1:200
Rabbit anti-Yps YadA – polyclonal Lab antibody; P. Dersch 1:200
Sheep anti-Vn – polyclonal AbD Serotech 1:100
Mouse anti-human C5b-9 – aE11 Dako 1:1,000
Mouse anti-β subunit of
E.coli RNA-polymerase – 8RB13 NeoClone Biotechnology 1:2,000

Secondary antibodies
Donkey anti-rabbit APC Jackson ImmunoResearch 1:200
Goat anti-rabbit DyLight 800 Thermo Scientific 1:10,000
Goat anti-rabbit DyLight 680 Thermo Scientific 1:10,000
Goat anti-mouse DyLight 680 Thermo Scientific 1:10,000
Rabbit anti-sheep DyLight 800 Thermo Scientific 1:10,000
Rabbit anti-goat Alexa Fluor 488 Jackson ImmunoResearch 1:200
Goat anti-mouse Alexa Fluor 647 polyclonal Jackson ImmunoResearch 1:2,500
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  PCR Amplification of the YadA Head Region 
 To test  Yersinia  YadA for the presence of the additional stretch 

(enabling the recruitment of Vn) within its head region, we used 
the primers YadA_Seroseq_435F (5 ′ -gatcagtgtctctgcggcat-3 ′ ) and 
YadA_Seroseq_435R (5 ′ -gccccataagtaactgccga-3 ′ ) that bind to 
highly conserved regions upstream and downstream of the uptake 
region (online suppl. fig. S1; for all online suppl. material, see www.
karger.com/doi/10.1159/000449200). According to the sequence 
alignment, the PCR reaction should yield a fragment of 442 bp with 
 Ye  O:9 E40 or 451 bp with  Yps  YPIII (both harboring the uptake 
region of approx. 90 bp) or 337 bp with  Ye  O:8 WA-314 and 346 
bp with  Ye  O:3 6471/76 and  Ye  O:5.27 (all 3 lacking the uptake re-
gion) and thus allow us to discriminate between YadA with and 
without the uptake region. We used the following PCR program: 
2 min 95   °   C (initial denaturation), 30 s 95   °   C  →  1 min 55   °   C  → 
30 s 68   °   C (repeated 29 times), 5 min 72   °   C (final extension) and 
cooling at 4   °   C until further processing.

  Separation of PCR Products by Capillary Gel Electrophoresis 
 To determine the size of the PCR products, they were analyzed 

using a QIAxcel capillary gel electrophoresis system according to 
the manufacturer’s protocol.

  DNA Sequencing 
 PCR products were purified using the Promega Wizard ®  SV 

gel and PCR Clean-Up System according to the manufacturer’s 
protocol. Subsequently, Sanger sequencing was performed by 
GATC using the same primers as for the PCR reaction.

  Heparin Inhibition Assay 
 Sterile glass coverslips were coated with purified Vn (10 μg/ml) 

at 4   °   C overnight and air-dried. The coverslips were then placed in 
a 24-well plate and either incubated with PBS or 100 μ M  heparin 
in PBS; 5 × 10 7  bacteria ( Ye  O:9 E40 pBla EGFP) were added to 
each well, spun down for 5 min at 300  g  and incubated for 1 h at 
37   °   C in a humidified atmosphere. Afterwards, the supernatant 
was removed, and the samples were washed 2 times and finally 
fixed by the addition of 4% paraformaldehyde in PBS. After wash-
ing, coverslips were mounted in Mowiol, and micrograph pictures 
were acquired using a Zeiss LSM 510. To quantify adhesion, the 
number of bacteria for a given field of view (representative for the 
entire coverslip) was counted.

  Analysis of C5b-9 Deposition by Flow Cytometry 
 To analyze whether bound Vn was functionally active, bacteria 

were incubated with Vn (10–50 μg/ml) or C4BP (10–50 μg/ml)
for 30 min at 37   °   C. After washing, bacteria were incubated with 
C5b-6 (1 μg/ml) and C7 (1 μg/ml) for 10 min, and then C8 (0.4 μg/
ml) and C9 (1 μg/ml) were added for 30 min at 37   °   C. All comple-
ment components except for Vn were from Complement Technol-
ogy (Tyler, Tex., USA). Deposited C5b-9 was detected by mouse 
anti-human C5b-9 mAb followed by Alexa Fluor 647-conjugated 
goat anti-mouse pAb. After 2 additional washes, bacteria were an-
alyzed by flow cytometry (EPICS XL-MCL; Coulter, Hialeah, Fla., 
USA). All incubations were kept in a final volume of 100 μl 1% BSA 
in PBS, and washes were performed with the same buffer. Primary 
and secondary pAb were added separately as negative controls for 
each strain analyzed.

  In vitro Serum Killing Assay 
 To analyze the susceptibility of  Ye  and  Yps  to complement-

mediated killing in human serum, 5 × 10 6  bacteria were incubated 
in 100 μl 20% NHS or HIS for 30 min at 37   °   C. Complement activ-
ity was stopped by adding 100 μl BHI medium and placing the 
samples for 5 min on ice. Afterwards, serial dilutions of the sam-
ples were prepared, plated on selective agar plates and incubated 
at 27   °   C for 48 h. The colony-forming units (CFU) were deter-
mined. The serum bactericidal effect was calculated as the survival 
percentage, taking the bacterial counts obtained with bacteria in-
cubated in HIS as 100%.

