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Abstract

The cholinergic system has a crucial role to play in visual function. Although cholinergic drugs 

have been a focus of attention as glaucoma medications for reducing eye pressure, little is known 

about the potential modality for neuronal survival and/or enhancement in visual impairments. 

Citicoline, a naturally occurring compound and FDA approved dietary supplement, is a nootropic 

agent that is recently demonstrated to be effective in ameliorating ischemic stroke, traumatic brain 

injury, Parkinson’s disease, Alzheimer’s disease, cerebrovascular diseases, memory disorders and 

attention-deficit/hyperactivity disorder in both humans and animal models. The mechanisms of its 

action appear to be multifarious including (i) preservation of cardiolipin, sphingomyelin, 

arachidonic acid content of phosphatidylcholine and phosphatidylethanolamine, (ii) restoration of 

phosphatidylcholine, (iii) stimulation of glutathione synthesis, (iv) lowering glutamate 

concentrations and preventing glutamate excitotoxicity, (v) rescuing mitochondrial function 

thereby preventing oxidative damage and onset of neuronal apoptosis, (vi) synthesis of myelin 

leading to improvement in neuronal membrane integrity, (vii) improving acetylcholine synthesis 

and thereby reducing the effects of mental stress and (viii) preventing endothelial dysfunction. 

Such effects have vouched for citicoline as a neuroprotective, neurorestorative and 

neuroregenerative agent. Retinal ganglion cells are neurons with long myelinated axons which 
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provide a strong rationale for citicoline use in visual pathway disorders. Since glaucoma is a form 

of neurodegeneration involving retinal ganglion cells, citicoline may help ameliorate 

glaucomatous damages in multiple facets. Additionally, trans-synaptic degeneration has been 

identified in humans and experimental models of glaucoma suggesting the cholinergic system as a 

new brain target for glaucoma management and therapy.
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1. Introduction

Key hypotheses of glaucoma pathogenesis include chronically elevated intraocular pressure 

(Bonomi et al., 1998; Chan et al., 2017b; Choi and Kook, 2015; Coleman and Kodjebacheva, 

2009; Hayreh et al., 1999; Leske et al., 1997), glutamate excitotoxicity (Dreyer, 1998; 

Lotery, 2005; Osborne et al., 2006), oxidative stress (Dada et al., 2018; Izzotti et al., 2006; 

Kimura et al., 2017), failure in axonal transport (Chidlow et al., 2011; Crish et al., 2013; 

Fahy et al., 2016), neurotrophic factor deprivation (Ghaffariyeh et al., 2011; Harvey et al., 

2012; Johnson et al., 2011), mitochondrial dysfunction (Ito and Di Polo, 2017; Kong et al., 

2009; Kumar et al., 2013b; Lee et al., 2011b), autoimmune dysregulation (Bell et al., 2013) 

and central insulin signaling deficit (Faiq et al., 2014b; Faiq and Dada, 2017), though other 

mechanisms have also been indicated (Burgoyne et al., 2005; Dai et al., 2012; Faiq, 2016, 

2018; Faiq et al., 2016b; Faiq et al., 2015; Faiq et al., 2014c; Fry et al., 2018; Gruntzig and 

Hollmann, 2019; Hasnain, 2006; Janssen et al., 2013; Morrison et al., 2011; Rieck, 2013; 

Sun et al., 2017; Tamm et al., 2017; Wostyn et al., 2017; Wostyn et al., 2018). Citicoline, a 

precursor for neurotransmitter acetylcholine and other neuronal membrane components 

including phosphatidylcholine and sphingomyelin, also mediates neurodegenerative events 

through reducing glutamate excitotoxicity (Mir et al., 2003), reducing oxidative stress (Qian 

et al., 2014), elevating neurotrophin level, ameliorating axonal transport deficits (Grieb et 

al., 2016), improving mitochondrial function (including cardiolipin synthesis) (Zazueta et 

al., 2018), restoring membrane integrity (Yildirim et al., 2015) and modulating insulin 

signaling (Krupinski et al., 2012). Since glaucoma is a neurodegenerative disease of the 

visual system, this puts forth an imperative justification that citicoline can be employed as a 

potential candidate for glaucoma prevention and treatment via protecting, rescuing/restoring 

or regenerating neurons (van der Merwe et al., 2016). Meticulous studies on the 

etiopathogenesis of glaucoma and citicoline actions are important to evaluate the 

mechanisms, efficacy and safety of neurotherapeutics as a treatment modality for 

neurodegenerative diseases of the visual system including glaucoma. Here we provide a 

conceptual outlook of the cholinergic system in the brain and retina followed by arguments 

and studies substantiating the rationale for using citicoline in glaucoma. Then we go on to 

discuss about the future of citicoline based treatments as neuroprotective, neurorestorative 

and neuroregenerative regimens in degenerative diseases afflicting the central nervous 

system (CNS) and its extended parts including the retina. As a conceptual navigation, Figure 

1 guides through the key messages from each part of the paper.
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2.1. Choline in the Brain

Despite being the first neurotransmitter identified, our understanding of acetylcholine (ACh) 

and the cholinergic networks remains relatively poor. For example, a PubMed search of the 

term “acetylcholine” returned 92530 entries on 16th January, 2019 whilst the term 

“glutamate” returned 155272 entries. A part of the reason is that the cholinergic system is 

complex and this intricacy increases as the level of inquiry deepens. For instance, 

distribution of the ACh receptors (AChRs) (Albuquerque et al., 2009; Dani, 2015) along 

with their tissue specific category differentiate and regulate their inter- and intra-neuron 

localization for multiscale (temporal and topological) neuromodulation with cumulative 

complexity at each level. This makes the cholinergic system capable of regulating both 

short-term and long-term circuit modulation in the CNS (Fagen et al., 2003; Mansvelder and 

McGehee, 2000; Picciotto et al., 2012). Differences in the expression of various cholinergic 

moieties by the CNS, the presence of several subtypes of cholinergic neurons [e.g. nicotinic/

ionotropic AChRs (nAChRs) and muscarinic AChRs (mAChRs)] and their interactions with 

other neurons also provide a platform for neuromodulation at somatic, dendritic and synaptic 

levels. A depiction of the in situ cholinergic system in and around a synapse during an action 

potential is given in Figure 2.

Differential expression of various subtypes of the cholinergic receptors, their expression in 

multiple neuronal types within a region, and the varying locations within a neuron (i.e., 

somatic, dendritic, synaptic etc.) orchestrate a manifold symphony of neuromodulation. A 

representative example of this intricacy and the differential functional geography in the brain 

can be found when examining and comparing the olfactory system (Bohnen et al., 2010; 

D’Souza and Vijayaraghavan, 2014; Hellier et al., 2010), visual system (Bouskila et al., 

2016; Groleau et al., 2015; Yi et al., 2015) and hippocampus (Alger et al., 2014; Frotscher et 

al., 2000; McQuiston, 2014; Yi et al., 2015) in light of cholinergic signaling (Vijayaraghavan 

and Sharma, 2015). In the olfactory system, nAChR activation has the capability to screen 

signals of odor in such a way that weak inputs stand rejected while the strong signals pass 

through the abstract threshold, giving rise to the gain of function phenomenon in the 

olfactory circuit (D’Souza and Vijayaraghavan, 2014; Spindle et al., 2018) with presumable 

function in odor discrimination (D’Souza and Vijayaraghavan, 2014; Hellier et al., 2010; 

Spindle et al., 2018), whereas in the visual cortex, differential functional expression of 

mAChRs has a role to play in neuronal synchrony and gamma oscillations to modulate the 

network output during perceptual learning (Groleau et al., 2015). The hippocampus 

interestingly displays a different pattern where mAChRs control the release of 

endocannabinoids (Kano, 2014; Zhao and Tzounopoulos, 2011) thereby giving rise to 

intricate mechanisms involving higher-order primate function and behavioral regulation 

through cholinergic signaling (Alger et al., 2014; Zou and Kumar, 2018). Apart from the 

above, cholinergic receptors have been implicated in addictive mechanisms involving 

interactions of cocaine and nAChRs (Acevedo-Rodriguez et al., 2014). The behavioral 

changes underlying neurological and psychiatric ailments such as Alzheimer’s disease, 

Parkinson’s disease, schizophrenia, and autism are also thought to be the resultant 

phenotypes of cholinergic disturbances (Amodeo et al., 2014; Bohnen et al., 2010; Oddo and 

LaFerla, 2006; Wallace and Bertrand, 2013) apart from other non-cholinergic mechanisms 

(Kumar et al., 2017; McCoy et al., 2019; Saboory et al., 2019).

