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Abstract

The first catalytic enantioselective carbonyl (α-amino)allylations are described. Phthalimido-

allene 1 and primary alcohols 2a-2z, 2a’−2c’ engage in hydrogen auto-transfer-mediated carbonyl 

reductive coupling by way of (α-amino)allyliridium-aldehyde pairs to form vicinal amino alcohols 

3a-3z, 3a’−3c’ with high levels of regio-, anti-diastereo and enantioselectivity. Reaction progress 

kinetic analysis and KIE studies corroborate a catalytic cycle involving turn-over limiting alcohol 

dehydrogenation followed by rapid allene hydrometalation.

Graphical Abstract

Asymmetric carbonyl addition ranks foremost among methods used for the convergent 

construction of enantiomerically enriched alcohols.1 Data mining of patents from the 

pharmaceutical industry reveals that carbonyl addition (alongside Suzuki coupling) remains 

one of the most frequently utilized methods for C-C bond formation.2 The vast majority of 

carbonyl addition reactions rely on the use of preformed carbanions, which can be moisture 

sensitive, unsafe, and often require multi-step preparation and cryogenic conditions. Metal-

catalyzed carbonyl reductive coupling of π-unsaturated pronucleophiles has emerged as an 

alternative to the use of stoichiometric carbanions.3 However, many of the terminal 

reductants utilized in such processes (e.g. Mn, Zn, Et3B, Et2Zn) are as problematic as the 
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premetalated reagents they replace. Carbonyl reductive coupling via hydrogen auto-transfer 

does not require an exogenous reductant, as alcohol reactants serve dually as reductant and 

carbonyl proelectrophile.4

Based on this concept and motivated by the prevalence (>40%) of chiral amines (including 

vicinal amino alcohols) in FDA approved drugs,5a,b a catalytic enantioselective carbonyl (α-

amino)allylation was sought.6,7,8 In 1993, Barrett reported a boron reagent for asymmetric 

carbonyl (α-amino)allylation.7 Remarkably, after more than 25 years, corresponding 

catalytic enantioselective processes have remained elusive, and the only related catalytic 

transformation to have appeared is the 2-azadiene-ketone reductive coupling reported by 

Malcolmson.9 Here, we disclose that phthalimido-allene 1, a tractable crystalline solid (M.P. 

= 79–81 °C), participates in catalytic enantioselective carbonyl reductive coupling via 

hydrogen auto-transfer to deliver vicinal amino alcohols with high levels of regio-, anti-
diastereo- and enantiocontrol (Figure 1). This work represents a rare example of the use of 

allene pronucleophiles in enantioselective carbonyl reductive coupling.10

Phthalimido allene 1 is readily prepared through base-catalyzed isomerization of 

commercially available N-propargyl phthalimide.11 Guided by seminal findings from our 

laboratory,12 it was posited that hydrogen transfer from primary alcohols to allenimide 1 
would generate transient (phthalimido)allyliridium-aldehyde pairs that combine by way of 

closed six-centered transition structures to furnish anti-vicinal amino alcohols. The 

feasibility of this transformation was rendered uncertain by competing conventional transfer 

hydrogenation of allene 1 in response to the steric demand of the phthalimide moiety, which 

may retard the rate of aldehyde addition. An assay of diverse chiral ruthenium and iridium 

complexes was undertaken and a promising result was obtained using the cyclometallated π-

allyliridium complex modified by 3-nitrobenzoic acid and (R)-SEGPHOS, Ir-I, which 

delivered the desired amino alcohol 3a in 10% yield and 40% ee with >20:1 anti-
diastereoselectivity (Table 1). Enantioselectivity improved using the more Lewis acidic 4-

cyano-3-nitro-C,O-benzoate, Ir-II, but the isolated yield of 3a remained modest due to low 

conversion. Similar trends were observed with the corresponding catalysts based on (R)-

BINAP, Ir-III and Ir-IV, but with a small increase in enantioselectivity. A pronounced 

improvement in both conversion and enantioselectivity was observed upon use of Ir-V, 

which incorporates (R)-H8-BINAP.13 Use of the (R)-H8-BINAP iridium complex bound by 

3,4-dinitro-C,O-benzoic acid, Ir-VI, provided still higher levels of enantioselectivity. Finally, 

introduction of mono-basic potassium phosphate led to higher conversion, allowing 3a to be 

formed in 80% yield, 96% ee with complete anti-diastereoselectivity (Table 1). As borne out 

by single crystal X-ray diffraction analysis of Ir-VI (see Supporting Information), the 

dihedral angle between the tetralin rings of (R)-H8-BINAP (ca. 86°) is significantly larger 

than the dihedral angle between the naphthalene rings of BINAP (ca. 75°) or SEGPHOS (ca. 