  In vivo Serum Killing Assay 
 To analyze the lytic activity of serum complement against  Ye  in 

C57BL/6 and B6.129S2(D2)- Vtn  tm1Dgi /J mice, the animals were in-
fected intravenously with 1 × 10 7  bacteria. After 30 min, they were 
sacrificed by CO 2  asphyxiation and blood was withdrawn from the 
heart. Heparin (100 μl at 100 μg/ml) (Sigma-Aldrich, Steinheim, 
Germany) was mixed with the blood to avoid coagulation. Serial 
dilutions of the samples were plated on selective agar and incu-
bated at 27   °   C for 48 h. The CFU were determined by counting the 
colonies.

  Bioinformatics and Statistical Analysis 
 The GI numbers or the references of the sequences used in this 

work are listed in  table 2 . Alignments were produced with Kalign 
or Muscle and further edited manually  [55, 56] . Data are expressed 
as means ± SD and were analyzed with the Student t test or with 
one-way ANOVA for multiple comparisons as described in the 
figure legends. GraphPad Prism v6.0 was used to analyze the data 
(GraphPad Software, La Jolla, Calif., USA). Differences were con-
sidered significant if p  ≤  0.05.

  Results 

 Ye O:9 E40 Efficiently Binds Vn 
 Vn plays an important role in the complement resis-

tance of, for example,  Mc ,  Hi  and  Streptococcus pneu-
moniae   [32, 34, 44, 54, 57] . In order to test if  Ye  is able to 
bind Vn and if there are differences in the binding capac-
ity of various  Ye  strains and serotypes, we incubated a set 
of strains in 50% HIS, washed the cells and detected Vn 
bound to bacteria by immunostaining with antibodies di-
rected against Vn and subsequent flow cytometry analysis 
( fig. 1 a). Upon incubation with HIS, we found very di-
verse binding properties of  Ye  strains compared to  Mc 
 RH4 and  Yps  YPIII.  Mc  RH4 served as a positive control 
 [30, 34] , whereas  Yps  YPIII was used as an additional 
comparator. It has been recognized that  Yps  YPIII YadA 
differs from the YadA sequences of other strains and that 
this difference coincides with a change in preferred ECM 
binding partners; this might possibly also affect the inter-
action with Vn ( Yps  YPIII YadA preferentially binds to 
fibronectin instead of collagen and laminin as observed 
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  Fig. 1.  Vn is efficiently bound by  Ye  O:9 E40 and  Yps .  a  Several 
strains of  Ye , serotype O:9 with and without virulence plasmid 
(O:9 E40 and O:9 E40 ΔpYV), serotype O:3 (O:3 6471/76) and se-
rotype O:8 (O:8 8081; O:8 WA-314), and 1  Yps  (Yps YPIII) WT 
strain were incubated with HIS, washed and subsequently ana-
lyzed for the presence of Vn on the bacterial surface by flow cytom-
etry.  Mc  (Mc RH4), which is known to bind Vn and  Yps , which we 
supposed also binds Vn, were included as a positive control for Vn 
binding.  Ye  O:9 E40, cured from the virulence plasmid (plasmid of 
 Yersinia  virulence; pYV) that encodes for the  Ye  T3SS, effector 
proteins and YadA, was included as a negative control because we 
surmised that Vn binding is pYV dependent. YadA protein levels 
were analyzed by Western blot analysis in whole-cell lysates and 
are shown below the bar chart (1 representative Western blot is 
shown). RNA polymerase protein (RNA-Pol.) was used as a load-
ing control. YadA O:3 6471/76  has a calculated molecular weight of 
approximately 141 kDa (455 aa), YadA O:8 8081  of 132 kDa (422 aa), 
YadA O:8 WA-314  of 132 kDa (422 aa), YadA O:9 E40  of 153 kDa (487 
aa), YadA YPIII  of 135 kDa (434 aa) and UspA2H of approximately 
272 kDa (876 aa).  b  To test if strain-specific differences in the bind-