Faiq et al. Page 3

Prog Retin Eye Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although maps of brain ACh network have been recently constructed (Guo et al., 2015; 

Hoover et al., 1978; Li et al., 2018; Sugiura et al., 2012), the mechanisms of ACh mediated 

signaling remain largely unknown. Anatomically speaking, the cholinergic system emerges 

in the CNS (Kasa, 1986; McCorry, 2007) from the basal forebrain and the pendunculo-

pontine nucleus (Figure 3). The basal forebrain is a collection of structures located to the 

front of and below the striatum including the nucleus accumbens, nucleus basalis, diagonal 

band of Broca, substantia innominata, and the medial septal nucleus. The pendunculo-

pontine nucleus is a collection of cholinergic neurons located in the brainstem, caudal to the 

substantia nigra and adjacent to the superior cerebellar peduncle. The pendunculo-pontine 

nucleus comprises two major divisions, one containing cholinergic neurons in the pars 

compacta (Gorbachevskaia and Chivileva, 2005), and one containing mostly glutamatergic 

neurons in the pars dissipata (Fraigne et al., 2015). An important point to note is that a 

subset of neurons from these structures send out a sparse network of cholinergic neurons to 

the target sites which become difficult to study in isolation. Hence the source analysis of 

traditional electrophysiological approaches has not been successful in identifying the exact 

mechanisms through which the brain cholinergic system works.

Donald Hebb in his 1949 book, The Organization of Behavior, had given an important idea 

to decipher the working of the complex wiring of the brain. He suggested an approach to 

activate or deactivate one type of neurons in the brain while keeping the other types 

unaltered. Optogenetics (Liu and Tonegawa, 2010; Miller, 2006; Sidor et al., 2015) and 

presumably chemogenetics (Vlasov et al., 2018), radiogenetics (Leibiger and Berggren, 

2015) and magnetogenetics (Nimpf and Keays, 2017) have now enabled such facility and 

have advantages over other electrophysiological approaches (Gilbert et al., 2003). By 

employing selective manipulation of the excitability of ACh neurons, optogenetic 

approaches have explicated the role of ACh in modulation of various brain structures 

involved in visual processing (Luchicchi et al., 2014; Pinto et al., 2013). Some of the 

relevant areas that need to be further deliberated include the signaling mechanisms, the 

trans-synaptic and asynaptic modulation of neuronal activity, the synthesis, distribution and 

modes of action of ACh metabolizing enzymes and the interaction and competition arena 

with the co-release of other neurotransmitters around the cholinergic sites.

2.2. Choline in the Visual Brain

Visual stimulation can trigger the release of ACh in the primary visual cortex (Collier and 

Mitchell, 1966; Laplante et al., 2005) located in and around the calcarine fissure of the 

occipital lobe (Figure 3). The primary visual cortex is the first stage of cortical visual 

processing receiving information from the lateral geniculate nucleus (LGN) in the thalamus 

and encompasses the whole map of the visual field covered by the eyes (Felleman and Van 

Essen, 1991; Maunsell and Newsome, 1987). Certain novel visual demands also lead to 

release of ACh in the primary visual cortex (Herrero et al., 2008). In light of these facts, the 

cholinergic innervation of the primary visual cortex and associated areas presents important 

candidature for biological and clinical investigations. The basal forebrain provides 

cholinergic innervations to the primary visual cortex via topographical projections (Carey 

and Rieck, 1987) and may play a role in visual perception, visual attention and cortical 

plasticity (Kang et al., 2014a). It has also been shown in rodent studies that cholinergic 
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corticopetal projections meet their termination at the visual cortex in a medio-lateral 

configuration (Carey and Rieck, 1987). The horizontal limb of the diagonal band of Broca, a 

structure derived from the ventral telencephalon during development, also supplies 

cholinergic innervations to the primary visual cortex (Gaykema et al., 1990; Laplante et al., 

2005). Metabotropic muscarinic receptors (mAChRs) and the ionotropic nicotinic receptors 

(nAChRs) are the two major classes of receptors being acted upon by ACh to bring about 

modulation of the visual cortex (Disney et al., 2007; Prusky et al., 1987; Thiele, 2013; 

Volpicelli and Levey, 2004). They can be identified within every level of the primary visual 

cortex including the thalamic projections (layer IV), the lateral projections and the vertical 

intracortical connections that relay signals to the supragranular (layer I/II/III) and 

infragranular (layer V/VI) regions (Burkhalter, 1989; Van Hooser, 2007). Neurons arising 

from the thalamus, cortex and basocortical structures, the pyramidal excitatory neurons and 

the inhibitory GABAergic interneurons branch out axons that display the expression of these 

receptors (Burkhalter, 1989; Hashimoto et al., 1994; Mrzljak et al., 1993; Thiele, 2013; Van 

Hooser, 2007; Zilles et al., 1989).

The microcircuitry of the primary visual cortex is immensely complex and comprehensive 

but physiologically a few basic circuits can be identified. Previous cortical circuit models 

were based on rudimentary ‘feedforward’ circuits but now recurrent cortical circuits have 

been proposed - an enormous theoretical leap intended to explain actual circuits with 

realistic representation and computational precision (Martin, 2002). Being horizontally as 

well as vertically organized, the microcircuitry of the primary visual cortex presents as an 

essential organizational model to establish the anatomical structure to account for various 

aspects of the visual field including binocularity (Drager and Olsen, 1980; Grieve, 2005), 

ocular dominance (Cynader et al., 1987; LeVay et al., 1978), orientation (Grinvald et al., 

1986), and contrast (Levitt and Lund, 1997). These properties of the neurons entangled in 

circuits work in different combinations and permutations to give rise to intricate 

microcircuitry. Development of these properties in a neuron may be thought to be a 

consequence of continuous adaptations to the input signals that a neuron receives throughout 

the time course. The strength of the response of these neurons is a primary factor for the 

organizational characteristics of higher-order cognitive functions. In this way, the primary 

visual cortex is the first level of the organization of complex visual functions in terms of the 

integration of visual stimuli. In this context ACh becomes crucial as it determines the 

strength and temporality of the stimuli imminent from the retina through the LGN. ACh 

concentration and biochemistry are pivotal in determining and modulating the strength and 

specificity in response to stimuli in the visual field thereby giving rise to conscious visual 

perception (Kang et al., 2014b; Levitt and Lund, 1997). As the old adage goes, neurons that 

fire together, wire together; constant firing in synchrony leads to the formation of new 

circuits which makes the ACh-mediated visual cortex the center of neural circuit dynamics. 

This has important role to play in vision, perception, memory, learning and attention. Each 

stimulus augments its small share towards the fine tuning of the visual circuit. This is also 

the basis of the hypothesis evident in recent reports of vision restoration using electrical 

brain stimulation in glaucoma and other neurodegenerative diseases (Gall et al., 2016; 

Henrich-Noack et al., 2017b), whereby regular and synchronized electric pulses are applied 

to modify neuronal function by modulation of spontaneous activity and excitability (Antal et 
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al., 2001; Antal et al., 2004b; Fedorov et al., 2011; Fritsch et al., 2017; Gall et al., 2016; 

Henrich-Noack et al., 2017a; Henrich-Noack et al., 2017b; Sehic et al., 2016; Simonsmeier 

et al., 2018; Sun et al., 2018; Yavari et al., 2017). In the visual system, application of these 

electrical pulses induces changes in phosphene, contrast and motion perception as well as 

modification of amplitude of the visual evoked potential (Gall et al., 2011; Sabel et al., 

2011a; Sun et al., 2018) indicating that these stimulations can alter excitability of the visual 

cortex and other vision related areas in the brain, optic nerve and the retina (Antal et al., 

2004a; Antal et al., 2003; Antal and Paulus, 2013; Antal et al., 2004b; Fedorov et al., 2011; 

Khan et al., 1992; Vosskuhl et al., 2018; Zoefel and Davis, 2017). The efficacy of these 

interventions for vision restoration appears dependent on the individual’s residual capacity 

(Sabel, 2008; Sabel et al., 2011b) and requires further studies.