72°),14 which may better accommodate the sterically demanding phthalimide moiety to 

facilitate alkoxide exchange at the metal center.

Reaction scope was evaluated by applying optimal conditions identified for the (α-

amino)allylation of 2-phenylethanol 2a to diverse alcohols 2b-2z, 2a′−2c′ (Table 2). All 

vicinal amino alcohols 3a-3z, 3a′−3c′ were formed in good yield with excellent levels of 

diastereo- and enantioselectivity. The (α-amino)allylations of N-Boc-ethanolamine 2j, N-
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Boc-propanolamine 2k and trifluorobutanol 2m, which are commercially available, are 

significant as the corresponding aldehydes are not available for purchase and are relatively 

unstable. Modification of the heteroaryl-containing alcohols 2c-2i, 2t and 2u, which includes 

perphenazine 2g, an FDA approved drug, establishes the feasibility of utilizing this method 

for late-stage functionalization.15 Due to a pronounced kinetic bias for primary alcohol 

dehydrogenation,16 free secondary hydroxyl groups are tolerated, as illustrated in the site-

selective formation of (R)-butane diol adducts 3b′ and 3c′, which occur with complete 

levels of catalyst-directed diastereoselectivity. Using this first generation catalytic system, 

benzylic alcohols are converted to the amino alcohols in high yield but lower 

enantioselectivities are observed. As demonstrated by the conversion of dehydro-2l to amino 

alcohol 3l, the reactions can also be conducted from the aldehyde oxidation level using 2-

propanol as terminal reductant (eq. 1). Given the frequent appearance of morpholines as 

substructures in pharmaceutical ingredients,17 compound 3a was converted to the 

morpholine 5a (eq. 2).18 To further demonstrate utility of amino alcohols 3a-3z, 3a′−3c′, 
adduct 3m was subjected to alkene oxidative cleavage to provide the non-proteinogenic 

amino acid derivative 6m (eq. 3).19

(eq. 1)

(eq. 2)

(eq. 3)
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Reaction progress kinetic analysis (RPKA) using the “different excess” protocol was used to 

gain mechanistic insight (Figure 2).20 The kinetic order of reactants varied over time; 

therefore, general trends were evaluated. Doubling the initial concentration of allene 1 
slightly decreases the rate of product formation. This data suggests allene hydrometalation is 

rapid, allene 1 is not involved in the turnover-limiting step and, at higher concentrations, 

allene 1 inhibits the rate of product formation (Figure 2, left). Doubling the initial 

concentration of alcohol 2a results in a slight increase in the rate of product formation, 

signifying a positive order in alcohol 2a (Figure 2, middle). Increasing the loading of iridium 

catalyst, (R)-Ir-VI, results in a dramatic increase in the rate of product formation, 

demonstrating the reaction is positive order in catalyst (Figure 2, right). Separate 

experiments using the “same excess” protocol reveal significant catalyst deactivation that is 

contributed to by product inhibition.21 Additionally, introduction of aldehyde dehydro-2a 
(10 mol%) inhibits product formation, suggesting carbonyl addition may not be turn-over 

limiting.21

Deuterium labeling studies provide additional information on the reaction mechanism (eq. 

4–6).22 Exposure of allene 1 to deuterio-2a under standard reaction conditions delivers 

deuterio-3a (eq. 4). Deuterium is completely retained at the carbinol position, suggesting 

deuterio-3a is inert with respect to dehydrogenation. Incorporation of deuterium at both the 

internal and terminal vinylic positions corroborates reversible allene hydrometalation with 

incomplete regioselectivity. In a competition kinetics experiment, allene 1 was exposed to 

equimolar quantities of alcohol 2a and deuterio-2a (eq. 5). The observed levels of deuterium 

incorporation at the carbinol position of deuterio-3a are consistent with a normal primary 