ing of Vn are exclusive, we compared Vn binding levels to that of 
factor H. In contrast to Vn, factor H is bound in comparable 
amounts by all  Yersinia  strains tested, except for the negative con-
trol strain (O:9 E40 ΔpYV). The protein levels of YadA and the 
RNA polymerase as a loading control were analyzed by Western 
blots of whole-cell lysates and are shown below the bar chart (1 
representative Western blot is shown).  c  Binding of serum-derived 
Vn to  Ye  O:9 E40 is dose dependent.  Ye  O:9 E40 and the pYV-
cured version thereof were incubated with increasing serum con-
centrations. Afterwards, cell surface-associated Vn was quantified 
by flow cytometry.  d   Ye  O:9 E40 and the pYV-cured version
thereof were incubated with increasing amounts of purified Vn. 
Afterwards, cell surface-associated Vn was quantified by flow
cytometry. Binding of purified Vn to  Ye  O:9 E40 is dose-de-
pendent.  a–d  Data are means ± SD of at least 4 individual experi-
ments.  a ,  b  The main p values were determined by one-way
ANOVA. p < 0.0001. Multiple comparisons were performed by 
one-way ANOVA with Dunnett’s multiple-comparisons test.  c ,
 d  The p values were determined by Student’s t test. The error bars 
denote the SD.  *  p < 0.05,  *  *  p < 0.01,  *  *  *  p < 0.001,  *  *  *  *  p < 0.0001. 
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with  Ye )  [18] .  Ye  O:9 E40 was able to bind exceptionally 
high amounts of Vn, which led to a mean fluorescence 
intensity of approximately 2.8 times higher than that 
measured with  Mc  RH4 (133.9 ± 33.9 vs. 47.4 ± 19.6).  Yps  
also bound Vn, but at concentrations comparable to that 
of the  Mc  RH4 positive control (56.7 ± 11.0 vs. 47.4 ± 
19.6).  Ye  O:8 WA-314 and  Ye  O:3 6471/176 also bound 
Vn, though to a lesser extent than  Mc  RH4 (approx. 54.1 
or 70.7% of  Mc  RH4 signal).  Ye  O:8 8081 bound only re-
sidual amounts of Vn (6.7 ± 0.6). Interestingly, the bind-
ing of Vn to  Ye  O:9 E40 depended on the presence of the 
plasmid of  Yersinia  virulence (pYV) and was dose depen-
dent ( fig.  1 c, d). In a plasmid-deficient strain ( Ye  O:9
E40 ΔpYV), Vn binding was almost abolished (6.2 ± 2.8). 
To test if the strain-specific binding pattern of Vn
(O:9 E40 > YPIII > RH4 > O:3 > O:8 WA-314 > O:9 E40 
ΔpYV = O:8 8081) is exclusive in comparison to other 
serum factors, we also tested the binding of factor H 
( fig. 1 b). Factor H has been shown to interact with sev-
eral discontinuous stretches within the stalk domain of 
YadA  [20–22, 58] . Our data corroborate previous find-
ings that the binding of factor H by  Yersinia  strains relies 
on the presence of YadA, but in contrast to Vn, there is 
no significant difference in binding efficiency in the vari-
ous serotypes tested. This indicates different mechanisms 
of binding of Vn and factor H. Taken together, we found 
that  Ye  O:9 E40 is able to bind high amounts of serum-
derived as well as purified Vn, although only in the pres-
ence of the pYV plasmid, in a dose-dependent manner. 
In contrast,  Ye  O:8 WA-314, 8081 and  Ye  O:3 6471/76 are 
weak Vn binders, although they also carry the pYV plas-
mid. This partially substantiates earlier findings that
YadA-dependent Vn binding is at least weak if not non-
existent for  Ye  O:8 WA-314 in whole-cell adhesion assays 
under specific flow conditions  [45] .

  Binding of Vn Is YadA Dependent 
 In order to assess whether YadA is the determinant 

for the binding of Vn to  Yersinia , we used flow cytom-
etry to compare Vn binding in a  Ye  O:9 E40 WT strain, 
a mutant deficient for YadA (ΔYadA), a mutant defi-
cient for the chromosome-encoded adhesin Inv (ΔInv), 
the corresponding double mutant (ΔInvΔYadA; ΔΔ) 
and, again, the cured strain lacking the pYV plasmid 
(ΔpYV) ( fig. 2 a, left panel). We used  Mc  RH4 as positive 
control and an  Mc  ΔUspA2H  [32]  knockout strain as a 
negative control ( fig. 2 a, right panel). Our data indicate 
that the presence of YadA, but not of Inv, is decisive for 
the binding of Vn to  Ye  O:9 E40. Thus, in contrast to  Ye  
O:9 E40 WT or ΔInv, Vn did not bind to ΔYadA, the 

ΔInvΔYadA double mutant or the pYV-cured strain. 
We could corroborate these findings by blot overlay as-
says and Western blot ( fig. 2 b, c). Analysis of the influ-
ence of YadA and, more specifically, a distinct region 
within YadA of  Yps  for Vn binding revealed that in  Yps , 
YadA is also the Vn binding determinant ( fig. 2 a, middle 
panel). Moreover, the deletion of 30 aa (Δ53–83) corre-
sponding to the uptake region in the head domain of  Yps  
YadA YPIII  abolishes Vn binding ( fig. 2 a, middle panel). 
Thus, our data demonstrate that YadA is essential for 
mediating Vn binding in  Ye  and that a stretch of 31 aa 
within the head region of YadA YPIII  is decisive for the 
binding of Vn in  Yps .

  A Specific Stretch within YadA Discerns Low-Affinity 
Binding from High-Affinity Binding of Vn 
 We found that  Ye  expressing YadA derived from the 

O:8 WA-314 strain is a relatively weak binder compared 
to  Ye  O:9 E40 ( fig. 1 a). Therefore, we aimed to determine 
if other strains also carry the uptake region and also what 
actually discerns YadA O:9 E40  from YadA O:8  and if this dif-
ference might be causative for the discriminative Vn 
binding behavior. The head domain of YadA YPIII  contains 
a stretch of sequence (uptake region) which is crucial for 
cell adhesion and efficient internalization of  Yersinia  via 
YadA  [18] . This motif is absent in YadA of  Ye  O:8 but 
present in the  Ye  O:9 E40 strain (aa 56–88) ( fig. 3 a). It is 
rich in prolines and charged residues, suggesting an un-
defined loop structure ( fig. 3 b), inserted in a shorter loop 
that is not resolved in the crystal structure of the  Ye  O:3 
YadA head (PDB: 1P9H)  [59] .