2.3. Cholinergic Interneurons

In addition to the above imperative sites of cholinergic signaling, certain areas of cortex 

possess cholinergic interneurons (Eckenstein and Thoenen, 1983; Houser et al., 1985; 

Huppe-Gourgues et al., 2018; Jones, 2004; Scarr et al., 2018; von Engelhardt et al., 2007). 

The striatum harbors significant levels of ACh (Abudukeyoumu et al., 2018; Calabresi et al., 

2000; Grady et al., 2007), nicotinic (Salminen et al., 2004; Wonnacott et al., 2000) and 

muscarinic receptors (Brann et al., 1988; Howe and Surmeier, 1995; Huff et al., 1994). 

Striatal ACh is primarily produced by cholinergic interneurons which are approximately 1–

2% of all striatal cells (Lim et al., 2014). A subset of such interneurons are also suggested to 

be involved in Parkinson’s disease.

Interneurons give rise to neural circuits (Dehorter et al., 2017; English et al., 2011) thereby 

making communications between various parts of CNS possible. Interneurons display 

important roles in reflexes (Burrows and Siegler, 1982; Cleary et al., 1995), neuronal 

oscillations (Bartos et al., 2007; Buzsaki and Draguhn, 2004; Wang and Buzsaki, 1996) and 

neurogenesis (Li et al., 2009; Masiulis et al., 2011; Rymar et al., 2004; Song et al., 2013) in 

the adult mammalian brain giving rise to optimism about the exploitation of the cholinergic 

system in neurodegenerative diseases including those affecting vision (e.g. glaucoma). 

Cholinergic interneurons are not restricted to the striatum, but also identified in the 

hippocampus (Frotscher and Leranth, 1985; Frotscher et al., 2000; Pitler and Alger, 1992). 

Lack of the availability of effective probes to the interneurons had given rise to wide gaps in 

our knowledge. As a result, no function was previously attributed to them. Nowadays, 

increasing studies indicate that these interneurons are not just vestigial cellular moieties 

(Kepecs and Fishell, 2014) but have rather important roles to play. Studies by Yi and 

colleagues (Yi et al., 2015) are an important leap ahead in this direction. They examined 

hippocampal structures in the transgenic mice ChAT-tauGFP (Choline acetyltransferase-tau 

Green fluorescent protein) and ChAT-CRE/Rosa26YFP, and demonstrated that the 

hippocampus of ChAT-tauGFP was densely innervated with GFP-positive axons and that in 

ChAT-CRE/Rosa26YFP mice ChAT-YFP (Choline acetyltransferase-Yellow fluorescent 

protein) positive cells were more densely present in the Cornu Ammonis 3 (CA3) and 

dentate gyrus than the CA1 with partial overlaps with calretinin and vasoactive intestinal 

polypeptide. Since GFP and YFP expression was driven by the ChAT promoter, it could be 

concluded that these areas were rich in cholinergic interneurons. Their studies investigated 
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the anatomical distribution, membrane properties, neurochemical characteristics, and role in 

cholinergic modulation of these interneurons.

Approximately 2% of the neurons in the cerebral structures including caudate, putamen, 

striatum, neostriatum and nucleus accumbens are cholinergic. A composite structure of the 

caudate (a component of the visual corticostriatal loop) (Seger, 2013) and putamen makes 

the neostriatum. Distinct from the other parts of CNS where cholinergic neurons generate 

diffuse and sparse neuronal networks spreading over relatively larger areas, the striatal 

cholinergic interneurons are present as dense innervations. Cholinergic interneuron system 

gives rise to perpetual ACh signals mediated through action potentials tonically at 

approximately 5Hz. Striatum contains high proportions of acetylcholinesterase thereby 

immediately ending the ACh signal. This phenomenon suppresses the desensitization of 

nicotinic AChRs (Zhou et al., 2002). Striatal nicotinic activity accelerates dopamine release 

which conjoins the local arbors of the cholinergic interneurons and afferent fibers of the 

dopaminergic system. This combination plays important roles in sensorimotor planning and 

learning processes (Zhou et al., 2002).

3.1. Acetylcholine Signaling and Retinal Ganglion Cells

The RGCs are one of the five neuronal cell types found in the vertebrate retina. They express 

NMDA as well as non-NMDA ionotropic glutamate receptors (GluRs) (Goebel et al., 1998; 

Hamassaki-Britto et al., 1993; Lin et al., 2002; Watanabe et al., 1994). These receptors play 

important roles in excitotoxic cell death thereby precipitating glaucoma. Hence there is a 

need to identify compounds that would break this continuum of NMDA/non-NMDA 

mediated excitotoxicity (Mosinger et al., 1991). Latest peer reviewed literature has identified 

that neuronal nAChRs modulate many processes of the CNS in addition to rapid cholinergic 

transmission. One key function is that alpha-7 nAChR is involved in neuroprotection 

precipitated by glutamate-induced excitotoxicity (Dajas-Bailador et al., 2000; Kaneko et al., 

1997; Marin et al., 1994; Shimohama et al., 1996) (Figure 3). Since the retina is the 

extension of the diencephalon of the brain, this function is likely to be valid in the retina 

also. Although the neuroprotective role of ACh in the retina has not been comprehensively 

studied, it is known that cholinergic neurons comprise amacrine cells (Famiglietti, 1983; 

Masland et al., 1984) that are evenly distributed in the retina. These cells, which are 

alternatively described as starbursts, are arranged as one distinct group in the inner nuclear 

layer and the other in the RGC layer (Mariani and Hersh, 1988; Masland et al., 1984). They 

are also found to be sensitive to ocular hypertension even before RGC or optic nerve 

degeneration (Gunn et al., 2011; Moon et al., 2005; Pang et al., 2015). It has been reported 

that activation of nicotinic AChRs in pig RGCs leads to neuroprotective effects against 

glutamate-induced excitotoxicity (Wehrwein et al., 2004). A comprehensive overview of 

these receptors, the associated molecular signaling pathways and cellular processes in the 

cholinergic synapse is depicted in Figure 2. This, however, leaves an open question if the 

RGCs and their optic nerve axons possess the molecular machinery for synthesis and 

metabolism of ACh. Next section deals with this aspect in detail.
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3.2. ChAT System in RGCs and Optic Nerve

The cholinergic essence of RGCs was suggested decades ago (Oswald and Freeman, 1980) 

but the notion of probing ACh functioning in RGCs was understudied as the concept of 

glutamate-mediated neurotoxicity came to forefront. Glutamate excitotoxicity initially 

seemed to explain most aspects of neurodegeneration but later research identified the need 

for additional mechanisms to explain the experimental observations. This gave rise to recent 

research revisiting cholinergic mechanisms. The neurotransmitter spectrum of RGCs is, in 

large part, unknown due to many reasons. RGCs have been verified to be immunoreactive to 

glutamate by many studies signifying its positive signals in the cell bodies (Crooks and 

Kolb, 1992; Davanger et al., 1991; Jojich and Pourcho, 1996; Kalloniatis and Fletcher, 1993; 

Sun and Crossland, 2000) as well as axon terminals (Beaudet et al., 1981; Ehinger, 1981; 

Mize and Butler, 1996; Montero, 1994; Ortega et al., 1995). These observations have 

strengthened the indication of glutamate excitotoxicity-mediated mechanism of glaucoma, 

despite the fact that the exact role of glutamate signaling in RGCs is still elusive. Positive 

labelling of (3H)-D-aspartate is indicative of the employment of glutamate as a 

neurotransmitter by a neuron (Beaudet et al., 1981; Ehinger, 1981). Since only 5–10% of all 

the cells in the ganglion cell layer are reported to be stained positively for [3H]-D-aspartate, 

it follows that majority of RGCs may be utilizing other neurotransmitters for signal 

transmission, among which ACh is a good candidate. Also, glutamate is not released in a 

calcium-dependent manner from the optic nerve terminals (Sandberg and Corazzi, 1983; 

Tsai et al., 1990). Dipeptide-N-acetylaspartylglutamate is thought to play a role as a 

neurotransmitter in RGCs but there is no conclusive evidence (Anderson et al., 1987; 

Tieman and Tieman, 1996; Tsai et al., 1990). It is known that some ganglion cells are able to 

synthesize a variety of neuropeptides that are not fully elucidated (Cuenca and Kolb, 1989; 

Kuljis et al., 1984). Although speculations can be drawn, more definite molecular evidence 

is important to determine ACh as a candidate neurotransmitter in RGCs.