kinetic isotope effect (kH/kD ≈ 2.3). Evaluation of the initial rates for the reaction of both 2a 
and deuterio-2a also reveals a primary kinetic isotope effect (kH/kD ≈ 1.5) (Figure 3). Along 

with the reaction orders suggested from the RKPA experiments, this KIE data was consistent 

with two scenarios: (1) reversible alcohol dehydrogenation followed by rate-determining 

carbonyl addition, or (2) rate-determining alcohol dehydrogenation.22 To determine which of 

these processes is operative an additional experiment was undertaken (eq. 6). When 

pthalimido-allene 1 is exposed to equimolar quantities of deuterio-2a and dehydro-2l under 

standard conditions, hydrogen-deuterium exchange is not observed at the carbinol position 

of deuterio-3a and dehydro-3l, suggesting alcohol-aldehyde redox equilibration does not 

occur in advance of carbonyl addition. Hence, the collective data implicate turnover-limiting 

alcohol dehydrogenation followed by rapid allene hydrometalation.

(eq. 4)
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(eq. 5)

(eq. 6)

Based on the kinetic and isotopic labeling studies, the indicated catalytic mechanism is 

proposed (Scheme 1). Entry into the catalytic cycle occurs through protonolysis of the 

allyliridium complex (R)-Ir-VI by the reactant alcohol. The resulting iridium alkoxide I 
undergoes irreversible dehydrogenation to form the iridium hydride II, which is rapidly 

consumed by reversible allene hydrometalation. Due to the steric demand of the phthalimide 

moiety, the (Z)-σ-(amino)allyliridium complex IIIa is anticipated to be the kinetic product 

of allene hydrometalation. Isomerization to the thermodynamically preferred (E)-σ-

allyliridium complex IIIb, is followed by aldehyde coordination and carbonyl addition 

through a closed chair-like transition structure to form iridium(III) alkoxide IV. Exchange 

with the primary alcohol reactant releases product and regenerates iridium alkoxide I to 

close the catalytic cycle.

In summary, we report a catalytic method for the direct conversion of primary alcohols to 

vicinal amino alcohols that occurs with high levels of regio-, anti-diastereo- and 

enantioselectivity. This hydrogen auto-transfer process exploits the tractable, crystalline 

phthalimido-allene 1 as pronucleophile and represents the first protocol for catalytic 

enantioselective carbonyl (α-amino)allylation. More broadly, this work contributes to an 

evolution from use of traditional carbonyl addition methods that exploit preformed 

carbanions to byproduct-free catalytic carbonyl reductive couplings, where alcohol 

proelectrophiles and π-unsaturated pronucleophiles combine by way of transient 
organometallics.4

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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appears consistent with reaction coordinate 1, Figure 1: Simmons, E. M.; Hartwig, J. F. On the 
Interpretation of Deuterium Kinetic Isotope Effects in C-H Bond Functionalizations by 
Transition-Metal Complexes. Angew. Chem. Int. Ed 2012, 51, 3066.
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Figure 1. 
Selected enantioselective methods for convergent construction of vicinal amino alcohols via 
classical and metal-catalyzed carbonyl addition.
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Figure 2. 
Product formation as monitored by 1H NMR analysis in reactions conducted using the 

“different excess” protocol: [Ir] = 0.01 M; [KH2PO4] = 0.2 M. (left) [2a]0 = 0.2 M, [1]0 = as 

noted; (middle) [1]0 = 0.3 M, [2a]0 = as noted. (right) Product formation varying catalyst 

loading reactions as monitored by NMR analysis: [1] = 0.3 M; [2a] = 0.2 M; [KH2PO4] = 

0.2 M; [cat] = as noted.
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Figure 3. 
Initial rates study: [1]0 = 0.3 M; [2a]0 or [deuterio-2a]0 = 0.2 M; [cat] = 0.01 M.
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Scheme 1. 
General catalytic mechanism as corroborated by kinetic and isotopic labeling studies.
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Table 1.

Selected optimization experiments in the enantioselective iridium-catalyzed (α-amino)allylation of 

phthalimido-allene 1 with alcohol 2a.
a

a
Yields are of material isolated by silica gel chromatography. Diastereoselectivities were determined by 1H NMR of crude reaction mixtures. 

Enantioselectivities were determined by chiral stationary phase HPLC analysis. See Supporting Information for experimental details.
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