  To investigate whether this motif is present exclusive-
ly in  Ye  O:9 E40 or can be found also in other  Yersinia  
strains and especially in strains isolated from clinical 
specimens, we carried out PCRs. We designed primers 
binding to rather conserved regions within the YadA se-
quence flanking that part of the head domain which com-
prises the uptake region (online suppl. fig. S1). The size 
of the PCR products allowed us to easily detect the pres-
ence of the uptake region. The predicted lengths of the 
YadA head fragments were 346 bp ( Ye  O:3), 337 bp  (Ye  
O:8), 346 bp ( Ye  O:5,27), 451 bp ( Ye  O:9) and 442 bp ( Yps  
YPIII). Strikingly, the additional stretch present in YadA 
of  Ye  O:9 E40 and  Yps  YPIII was present in all tested clin-
ical isolates of serotype O:9 but absent in all other strains 
(belonging to the indicted serotypes;  fig. 3 c) that we test-
ed.  Ye  O:9 E40 ΔYadA and water control were included 
as negative controls ( fig. 3 c, all strains depicted were also 
tested for Vn binding). Cell surface-associated Vn after 
incubation in HIS was quantified by flow cytometry 
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( fig. 3 d). Whereas all strains belonging to serotype O:9 
(No. 08–14) and possessing the uptake region within 
YadA bound Vn in comparably high amounts as  Ye  E40 
O:9,  Ye  strains of serotype O:3 (No. 01, 02, 03), O:8 (No. 
04) and O:5,27 (No. 06, 07) turned out to be rather weak 
binders. Thus, we assume that the presence of the uptake 
region is the major determinant that allows binding of Vn 
and (at least in the strains we have tested) is present ex-
clusively in the YadA of  Ye  strains of serotype O:9.

  To test this hypothesis, we generated a YadA hybrid 
where we replaced the N-terminus of the head domain 
of YadA O:8  by that of YadA O:9 E40  (including the uptake 
region) and a YadA O:9 E40  deletion mutant lacking the 
uptake region (aa 56–88) ( fig. 4 a). We then compared 
Vn binding by flow cytometry. The strains  Ye  O:9 
ΔYadA expressing YadA O:8 WA-314  or YadA O:9 E40  were 
also included in this analysis. In addition, we used  Ye  
O:8 WA-314,  Ye  O:9 E40 and  Ye  O:9 E40 ΔYadA as con-
trols ( fig. 4 b). Ectopic expression of YadA O:9 E40  was able 
to rescue Vn binding of  Ye  O:9 E40 ΔYadA. This was 
also true for the O:9/O:8 hybrid YadA. Additionally, de-
letion of the uptake region from YadA O:9  led to signifi-
cantly reduced Vn binding ( fig. 4 b). Our data show that 
the uptake region of YadA O:9 E40  significantly enhances 
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  Fig. 2.  Vn binding to  Ye  is YadA dependent.  a  Left panel: a  Ye  O:9 
E40 WT strain or strains carrying individual deletions for the ad-
hesins Invasin (ΔInv) or YadA (ΔYadA) and a respective double 
knockout strain (ΔΔ) as well as a virulence plasmid-cured strain 
(ΔpYV) were incubated with serum and washed, and then Vn 
binding was quantified by flow cytometry. Middle panel:  Yps  YPIII 
WT and corresponding strains lacking expression of ΔYadA or 
expressing a YadA version lacking part of the head domain (Δ53–
83) were included as controls. Right panel: an  Mc  WT strain known 
to bind Vn via the surface adhesin UspA2 and a corresponding 
strain lacking expression of UspA2 (ΔUspA2) were included as 
positive and negative controls. YadA protein levels were analyzed 
by Western blot analysis of whole-cell lysates and are shown below 
the bar chart (1 representative blot is shown).  b  A selection of the 
strains used in ( a ) was tested for Vn binding in a blot overlay assay. 
Vn and YadA were detected on the identical blot with specific an-
tibodies and differently labeled secondary antibodies (emission 
maximum at 680 and 800 nm, respectively) simultaneously. Vn is 
bound only in the presence of YadA ( Ye ) or UspA2, respectively. 
 c  In a direct binding assay, essentially performed as in  a , Vn can 
be detected  at the expected molecular weight (65 and 75 kDa) by 
Western blot only in those  Ye  strains expressing YadA. Data are 
means ± SD of at least 4 individual experiments ( a ) or 1/3 repre-
sentative experiments is shown ( b ,  c ). The main p value was deter-
mined by one-way ANOVA ( a : p < 0.0001). Multiple comparisons 
were performed by one-way ANOVA with Dunnett’s multiple-
comparisons test. The error bars denote the SD.  *  *   p < 0.01,
 *  *  *  *  p > 0.0001.  
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recruitment of Vn. Of note, a sequence alignment
of YadA from different  Yersinia  strains also revealed
insertions in the stalk regions of  Ye  YadA O:9 E40  and
YadA O:3 6471/76  that are not found in YadA YPIII  and 
YadA 0: 

 

 8   WA-314  (online suppl. fig. S2). However, these 
regions show no clear association with Vn or factor H 
binding ( fig. 1 a). Finally, we wanted to assess whether 
cofactors expressed by  Yersiniae  are necessary or if YadA 
containing the uptake region alone is sufficient to medi-
ate efficient binding of Vn. We tested Vn binding of  E. 
coli  omp2  [60]  which ectopically expressed the YadA 
version described above (online suppl. fig. S3). We 
found that expression of YadA O:9  or the hybrid 
YadA O:9/O:8  is sufficient to mediate the binding of Vn. 
Thus, we conclude that the decisive factor for Vn bind-
ing is YadA comprising the uptake region.