To view acetylcholine as a neurotransmitter in the retina, it is important to demonstrate that 

the retina contains not only ACh but also the enzymes required for its biosynthesis. The lack 

of identification and detection of ACh in the retina in past decades can partially be attributed 

to the lack of reliable histochemical approaches to detect ACh. Also, using 

immunohistochemistry, several studies have shown that ChAT antibodies stain amacrine 

cells specifically but not RGCs (Eckenstein and Thoenen, 1982; Pourcho and Osman, 1986; 

Schmidt et al., 1985; Tumosa et al., 1984; Tumosa and Stell, 1986; Voigt, 1986). Despite the 

negative affirmation, there is still a possibility that RGCs may utilize a different form of 

ChAT to synthesize ACh. Such form had been successfully cloned from the cDNA of the rat 

pterygopalatine ganglion as demonstrated by Tooyama and Kimura, indicating that the 

presence of enzyme machinery to synthesize ACh in the ganglion cells is confirmable 

(Nakajima et al., 2000; Nakanishi et al., 1999; Tooyama and Kimura, 2000). This alternative 

form of ChAT did not contain Exon-6, Exon-7, Exon 8 or Exon-9. Hence Exon-5 and 

Exon-10 are joined through the alternative splicing activity. This implies that an antibody 

against the Exon5:Exon10 junction should be used to identify this alternative form of ChAT 

(Nakajima et al., 2000; Nakanishi et al., 1999; Tooyama and Kimura, 2000). It is important 

to note that this novel ChAT was detected in the peripheral neurons (thus termed pChAT) but 

not the brain in these studies. Yashuhara et al. attempted to identify this alternative form of 
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ChAT in the RGCs using pChAT antibodies for immunohistochemistry and western blot 

analysis (Yasuhara et al., 2003). They also used real-time polymer chain reaction analysis to 

check the expression of pChAT at the mRNA level. With these techniques, the investigators 

were able to demonstrate the presence of pChAT in the rat retina and optic nerve. 

Additionally, they examined the effects of light exposure on pChAT expression and reported 

the presence of pChAT in the retina, optic nerve and optic tract. This indicates that the RGCs 

possess a viable ChAT system which may help modulate ACh synthesis and function. This is 

relevant because exposure to light induces the expression of Fos in retina (Koistinaho and 

Sagar, 1995; Sagar and Sharp, 1990). The Fos gene family comprises 4 members namely 

FOS, FOSB, FOSL1 and FOSL2 which code for leucine zipper proteins for dimerizing with 

proteins of the JUN family. The FOS group proteins can regulate cell proliferation, 

differentiation, and transformation as well as apoptotic cell demise. In the present context, 

Fos is a transcription factor for ACh synthesis (Koistinaho and Sagar, 1995). Taken together, 

these studies suggest that there is a Fos mediated regulation and expression of ChAT and 

ACh function in the RGCs. Whether this could be exploited as a mechanism to treat retinal 

disorders including glaucoma is a question that remains to be answered.

Apart from genetic studies in the retina, identification of genetics (Borras, 2017; Budde, 

2000; Feng and Xu, 2019; Gobeil et al., 2006; Gong et al., 2004; Kanagavalli et al., 2004; 

Minegishi et al., 2016; Rozsa et al., 1998; Tamm, 2002; Wiggs and Pasquale, 2017) and 

gene/protein expression profiles (Feng and Xu, 2019; Funke et al., 2019; Gagrani et al., 

2018; Hubens et al., 2019; Jakobs, 2014; Johnson et al., 2007; Oliver et al., 2019; Seet et al., 

2016; Wang et al., 2017b) from the peripheral blood may serve as surrogate markers of pre-

glaucoma as well as targets for therapeutic intervention. A landmark study in this direction 

found 28 moieties that might have a potential in treatment for primary congenital glaucoma 

(Faiq et al., 2016a). In addition, the genome wide association studies (GWAS) have been 

looking into important loci that might play a role in glaucoma pathogenesis. Interestingly, 

one of the recently discovered loci for primary angle closure glaucoma on chromosome 10 is 

involved in synthesis of ACh via ChAT (Khor et al., 2016). Other genes such as CYP1B1 

have also been implicated in a significant portion of glaucoma cases and may be involved in 

endothelial function (Faiq et al., 2013a; Faiq et al., 2013b; Faiq et al., 2014a; Faiq et al., 

2015; Faiq et al., 2014c; Rosen et al., 2015; Smith et al., 2011). However, functional studies 

on CYP1B1 mutations and their effects on the ACh metabolism were lacking due to 

difficulties in heterologous expression of unmodified human CYP1B1. This problem was, 

however, solved recently with a novel protocol for enhanced expression of unmodified 

CYP1B1 in heterologous hosts (Faiq et al., 2014a). This line of research can likely help 

further understand the role of CYP1B1 in ACh mediated endothelial function.

3.3. Cholinergic Innervations and Rheology

The rheology of ocular structures and the CNS is gaining attention (Carreon et al., 2017; 

Flammer and Orgul, 1998; Harris et al., 1999; Yamamoto and Kitazawa, 1998) with new 

reports claiming that the eye is not only affected by the intraocular pressure (IOP) but also 

intracranial pressure (ICP) (Wang et al., 2017a). This has particular relevance to glaucoma as 

both pressure systems meet at the optic nerve head and interact with one another at the 

lamina cribrosa (Johannesson et al., 2018; McMonnies, 2016). It is becoming increasingly 
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evident that translaminar pressure difference, or the difference in the pressure components of 

IOP and ICP at the lamina cribrosa, may be more important than IOP and ICP taken 

individually (McMonnies, 2016). Hence, interventions based on modulating translaminar 

pressure-mediated optic nerve deformation may be pivotal to glaucoma management 

(Siaudvytyte et al., 2015; Siaudvytyte et al., 2014; Wostyn et al., 2016). Currently, IOP is the 

only clinically modifiable risk factor for glaucoma while the ICP has been ignored at large. 

It is essential to identify the factors that regulate ICP as well as their relations to IOP. 

Among these factors, the cholinergic basal forebrain has been shown to take part in 

controlling the ICP and the cerebrovascular volume via ACh-mediated decrease in 

vasoconstriction (Maeda and Miyazaki, 1998) (Figure 3). Within the cortex, 

cerebrovasomotor reactions and ICP modulation can also be brought about by ACh release 

via activation of the cholinergic fibers in the nucleus basilis of Meynert (Sato et al., 2001). 

Although cerebrovascular factors have been implicated in rapid disease progression 

especially in normal tension glaucoma (Chen et al., 2016; Gungor et al., 2011; Lee et al., 

2017), how these physiological factors are regulated in normal conditions and altered in 

glaucoma remain unclear and require further investigations. It is pertinent to mention that 

cholinergic medication as neurotherapeutics of choice has not been recognized by 

researchers. The main reason for this seems to be the lack of carefully drafted studies and 

the limited number of randomized clinical trials conducted. The following section adds an 

anecdote on cholinergic medication in visual disorders with glaucoma as a representative 

disease.