  Vn Interacts with YadA via Its C-Terminal HBD-3 
 Previous work with  Mc  and  Hi  revealed HBD-3 as the 

decisive part of Vn for interaction with UspA2 or Hsf  [34, 
35] . Therefore, we wanted to know if this domain might 
also mediate the interaction of Vn with YadA. In order to 
test this, we first analyzed whether heparin might block 
the binding of  Ye  to Vn by occupying the HBDs. This 
would be a clear indicator of the involvement of one of 
the HBDs in the interaction with YadA. Coverslips were 
coated with Vn and then incubated with  Ye  O:9 E40, ex-
pressing enhanced green fluorescent protein for easier 
detection of binding, either in the presence or absence of 
heparin. Thereafter, coverslips were washed, fixed, 
mounted and analyzed by fluorescence microscopy 
( fig. 5 a). Our results demonstrate that, in the presence of 
heparin, the binding of bacteria to Vn-coated coverslips 
is significantly reduced. Therefore, we conclude that at 

least one of the HBDs is involved in mediating the bind-
ing of Vn to YadA 0: 

 

 9 E40 .
  To locate the sites within Vn that actually determine 

YadA binding, we used a set of recombinant Vn frag-
ments ( fig. 5 b). These fragments essentially comprise C-
terminal-truncated Vn molecules as well as deletion mu-
tants lacking parts of HBD-3 (comprising aa 348–361) or 
adjacent regions. All fragments were tested for appropri-
ate quality (online suppl. fig. S4). Our binding assay 
( fig. 5 c) demonstrates that the fragments Vn 80–396, 80–
379, 80–373 and 80–363 are efficiently bound by  Ye  O:9 
E40. However, further C-terminal truncation, compris-
ing either parts of or the entire HBD-3 (80–353, 80–339), 
led to a reduction of binding. Fragments lacking the en-
tire HBD-3 plus the adjacent N-terminal region (80–330, 
80–229) bound only weakly to  Ye  O:9 E40 ( fig. 5 c). Thus, 
we assume that not only HBD-3 but also the adjacent N-
and especially the C-terminal approximately 10–20 aa are 
important for a stable interaction of Vn with  Ye  O:9 E40. 
These findings are in agreement with the fact that a Vn 
molecule lacking the C-terminal part of HBD-3 plus the 
adjacent C-terminal region (Δ352–374) is also impaired 
when binding to  Ye  O:9 E40 whereas deletion of either 
only part of HBD-3 (Δ352–362) or only the adjacent C-
terminal region (Δ362–374) does not significantly influ-
ence binding. In conclusion, aa 331–363 are decisive for 
the stable interaction of Vn with  Ye  O:9 E40.

  Vn Is Functionally Active and Inhibits the Terminal 
Pathway when Bound to the Surface of Ye 
 Besides modulating the adhesive properties of patho-

gens, Vn regulates the terminal complement pathway and 
blocks TCC formation. In order to test if Vn bound to  Ye  
is functionally active and inhibits the terminal comple-

  Fig. 3.  A specific region in the YadA head domain is decisive for 
efficient binding of Vn.    a  Alignment of the head of various YadA 
variants. White letters on gray background: signal peptide. Black 
letters on gray background: the canonical ‘SVAIG’ head repeats of 
YadA. Italics: the neck region that links the head to the coiled-coil 
stalk of YadA. The insertion of  Yps  originally proposed by Heise 
and Dersch  [18]  is displayed in bold, and is slightly shifted towards 
the N-terminus of YadA. The dashed line on top shows the cor-
rected position of the insertion, based on improved alignments 
and the structure of the YadA head from  Ye  O:3, where the short 
insertion is not resolved (underlined region). This and the unusu-
ally high number of prolines in this region suggest that it is not 
structured. The long version of the insertion carries a strongly pos-
itive net charge (+5 for  Yps  YPIII, +4 for the  Ye  O:9 E40), which 
probably plays a role in binding to fibronectin and Vn.  b  Sche-

matic view of the differences in the YadA heads. The    Yps  YPIII and 
 Ye  O:9 E40 variants have long insertions in an unstructured loop 
region close to the N-terminus of the head.  c  PCR products com-
prising the YadA head region of    Ye  O:8 WA-314,  Ye  O:9 E40 with 
and without YadA,  Yps  YPIII and clinical isolates derived from fe-
cal samples ( Ye  O:3, No. 01–03;  Ye  O:8, No. 04;  Ye  O:5,27, No. 
06–07 and  Ye  O:9, No. 08–12) or blood (No. 13) were separated by 
capillary gel electrophoresis. The predicted length of PCR prod-
ucts was as follows:  Ye  O:3 346 bp;  Ye  O:8 337 bp;  Ye  O:9 451 bp; 
 Ye  O:5,27 346 bp, and  Yps  YPIII 442 bp. Water control and a
YadA-deficient strain were included as negative controls.  d  The 
strains shown in  c  were tested for Vn binding. Cell surface-associ-
ated Vn after incubation in HIS was quantified by flow cytometry. 
One of 3 representative experiments is shown.               
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ment pathway, we assayed C5b-9 deposition in the pres-
ence of Vn bound to intact bacteria. To this end,  Ye  O:9 
E40 was preincubated with Vn or C4BP followed by the 
addition of C5b-6, C7, C8 and C9. C5b-9 deposition was 
determined by using an anti-C5b-9 mAb and flow cytom-
etry.