3.4. Cholinergic Medication in Glaucoma

The American Academy of Ophthalmology guidelines for diagnosis and treatment do not 

specify any preferred ophthalmic medication for primary open angle glaucoma. A part of the 

reason may be that the treatment of glaucoma is often tailored as per the individual’s 

conditions, compliance and response to therapy, and may change from time-to-time during 

the course of the disease. Nowadays, the most commonly used glaucoma medications 

include prostaglandins and β-adrenergic blockers due to their high tolerance index and 

availability of generic formulations. Cholinergic agonists can also lower IOP by pupil 

constriction, or miosis, which decreases resistance to the aqueous humor outflow. These 

miotic ophthalmic drugs can act on the iris sphincter and ciliary muscles directly (e.g. ACh, 

pilocarpine, and carbacol) or indirectly (e.g. echothiophate) via the parasympathetic nervous 

system (Cekic and Batman, 1999; Laranjeira and Buzard, 1996; Shaikh and Mars, 2001; 

Solomon et al., 1998; Wutthiphan et al., 2000) and may cause cytoskeletal changes in the 

trabecular meshwork (Yamagishi-Kimura et al., 2018). However, parasympathomimetic 

medications are presently considered as the third-line treatment for glaucoma (Lee and 

Higginbotham, 2005), partly because of the reported side effects from ophthalmic 

pilocarpine use including irritation and surgical difficulties from miosis and headaches. This 

inevitably slows down the studies of the systemic effects of cholinergic drugs. In addition to 

acting through the aqueous-outflow pathway, pilocarpine has been shown to ensue 

protection against glutamate-induced apoptosis of the neurons via activation of muscarinic 

ACh receptor M1 (Tan et al., 2014; Zhou et al., 2008). Targeting NLRP3 inflammasome by 

activation of α7 nicotinic ACh receptor or by scutellarin that enhances ACh levels can also 

offer the antioxidant and antiapoptotic properties in experimental glaucoma and other 
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neurodegenerative disorders (Hu et al., 2018; Zhu et al., 2018). Due to limited randomized 

controlled trials on the systemic use of cholinergic agonists, it is premature to draw any 

conclusions about their efficacy when it comes to their use in glaucoma. Among the 

available cholinergic drugs, it is important to note that citicoline has physiologically useful 

bioavailability through many routes of administration, while reports on the use of citicoline 

have shown improvement in visual evoked potential, pattern electroretinogram and visual 

field function. This indicates that citicoline might work through neuroprotective, 

neurorestorative and neuroregenerative paradigms, though its effect on IOP cannot be 

ignored as it also has cholinergic components in structure and activities akin to cholinergic 

function. There has been no clinical trial on the effect of citicoline on IOP as a primary 

outcome. In the following sections we discuss the biochemical, physiological and clinical 

effects of citicoline followed by its role in ameliorating vision loss in general and glaucoma 

in particular.

4.1. Citicoline: A Physiological Choline Representative

Citicoline, also known by other names as CDP-choline, CDPCho and cytidine-5’-

diphosphocholine, is a nootropic agent, a central stimulant and is a member of the drug class 

oral nutritional supplements (Colucci et al., 2012; Secades, 2011, 2016; Secades and 

Lorenzo, 2006). It has a molecular weight of 488 g/mol and is chemically recognized as 

cytidine 5’-(trihydrogen diphosphate), mono[2-(trimetylammonio)ethyl] ester hydroxide 

inner salt with chemical formula C14-H26-N4-O11-P2. The use of citicoline arose in the early 

1970s with a view that it might be a substance for treating drug abuse (Wignall and Brown, 

2014). Then the first medical use of citicoline came from reports about its beneficial effects 

in Parkinson’s disease (Obara, 1974). Citicoline has important roles to play in the 

biosynthesis of phospholipids and their precursors such as phosphatidylcholine (Grieb, 

2014; Zweifler, 2002). Owing to the high turnover rate, cell membranes require an 

uninterrupted supply of phospholipids for proper maintenance, and citicoline metabolism is 

a rate limiting step in this process (Jackowski, 1994). Also, citicoline is a nucleotide 

(Zweifler, 2002) with structural similarities with the building blocks of nucleic acids. For 

example, citicoline is a monomer with three distinct structures including ribose, cytosine and 

choline (Figure 4). Ribose is a pentose monosaccharide found in RNA while its 2-deoxy 

form is found in DNA also. Cytosine is one of the four main bases found in DNA and RNA. 

Choline is a water soluble vitamin-like essential nutrient which is a basic constituent of 

lecithin. Ribose and cytose combine to form the nucleoside cytidine, and choline is attached 

to the cytidine by means of a pyrophosphate bridge. When citicoline enters the body through 

oral or parenteral route, a quick metabolic process in the order of minutes follows (Grieb, 

2014). The immediate catabolism of citicoline leads to the formation of pyramidine and 

choline derivatives, both of which are important bioactive substances and can be naturally 

present (Agut et al., 1983; Andersen et al., 1999; Grieb, 2014; Marti Masso and Urtasun, 

1991). Thus citicoline is thought to be relatively benign and free of side effects, and is a safe 

moiety for potential clinical use, though few reports of mild digestive intolerance have been 

published. The therapeutic dosage of citicoline in humans is 500–2000 mg/day which 

amounts to 7 to 29 mg/kg body weight/day (Grieb, 2014).
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4.2. Citicoline Metabolism

A summary of the metabolism of citicoline is illustrated in Figure 5. In brief, 

phosphatidylcholine is synthesized in a three-step enzymatic process from choline and 

cytidine (DeLong et al., 1999; Moessinger et al., 2014). In the first step, choline originates 

from the phosphatidylcholine metabolism and is phosphorylated by cytidine kinase utilizing 

one molecule of ATP into choline-phosphate. Choline phosphate is then converted to 

citicoline by combining with cytidine phosphate that is derived from cytidine. The enzyme 

that catalyzes this reaction is called choline phosphate cytidilyltransferase. Citicoline on the 

other hand leads to the formation of phosphaptidylcholine by an enzymatic process mediated 

through CDP-choline:1,2-diacylglicerol choline phosphotransferase. In the penultimate step 

of this metabolic pathway, citicoline is synthesized which then serves as the requisite 

element for phosphatidylcholine synthesis, thereby providing justification for the role of 

citicoline in membrane function and integrity. This pathway is vital to neuronal tissues to 

maintain the electrochemical gradient for proper action potential generation. The profound 

similarities in ACh synthesis and localization in and outside the cell in many species indicate 

that the ACh mechanism is relatively conserved in evolution, upholding the rationale that 

rodents and zebrafish are appropriate models to investigate this system and the diseases 

thereof.

A schematic outlook of the bioavailability and breakdown of citicoline through various 

routes of administration, different compartments of the body and different metabolic routes 

is given in Figure 6. Citicoline can be administered by multiple routes but oral 

administration remains to be the most common because of several reasons. Citicoline is well 

tolerated orally and does not show adverse effects at the effective dosages. It also has 

remarkable bioavailability with negligible loss to metabolic processes. Oral and 

intramuscular administration of citicoline do not show apparent difference in the metabolism 

and bioavailability (Adhi and Duker, 2013; Clark and Clark, 2012; Fresta et al., 1994). After 

administration, citicoline is immediately metabolized by the liver into cytidine and choline 

in the circulation (Galletti et al., 1991; Galletti et al., 1985), and after 30 minutes the 

resultant metabolites can be observed in liver, kidneys, and brain in rodents (Galletti et al., 

1991; Martynov and Gusev, 2015). Cytidine is transformed into uridine which converts to 

uridine phosphate in the CNS. At the cellular level in the brain, this moiety is then converted 

into cytidine triphosphate. All the three major routes (urinary, fecal and respiratory) are used 

for excretion of citicoline (Dinsdale et al., 1983). Since the brain has been indicated a major 

target for vision loss (Faiq, 2016, 2018; Faiq et al., 2016b), in the following section we 

explore citicoline with respect to its availability and effects in the brain.

4.3. Citicoline in the Brain

As explained in section 4.1 cytidine and choline are two major constituents of citicoline 

which are bound by a pyrophosphate bridge. This bridge is broken down during hepatic 

metabolism and the same bridge can be synthesized again by rephosphorylation leading to 

the reformation of citicoline. Such breakdown and reformation processes are particularly 

important to citicoline supply to the brain because citicoline does not cross the blood-brain 

barrier whereas the circulating cytidine and choline broken down from citicoline can (Grieb, 

2014). Upon entering the brain, citicoline can give rise to phosphatidylcholine, ACh, 
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sphingomyelin and cardiolipin (Adibhatla and Hatcher, 2002; Adibhatla et al., 2001, 2002), 

which play roles in neuronal membrane function, neurotransmission, axonal integrity, 

myelin homeostasis and inner mitochondrial membrane viability among others (Araki and 

Wurtman, 1997; Blusztajn et al., 1987; Galvan et al., 2005; Harel and Futerman, 1993; 

Kirkland et al., 2002; Posse de Chaves and Sipione, 2010; Schwarz et al., 1995). 

Phosphatidylcholine synthesis has an additional advantage to the formation of cytidine 5’–

monophosphate which helps the synthesis of nucleic acids (DNA and RNA). The synthesis 

of cytidine 5’–monophosphate takes place when choline monophosphate binds with 

phosphatidylcholine. ACh is formed when choline from citicoline is acetylated.