  We clearly demonstrate that Vn bound to the surface 
of  Ye  O:9 E40 was functionally active and inhibited
C5b-9 deposition in a dose-dependent manner ( fig. 6 a, 
b). Vn (50 μg/ml) inhibited C5b-9 deposition by 61%. 
C4BP, the C3 convertase inhibitor of the classical/lectin 
pathways, did not influence the C5b-9 deposition and 
thus the terminal pathway. From this, we conclude that 
Vn when bound to intact  Ye  is functionally active and 
inhibits the terminal complement pathway and C5b-9 
deposition.

  Binding of Vn Decreases the Susceptibility to 
Complement-Mediated Killing by Human Serum 
 YadA-mediated serum resistance is an important vir-

ulence trait of  Ye   [21, 61, 62] . To analyze the importance 
of Vn binding for preventing complement-mediated 
killing, we performed serum killing assays. We incubat-
ed  Ye  O:9 E40, the corresponding YadA-deficient mu-
tant (ΔYadA) and  Ye  O:8 WA-314 in NHS ( fig. 7 a, ‘con-
trol strains’). Their survival was calculated as the sur-
vival percentage, taking the bacterial counts obtained 
with samples incubated in HIS as 100%. Our data show 
that  Ye  O:9 E40 – a strong Vn binder – is resistant to 
complement-mediated killing (% survival in NHS com-
pared to HIS 119.1 ± 40.39) whereas the  Ye  O:9 E40 
ΔYadA mutant strain was highly susceptible for killing 
by the complement system (16.74 ± 9.83). Compared to 
 Ye  O:9 E40, the weak Vn binder  Ye  O:8 WA-314 was sig-
nificantly more susceptible to complement-mediated 
killing (39.21 ± 7.11) than  Ye  O:9 E40 ( fig. 7 a). Further-
more, we also tested  Ye  O:9 E40 ΔΔ expressing either 
YadA O:9 , YadA O:9/O:8 , YadA O:9 Δuptake region  or YadA O:9 
for serum resistance. We found that the expression of
YadA O:9  (103.6 ± 3.42) and also of the O:9/O:8 hybrid 
YadA (105.7 ± 27,56) conferred serum resistance com-
parable to that of the Ye O:9 E40 WT strain. In contrast, 
the serum survival was significantly reduced upon the 
expression of YadA O:8  (48.55 ± 9.36). Compared to all 
these strains, a strain expressing the YadA O:9 lacking 
the uptake region showed the greatest sensitivity to-
wards serum treatment (16.8 ± 7.57). These data clearly 
indicate that the YadA-dependent binding of Vn plays 
an important role in preventing the lysis of  Ye  by the 
complement system.
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ANOVA with Dunnett’s multiple-compar-
isons test. The error bars denote the SD.
 *  p < 0.05,  *  *  *  p < 0.001.     
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  Mice Deficient for Vn Expression Eliminate Ye More 
Rapidly in Short-Term Systemic Infection 
 It is known that YadA is decisive for the survival of  Ye  

upon contact with serum  [6, 12] . This is one reason why 
YadA-deficient strains of  Ye  are avirulent in the mouse 
model  [12] . However, the contribution of the YadA-de-
pendent recruitment of Vn to the survival of  Ye  in a mouse 
model has not been addressed so far. In order to test if the 
presence of Vn has an influence on the survival of  Ye  in 
vivo, we infected Vn –/–  and WT mice with  Ye  O:9 E40, 
sacrificed the mice 30 min after infection and determined 
the bacterial burden in the blood. We found that the bac-
terial load in the blood was significantly reduced (log 10  
CFU per gram of blood = 2.7 ± 0.8) for the Vn –/–  mice 
compared to WT mice (log 10  CFU per gram of blood =
4.2 ± 1.0) ( fig. 7 b). In line with the reduction of C5b-9 de-
position on  Ye  by Vn, these data would suggest that Vn 
protects  Ye  from early killing in the blood stream.

  Compared to YadA of  Ye  O:9 E40, the YadA of  Ye  O:8 
WA-314 shows a low Vn-binding capacity. Therefore, we 
hypothesized that due to this low Vn-binding capacity 
and in contrast to our findings with  Ye  O:9 E40, the avail-
ability of Vn should only marginally impact the outcome 
of an early bloodstream infection with the  Ye  O:8 WA-
314 strain. However, since the  Ye  O:9 and O:8 strains ex-

hibit additional differences with regard to sequence and 
also virulence mechanisms  [63–66] , this experiment may 
not solve the question of whether the uptake region actu-
ally contributes to better clearance of infection by mediat-
ing more efficient binding of Vn specifically. Therefore, 
we used a slightly different approach. To clearly assess the 
role of the uptake region and to exclude other differences 
between the  Ye  O:8 and the  Ye  O:9 strain tampering with 
the result of our experiments, we infected mice with  Ye 
 harboring pYadA O:9/8 hybrid  or pYadA O:8  in the same strain 
background ( Ye  O:9 E40 ΔΔ). The basic sequence of the 
YadA of these strains is identical, with the exception of 
the part encoding the uptake region. Surprisingly, the in-
fection of C57BL/6 WT or Vn –/–  mice with  Ye  O:9 E40 ΔΔ 
+ pASK-IBA4c_yadAO:8 led to a small but significant 
difference in bacterial counts (online suppl. fig. S5A; 5.9 
± 0.3 log 10  CFU per gram of blood in WT mice vs. 6.4 ± 
0.3 in Vn –/–  mice). As observed previously with  Ye  O:9 
E40, infection with  Ye  O:9 E40 ΔΔ harboring pASK-
IBA4c_yadAO:9/O:8 hybrid revealed a significantly re-
duced bacterial load in the blood for the Vn –/–  mice (log 10  
CFU per gram of blood = 4.9 ± 0.2) compared to WT mice 
(log 10  CFU per gram of blood = 5.5 ± 0.2) (online suppl. 
fig. S5B). This leads to the assumption that the binding of 
Vn to different regions of YadA may have various impli-
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signal that was obtained using secondary antibody only for detec-
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cations for YadA function. While binding of Vn to the 
uptake region seems to increase virulence, binding of Vn 
to other regions of YadA might also reduce virulence.