Cholinergic neurons utilize choline in a dual manner namely the synthesis of the membrane 

structure phosphatidylcholine and biosynthesis of the neurotransmitter ACh. This signifies 

the usefulness of citicoline at both structural and functional levels. These two pathways 

simultaneously compete for choline for binding to cytidine monophosphate and for 

acetylation respectively (Farber et al., 1996; Ulus et al., 2006). Since brain function is an 

immediate requirement in most cases, acetylation is often the dominant pathway (Iulia et al., 

2017). Thus, when choline supply is restricted or choline is depleted, phosphatidylcholine 

and other phospholipids are often broken down by hydrolyzation to salvage the shortage of 

choline levels. In other words, this network suggests that citicoline works via two vital 

mechanisms by first, serving as a source of choline to produce ACh and second, serving as a 

rescue recourse for breakdown of phosphatidylcholine and other membrane components. 

This way citicoline may avoid membrane breakdown in the neurons and may prevent 

apoptosis during neurodegenerative processes thus ensuring the functional viability of the 

neurons in question. Such mechanisms also identify the neuroprotective properties of 

citicoline.

4.4. Why Citicoline in Neurodegeneration?

The neurotherapeutic effects of citicoline appear to be multifarious. Regarding the structure, 

composition and functional integrity, citicoline serves as a precursor for 

phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, which are important 

structural and functional components of cell membranes (Marcucci et al., 2010; Skripuletz et 

al., 2015). They ensure proper enzymatic viability for the transport of substances across the 

membrane (Lagace, 2015; van Meer et al., 2008). In addition, they are indispensable in 

signal transduction (Exton, 1990, 1994) thereby governing numerous cellular processes and 

maintaining cellular communication with its environment. Most of the neurodegenerative 

diseases have their etiology mediated through neuronal membrane integrity (Chitnis and 

Weiner, 2017; de Groot and Burgas, 2015; Sonnino et al., 2014) which, in turn, is linked to 

these phospholipids. It is important to mention that membrane integrity is also a potential 

factor of axonal degeneration in glaucoma (Almasieh et al., 2017; Buys et al., 2014; Howell 

et al., 2013; Petty, 2018) be it the RGC membrane (Osborne et al., 1999; Risner et al., 2018) 

or the mitochondrial membrane (Munemasa et al., 2010; Osborne et al., 1999; Tatton et al., 

2001). To this effect, cholinergic signaling in glaucoma becomes a potent candidate for 

therapeutic moieties addressing issues in membrane integrity.
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On the other hand, the brain is generally devoid of resident endogenous antioxidant 

mechanisms in order to maintain proper electrophyisiological function (Deisseroth and 

Dounce, 1970; Kang et al., 1996; Shingu et al., 1985). Therefore, for neurodegenerative 

diseases involving oxidative stress, there is a need for antioxidants that penetrate the blood-

brain barrier (Gilgun-Sherki et al., 2001). Glutathione is a metabolic product of choline that 

can bring down lipid peroxidation in the CNS. Since glutathione can also come from 

citicoline, it seems reasonable to view citicoline as a potent therapeutic substance to treat 

various oxidative stress-induced neurological diseases including, but not limited to, 

Alzheimer’s disease (Gareri et al., 2017), Parkinson’s disease (Kashkin et al., 2017), 

glaucoma (Iulia et al., 2017), and ischemic neuropathies (Parisi et al., 2008a; Parisi et al., 

2008b).

Citicoline has been reported to inhibit β-amyloid deposition, which makes it a therapeutic 

candidate for amyloidopathies like Alzheimer’s disease and glaucoma (Cacabelos et al., 

1996; Yan et al., 2017). Beta amyloid deposits elicit inflammation (Gorevic, 2013; Ruan et 

al., 2009) and lead to disintegration of membrane phospholipids (Lau et al., 2006; McLaurin 

and Chakrabartty, 1996). In two classical studies, the brain electrical activity and cognitive 

profiles of Alzheimer’s disease patients were reported to be improved after citicoline 

treatment as compared to controls (Alvarez et al., 1999; Franco-Maside et al., 1994). In 

particular, patients with mild dementia presented more profound improvements. This 

indicates that citicoline treatment may be more effective in early cases as compared to late 

presentation where larger amount of damage has already occurred. Some initial studies on 

stroke models also reported the protective effects of citicoline as a single or combined 

therapy with some efficacy in reducing the infarct size and consequent improvement in 

neurological deficit (Cacabelos et al., 1996). This effect was more profound in clinical trials 

particularly if citicoline was administered immediately after injury. Later studies, however, 

show conflicting results and the reproducibility remains to be confirmed (Cheng et al., 2004; 

Clark and Clark, 2012).

In addition to the above, ACh can be synthesized from citicoline and has an important role to 

play in the dopaminergic and GABAergic system (Secades, 2011). Citicoline has been 

suggested to ameliorate neurobehavioral changes in humans and experimental models of 

Parkinson’s disease via the dopaminergic pathway (Agnoli et al., 1982; Saligaut et al., 

1987). Choline and ACh from citicoline can also mediate endothelial viability, nitric oxide 

production, tissue perfusion and mitochondrial integrity via upregulation of intracellular 

calcium concentrations and releases in the endothelial cells (Li and Wang, 2006; Zhang et 

al., 2017), and thereby preventing hypoxia-induced endothelial cell damage (Alkon and 

Rasmussen, 1988; Asaoka et al., 1992; Rasmussen et al., 1995; Tran et al., 2000; Zhang et 

al., 2017). Taken together, these results indicate a multipathway mechanism of citicoline 

action in amelioration of neurodegenerative conditions, which may include glaucoma and 

other vision-related diseases. Hence, we describe this aspect in the following section.

5.1. Citicoline and Vision

Citicoline is effective in stimulating the dopaminergic system in the visual pathways 

including the retinal and post-retinal structures (Iulia et al., 2017; Rejdak et al., 2002). By 
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doing so, citicoline improves the visual acuity, visual evoked responses, contrast sensitivity 

and outcomes of patching treatment in amblyopia (Campos et al., 1996; Fresina et al., 2008; 

Pawar et al., 2014; Porciatti et al., 1998). In another clinical trial involving patients with 

non-arteritic ischemic optic neuropathy, 60 days of oral citicoline treatment also showed 

beneficial effects on the visual acuity, visual evoked potential and pattern electroretinogram 

(Parisi et al., 2008a; Parisi et al., 2008b). These investigators reported persistent 

improvements even after the washout period, suggestive of the neuroprotective or the long-

lasting neurorestorative effects of citicoline on visual function.

5.2. Citicoline and Retinal Ganglion Cells

The molecular, cellular and physiological interphases between citicoline and RGCs appear 

tightly linked. Citicoline is involved in the proper maintenance of sphingomyelin and 

cardiolipin levels (Adibhatla and Hatcher, 2002; Adibhatla et al., 2001, 2002; Gareri et al., 

2017; Gareri et al., 2015), whereas the RGCs are rich in myelin in their axons and are the 

primary site of glaucomatous injury (FitzGibbon and Nestorovski, 2013; Giacci et al., 2018; 

Yalcin et al., 2013). While sphingomyelin is a sphingolipid in the myelin sheath that 

surrounds the nerve cell axons, cardiolipin accounts for 20% of the total lipid composition in 

the inner mitochondrial membrane (Paradies et al., 2014) and is involved in maintaining 

optimal enzymatic activity in energy metabolism. Since neurons are energetically the most 

expensive cells of the body (Munzberg et al., 2016; Niven, 2016; Qadri et al., 2018), any 

hindrance in the maintenance of cardiolipin and sphingomyelin is likely to affect the 

neurons, especially those with long myelinated axons. RGCs are, for this reason, favorable 

candidates for such degenerative and proapoptotic insults. If sphingomyelin and cardiolipin 

damages are involved in glaucoma directly or indirectly, citicoline administration may 

become one of the potential treatments for the prevention of cellular death in glaucoma. 

With this premise, we will describe the various aspects of possible citicoline use in 

glaucoma in the next section.

5.3. Citicoline and Glaucoma

Citicoline appears to possess the potentials for ameliorating glaucomatous damages or vision 

loss in a number of in vitro and in vivo studies of retinal cell cultures, experimental animal 

models and clinical trials (Table 1). Using mouse retinal explants, the number of 

regenerating neurites was found to be higher in damaged RGCs that were treated with 

citicoline as compared to the control retina (Oshitari et al., 2002). On the other hand, 

glutamate excitotoxicity has been postulated to be a major factor of glaucoma onset and 

progression (Dreyer, 1998; Osborne et al., 1999; Salt and Cordeiro, 2006). Interestingly, 

citicoline was shown to counteract neuronal cell damage in glutamate-treated rat primary 

retinal cultures via decreasing proapoptotic effects and contrasting synapse loss (Matteucci 

et al., 2014). Kainic acid is a potent neuroexcitatory amino acid agonist that mediates its 

neurotoxic effects through activating glutamate receptors. In a rat model of kainic acid-

induced retinal damage, animals receiving prolonged citicoline treatment appeared to show 

less profound retinal thinning and less attenuated immunoreactivities of ChAT as compared 

to the control (Park et al., 2005). Using experimental glaucoma models, adult rats with optic 

nerve crush presented higher RGC density after intraperitoneal citicoline treatment than 

vehicle treatment (Schuettauf et al., 2006). While citicoline did not appear to alter IOP in 
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experimental glaucoma (van der Merwe et al., 2016), the above experimental studies provide 

direct evidence of the protective effects of citicoline on RGCs and an inference of the 

specific role of citicoline in alleviating glaucomatous damages. The biochemical 

mechanisms underlying such effects appear similar to citicoline actions on other 

neurodegenerative diseases (Faiq, 2016, 2018; Faiq et al., 2016b; Faiq et al., 2014b; Faiq and 

Dada, 2017).

With regard to the metabolome across the spectrum of neurodegeneration, citicoline may 

crosstalk with glucose metabolism and may protect neurons from hyperglycemic conditions 

(Gao et al., 2017; Matteucci et al., 2014) thereby lowering the risk of neurodegeneration in 

hyperglycemia and diabetes. While initial evidence also suggests that IOP elevation is 

associated with insulin resistance (Chun et al., 2015; Fujiwara et al., 2015; Oh et al., 2005), 

its implications in the development of glaucomatous neurodegeneration remain largely 

unexplored. Faiq et al. recently hypothesized the “brain diabetes theory of glaucoma” (Faiq 

et al., 2014b; Faiq and Dada, 2017) whereby insulin signaling dysfunction may be 

implicated in the glaucomatous visual system (Agostinone et al., 2018; Faiq et al., 2017; 

Hou et al., 2018) similar to other CNS disorders (Datusalia et al., 2018; Montgomery and 

Turner, 2015; Najem et al., 2014; Schubert et al., 2004; Stewart and Clearkin, 2008). 

Citicoline and its associated choline-containing components have been suggested to counter 

the effects of insulin resistance (Gao et al., 2017). Citicoline has also been shown to induce 

angiogenesis thereby improving the survival of human brain microvessel endothelial cells 

through insulin receptor substrate-1 mediation (Krupinski et al., 2012). Even though not all 

glaucoma patients have diabetes and not all diabetics have glaucoma, this line of research 

may point the way to a new glaucoma phenotype involving insulin resistance and may 

implicate a potential role of citicoline action on this population (Faiq, 2018).

With regard to clinical evidence, it is important to note that the effectiveness of any 

treatment has to be proven by standard objective parameters and validated by well-accepted 

measuring techniques. Several gold standards that are important in the evaluation of 

neuroprotection and visual function in glaucoma include retinal electrophysiology via visual 

evoked potential and pattern electroretinogram, and visual field perimetry via Humphrey 

Field Analyzer. These tools have been used in the investigations of citicoline as a therapeutic 

modality for glaucoma (Table 1). For example, one of the earliest clinical trials evaluating 

the efficacy of oral citicoline in glaucoma demonstrated improvement in visual evoked 

potentials after administrating 500 mg citicoline tablets twice a day (/approximately 14 

mg/kg body weight/day) to the glaucoma patients (Rejdak et al., 2003). In another 2 

randomized placebo-controlled studies involving intramuscular injection of citicoline, 

improvements in visual evoked potential and pattern electroretinogram were observed in the 

citicoline group as against the placebo group (Parisi, 2005; Parisi et al., 1999). Importantly, 

these effects maintained even after the washout period over the experimental period of up to 

8 years. These results indicate that citicoline sustainably improves retinal and cortical 

bioelectrical responses in glaucoma patients. When evaluating the efficacy of oral 

suspension citicoline against intramuscular injection (Parisi et al., 2008a), no apparent 

difference in visual evoked potential or pattern electroretinogram was observed in glaucoma 

patients with moderate visual field defects.
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Since glaucoma involves selective loss of RGCs whose cell bodies are located in the inner 

layer of the retina, they are therapeutically easy to approach through the ocular route as 

compared to oral and intramuscular routes. It has also been observed that medication in the 

form of eye drops has better compliance and adherence than oral and intramuscular 

medication (Witticke et al., 2012). Thus, it becomes essential to evaluate if citicoline eye 

drops can cross the cornea and provide sufficient bioavailability at the site of action to the 

retina. In a study by Roberti et al., citicoline was detected in the vitreous of murine models 

when given as topical eye drops (Roberti et al., 2014). With a dosage of 1% and 2% 

citicoline eye drop suspension at the frequency of twice daily, citicoline was detected in the 

vitreous. 2% administration was also associated with systemic absorption of citicoline. The 

investigators then moved on to clinical studies and added citicoline eye drops to the regular 

ocular hypotensive medication in glaucoma patients for 2 months followed by 1 month 

washout period. Although patients showed improvements in the electrophysiological 

function of the retina, such effects regressed after 30 days of washout. Parisi et al., carried 

out a similar trial but with increased citicoline dosage and treatment duration to test if this 

shows any sustained effects (Parisi et al., 2015). They enrolled patients on β-blocker 

monotherapy in the trial with the intervention group taking an additional citicoline eye drop 

regimen at three times a day for 4 months followed by a washout period of 2 months. 

Results showed a significant improvement in visual evoked potential and pattern 

electroretinograms after 4 months of citicoline treatment. However, these observations also 

normalized to baseline levels after medication was stopped. These transient visual 

restoration effects suggest a constant loss or sub-optimal availability of choline upon topical 

citicoline treatment, indicating the need of further optimization for effective topical 

citicoline administration on glaucoma. We presume that early glaucoma treatment might 

show better and more long-lasting effects than treatment to more severe glaucoma, though 

practically most cases of glaucoma have already experienced severe RGC damage by the 

time they are diagnosed. In this regard, pilot studies aiming at detecting glaucoma early via 

advanced imaging and quality-of-life assessments may be helpful.

6. Brain Imaging in Glaucoma

Since glaucoma is an irreversible disease, it is important to identify early glaucomatous 

changes and slow down the disease progression effectively. Recent advancements in imaging 

modalities have begun to shed light on this. For example, within the eye, substantial 

structural loss in terms of retinal nerve fiber layer thinning appears to be necessary before 

functional visual field defects become detectable in open-angle glaucoma (Alasil et al., 

2014; Wollstein et al., 2012). On the other hand, increasing evidence suggests the 

involvements of trans-synaptic deteriorations of post-retinal structures along the central 

visual pathway in glaucoma (Gupta et al., 2006), yet the majority of studies focus only on 

subjects with glaucoma approaching advanced stages (Lawlor et al., 2018). Longitudinal 

evaluation of brain changes along the entire spectrum of the disease severity is essential to 

determine the temporal characteristics and causal relationships between biomarkers in the 

eye and the brain. Such studies and the testing of targeted neurotherapeutics have been 

performed preclinically using rodent glaucoma models (Chan et al., 2019; van der Merwe et 

al., 2016; Yang et al., 2018b) while clinical neuroimaging studies have also been initiated in 
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subjects at different stages of glaucoma. Specifically, initial evidence from Murphy et al. 

showed that glaucoma deterioration is already present in the brain before vision loss can be 

detected clinically by conventional visual field tests (Murphy et al., 2016). This observation 

has been reproduced independently in another laboratory along the optic radiation (Wang et 

al., 2018), whilst demyelination appears to precede axonal loss in the trans-synaptic spread 

of human glaucoma, suggesting that the mechanism of trans-synaptic damage may be at 

least partially mediated by glial components at the cellular level (You et al., 2019). Within 

the visual cortex, it is also reported that cortical cholinergic and glutamatergic abnormalities 

are associated with other conventional glaucoma biomarkers in subjects with varying 

glaucoma severity (Aksoy et al., 2018; Chan et al., 2009; Guo et al., 2018; Murphy et al., 

2016)(Figure 7). In this context, citicoline can be evaluated as a therapeutic option apart 

from ocular hypertensives who are at high risk of glaucoma but have not developed 

glaucoma as yet. Positive family history can also be considered as the initial stage of 

glaucoma continuum.