  Discussion 

 Complement inhibitor recruitment by bacterial cell 
surface proteins and adhesins is an important virulence 
mechanism used by many pathogens. Accordingly, sev-
eral complement regulators (factor H, factor H-like pro-
tein-1 and C4BP) and complement proteins (C3b and 
iC3b) have been identified that interact with the Gram-
negative enteropathogen  Ye   [19–22, 61, 62, 67] . Here, we 
describe a novel mechanism that contributes to  Ye  com-
plement resistance and the overall virulence of  Ye . We 
show that the TAA YadA of different  Yersinia  species 

binds Vn and demonstrate that a part of the YadA head 
domain of YadA O:9 E40  comprising aa 56–88 binds Vn 
with high efficiency. Recruitment of Vn to YadA led to 
the reduced surface formation and deposition of C5b-9 
(TCC) and thus enhanced complement resistance. More-
over,  Ye  O:9 E40 was completely resistant to comple-
ment-mediated killing in human serum, in contrast to the 
YadA-deficient strain. In addition, it turned out that, in 
comparison to  Ye  O:8 WA-314,  Ye  O:9 E40 is significant-
ly more serum-resistant. Using Vn-deficient mice, we 
were also able to demonstrate the reduced survival of  Ye  
O:9 E40 in the absence of Vn in an in vivo serum killing 
assay. Thus, the binding of Vn to the surface of  Ye  has a 
great impact on the interaction of  Ye  with the host.

  In our experiments, we found that different strains of 
 Ye  and  Yps  bind Vn in a YadA-dependent manner but 
that different  Yersinia  strains exhibited divergent Vn-
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vidual experiments. The main p value was determined by one-way 
ANOVA (  p < 0.0001). Multiple comparisons were performed by 
one-way ANOVA with Dunnett’s multiple-comparisons test.
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binding capacities. Previous studies with different  Mc  
WT strains show that  Mc  also binds Vn with different af-
finities via UspA2  [30] . The N-terminus of the UspA2 
head domain sequence displays 2 different conserved re-
gions that may explain these Vn binding differences  [68] . 
Furthermore, we show for the first time that  Ye  strains of 
serotype O:9 – unlike all other  Ye  strains we tested – ex-
hibit an additional stretch in their YadA head domain. 
These strains, and to a lesser extent  Yps  YPIII, showed 
high-affinity binding to Vn while other tested  Ye  strains 
showed only low-affinity binding. Unfortunately, we 
were not able to correlate the ability to bind Vn and the 
pathogenic potential of clinical isolates due to the low fre-
quency of  Ye  infection (and thus available isolates) and 
the fact that systemic infection with  Ye  happens only on 
rare occasions. The stretch in YadA O:9  is highly similar to 
the uptake region described for  Yps  YPIII  [18] , which is 
important for the ability of YadA to promote the invasion 
of  Ye  into host cells.  Yps  binds preferentially to fibronec-
tin, but has low affinity for laminin or collagen type I, 
which is in contrast to the ECM protein-binding capacity 
of  Ye  which preferentially associates with collagen type I 
and laminin. This indicates that the uptake region may 
modulate the overall affinity to different ECM proteins. 
Sequence comparison of YadA O:9 E40  also revealed addi-
tional aa stretches in the YadA stalk domain, lacking in 
some other  Ye  strains. However, comparison of the Vn-
binding capacity of different  Ye  and  Yps  strains shows no 
clear indication that this region may also contribute to the 
differences in Vn binding, since YadA O:3 6471/76  has the 
same insertion in the stalk region. In contrast to Vn bind-
ing, the interaction with factor H, which was shown to 
bind to the stalk region of YadA in  Ye  and  Yps  strains, 
revealed no differences  [20] . This indicates that the pres-
ence or absence of the uptake region modulates affinity
to Vn.

  The site of interaction between  Mc  and Vn was mapped 
to the N-terminal residues 30–177 within UspA2  [34] . 
This region is located in the head domain of UspA2, 
which is similar to YadA O:9 E40 . Our data show that subtle 
differences within the YadA protein sequence can signif-
icantly influence the protein interaction repertoire of  Ye . 
The recruitment of such proteins to the surface of  Ye  may 
exert a significant influence on serum resistance and host 
cell interaction.

  Localization of the Vn-binding domain within the 
YadA protein is a crucial step when analyzing the func-
tion of YadA in complement evasion. In contrast to com-
plement regulator factor H or the complement compo-
nent C3, which bind to the stalk domain of YadA  [20] , we 

found that Vn is bound via the YadA head domain. In  Ye , 
the neutrophil-binding domain is located at the N-termi-
nal part of YadA whereas the collagen-binding domain is 
located at the central and C-terminal part of the YadA 
head domain  [59, 69–72] . The inhibition of Vn binding 
with heparin was already shown for  Mc  and  Hi . In both 
species, the interaction of Vn with UspA2 or Hsf was as-
signed to HBD-3  [34, 35] . In contrast, for  Ye  O:9 E40, not 
only HBD-3 but also the adjacent N- and C-terminal por-
tions of Vn are decisive for the efficient interaction with 
YadA. We conclude that complement evasion of  Ye  is not 
limited to interactions mediated by the stalk domain but 
can involve the head domain of YadA, depending on the 
strain in question. Furthermore, the uptake region in  Ye  
O:9 seems to provide a binding domain for Vn which 
strongly amplifies the binding of Vn.

  Previous studies showed that recruitment of Vn by  Mc  
or  Hi  inhibits C5b-9 formation to block pore formation 
 [27] . However, analyzing the TCC formation in  Ye  with 
purified complement proteins (C5b-6, C7, C8 and C9), 
we showed that bound Vn inhibits the deposition of C5b-
9 on the bacterial surface. Consequently, these data show 
that Vn bound to the bacterial surface via YadA is func-
tionally active and inhibits the terminal pathway and thus 
contributes to complement resistance. Indeed, in in vitro 
serum killing assays, we showed that  Ye  O:9 E40 is the 
strain that sustains treatment with serum most efficiently 
compared to  Ye  O:8 and  Yps  YPIII. In contrast, a YadA-
deficient strain of  Ye  O:9 E40 was susceptible to serum 
killing. Thus YadA-mediated binding of Vn in  Ye  O:9 E40 
is decisive for the success of serum treatment in vitro. The 
situation is different in  Ye  O:8 WA-314. This strain is 
much more sensitive to serum treatment compared to  Ye 
 O:9. We know that in  Ye  O:8, serum resistance is medi-
ated by the YadA-dependent recruitment of C3b/iC3b, 
factor H and C4BP  [21, 33] . As all these factors bind to 
YadA and, at least for C4BP, the binding site(s) within 
YadA is unknown, there might be competition for bind-
ing sites, and this might lead to the binding of low levels 
of Vn. Still, binding of all the other negative regulators of 
complement can mediate serum resistance to a certain 
extent. A decisive role of YadA for serum resistance of  Yps  
YPIII is rather unlikely as it has been shown that  Yps  se-
rum resistance occurs independently of the presence of a 
virulence plasmid (that encodes YadA  [73] ). The known 
mechanisms involved in the serum resistance of  Yps  are 
the binding of C4BP and factor H via Ail  [74, 75] . Never-
theless, we have shown that  Yps  also binds Vn via YadA. 
We think that in this case the recruitment of Vn has a 
function other than mediating serum resistance and
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speculate that it might be involved in, for example, the 
modulation of host cell targeting  [66]  and interaction 
 [24] .

  Consequently, this should also improve the survival of 
 Ye  in vivo. Indeed, the short-term infection of Vn-defi-
cient mice with  Ye  O:9 E40 revealed that Vn protects  Ye  
from being killed by the immune system. A short-term 
infection of mice was used to avoid (as far as possible) the 
action of other virulence mechanisms such as those pro-
vided by the T3SS. According to ex vivo measurements, 
the injection of Yops should efficiently show its action at 
later time points. Therefore, the short-term mouse ex-
periments should predominantly reflect the impact of Vn 
on complement killing, as the complement system is ac-
tivated within seconds after infection. Thus, the mouse 
infection experiments provide evidence that the inhibi-
tion of TCC formation by Vn via binding to YadA indeed 
has biological relevance. These findings clearly demon-
strate the importance of Vn binding to the uptake region 
for the pathogenicity of  Ye . However, binding of Vn may 
also counteract YadA-mediated virulence, which is indi-
cated by the slightly increased bacterial load after infec-
tion of Vn-deficient mice with  Ye  O:9 E40 ΔΔ expressing 
YadAO:8. We assume that the weak binding of Vn out-
side of the uptake region might interfere with the binding 
of other factors to YadA which are critical for YadA as a 
virulence factor. From an evolutionary point of view, the 
acquirement of the uptake region converts Vn from a fac-
tor protecting against infection to a factor mediating im-
mune evasion.

  Although individuals lacking terminal complement 
components are known to be more susceptible to  N.   men-
ingitidis   [76]  but not especially to  Ye  infections, Vn bind-
ing is an important mechanism contributing to the over-

all serum resistance of  Ye .  Ye  YadA interacts with a mul-
titude of complement regulatory factors (C4bp, C3b, 
iC3b and factor H) that all contribute to serum resistance 
of  Ye  in a true infection situation. These interactions in 
sum finally determine the success of  Ye  within the host.

  Taken together, our data present a novel mechanism 
of how YadA mediates immune evasion. By binding the 
HBD-3 domain of Vn, YadA containing the uptake re-
gion mediates the efficient inhibition of TCC formation 
and thus contributes to complement resistance and better 
survival of  Ye . YadA is a multifunctional protein mediat-
ing complement resistance and also adhesion which, in 
turn, are critical for the subsequent injection of Yops into 
the host cells via the T3SS. Beyond bacteriolysis mediated 
by the assembly of the TCC, the even more important ef-
fect of Vn may be to modulate the interaction of  Ye  with 
immune cells  [66] . Further studies will now address how 
Vn may influence adhesion, invasion and Yop injection 
during mouse infection.
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