As mentioned in the preceding section, glaucoma damage can be identified by optical 

coherence tomography (Adhi and Duker, 2013; Mwanza and Budenz, 2018; Schuman, 2008; 

Schuman et al., 1995) and magnetic resonance imaging prior to detectable clinical vision 

loss (Murphy et al., 2016; Wang et al., 2018). Though such a statement does not endorse the 

absence of early functional deterioration, the underlying premise is that vision loss cannot be 

detected by clinical perimetry as early as the changes in the central visual pathway are 

picked up by imaging modalities. Latest studies support the inference that glaucoma is a 

neurodegenerative disease with signs of early deterioration in brain (Chan et al., 2008; Chan 

et al., 2009; Crish et al., 2010; Faiq et al., 2016b; Gupta and Yucel, 2007; Reilly et al., 2015; 

Risner et al., 2018; Sponsel et al., 2014). Such a notion has numerous implications with 

respect to the brain as an investigative, diagnostic, therapeutic and prognostic target for 

glaucoma from genetic, biochemical, molecular, physiological, and pharmacological and 

imaging points of view (Faiq et al., 2013a; Faiq et al., 2013b; Faiq, 2018; Faiq et al., 2016b; 

Faiq et al., 2015; Faiq et al., 2014c; Kasi et al., 2019). This is where neuroimaging comes 

into picture with the prospect of different MRI techniques including the standard anatomical 

MRI, diffusion tensor imaging of structural integrity of brain connectivity (Ho et al., 2015; 

V et al., 2018; Yang et al., 2018a), manganese-enhanced MRI of physiological anterograde 

axonal transport and neuronal activity (Calkins et al., 2008; Chan et al., 2008; Chan et al., 

2017a; Ho et al., 2015; Yang et al., 2018a), functional MRI of hemodynamic brain activity 

(Murphy et al., 2016; Zhou et al., 2017), and magnetic resonance spectroscopy (MRS) of 

biochemicals and metabolic processes in the brain (Chan et al., 2009; Chow et al., 2011; 

Murphy et al., 2016). In particular, choline concentrations in cerebral white matter and grey 

matter can be identified with proton magnetic resonance spectroscopy (1H MRS) in vivo 
(Ross and Bluml, 2001). Also, radiolabeled choline (e.g. 11C and 18F) can be effectively 

employed (Calabria et al., 2018). Citicoline is known to be involved in myelin and 

acetylcholine synthesis through choline as a metabolite. Since a variety of neurodegenerative 

diseases and their cardinal features like inflammation are associated with change in choline 

concentration, an integrative metabolic map of the status of neural tissues may be useful in 

identifying brain abnormalities early in both glaucoma patients and experimental glaucoma 

models (Figure 7). By this approach, the effects of drug interventions can be monitored in 
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both clinical trials and preclinical models (Babb et al., 2004). Figure 8 depicts a classical 

trial of neuroprotection, neurorestoration and neuroregeneration that may represent the 

possible neurotherapeutic strategies for future glaucoma management. Figure 9 illustrates a 

schematic diagram of normal, early and advanced stages of glaucoma and the potential 

neurotherapeutic approaches in correspondence to visual field loss, retinal nerve fiber layer 

thinning, and brain damages in humans via perimetry, optical coherence tomography and 

MRI. Such structural and functional imaging paradigms can also be used to explore the 

neurobehavioral effects of citicoline as demonstrated initially in novel rodent glaucoma 

models (Chan et al., 2018; Chan et al., 2019; Harwerth et al., 2010; van der Merwe et al., 

2016; Yang et al., 2018b).

7. Psychosomatic Correlates

A major comorbidity of glaucoma is the patients’ fear of blindness over time, which is 

thought to be far beyond the actual risk (Janz et al., 2007). At the same time, cholinergic 

neurons are known to be involved in regulating cognitive functions including fear (Boskovic 

et al., 2018; Wilson and Fadel, 2017). To date, whether such cholinergic neuromodulatory 

drive can directly affect visual function remains unclear (Chen et al., 2015). In a study 

assessing the psychological impact of glaucoma, it was found that 80% of the 589 enrolled 

patients suffered from negative emotional reactions after knowing that they had glaucoma, 

among which nearly one third had apprehension of developing blindness (Odberg et al., 

2001). This is in line with later cross-sectional studies that observed higher anxiety levels 

(Bechetoille et al., 2008; Hamelin et al., 2002) and depression prevalence in patients with 

increasing glaucoma severity (Bramley et al., 2008; Skalicky and Goldberg, 2008). 

Longitudinally, visual field loss in glaucoma (Artes and Chauhan, 2005) appears to progress 

at a faster rate if the patient is presented with depression-like symptoms (Diniz-Filho et al., 

2016). Whilst mental stress can modify cholinergic neurotransmission in the brain (Caspi et 

al., 2003; Meerson et al., 2010), malfunction of the ACh system can also lead to stress and 

anxiety (Kumar et al., 2013a; Mark et al., 1996; Mineur et al., 2013; Picciotto et al., 2012; 

Picciotto et al., 2015) as well as elevation of cortisol (Walker et al., 1990), which in turn is 

associated with IOP elevation (Schwartz and Seddon, 1981) and vascular dysregulation with 

relevance to Flammer syndrome or endothelial dysfunction-mediated glaucoma (Buckley et 

al., 2002; Bukhari et al., 2016; Flammer and Konieczka, 2017; Konieczka et al., 2017; 

Konieczka et al., 2014; Liu et al., 2016; Resch et al., 2009). Collectively, this overview 

presents a potential vicious circle whereby vision loss in glaucoma elicits psychological 

stress and anxiety, which then exert influence on the brain cholinergic system to cause 

further vision loss. From another viewpoint, this information also provides opportunities to 

address the pathogenic features of glaucoma at multiple levels, as ameliorating ACh 

metabolism dysfunction or severity of depression and psychological stress may help to 

pacify the risks for glaucoma (Chamoun et al., 2017; Dada et al., 2018; Faiq, 2016, 2018; 

Gagrani et al., 2018; Sabel et al., 2018b). Even though the primary outcome measure of 

most clinical trials was IOP which is currently the only modifiable risk factor for glaucoma, 

these studies lend support to the notion that interventions based on eliciting relaxation 

response may be helpful in ameliorating glaucoma-related symptoms as well as positive 

changes in gene expression and other markers of stress and wellbeing (Sankalp et al., 2018).
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Additionally, glaucoma patients often present visual attention deficits (Rosen et al., 2015; 

Smith et al., 2011). Visually impaired individuals typically possess a reduced visual span as 

compared to the normally sighted counterparts. This necessitates the glaucomatous 

individuals to distribute attention between functioning and deficient visual fields, which in 

turn elevates the burden on attention reserves for cognitive tasks (Swenor et al., 2017). 

Damage to the retinal nerve fiber layer or post-retinal visual pathway in glaucoma may also 

reduce the efficiency of the visual system to execute immediate target detection in the visual 

field (Loughman et al., 2007). Using advanced neuroimaging, widespread structural and 

functional brain changes within and beyond the central visual pathway have been found in 

glaucoma, and these brain regions are often involved in high-order cognitive functions 

(Murphy et al., 2016; Nuzzi et al., 2018; Song et al., 2014; Wang et al., 2016). It is known 

that the cholinergic systems may be altered in attention–deficit/hyperactivity disorder 

(Demeter and Sarter, 2013; Luchicchi et al., 2014; Sarter and Paolone, 2011), whereas 

nicotine alleviates symptoms due to attention deficit (Conners et al., 1996; Sahakian et al., 

1989; Wignall and de Wit, 2011). This brings about two questions of whether the central 

nicotinic cholinergic function may augment the attention deficits in glaucoma, and if it can 

be a target similar to attention-deficit/hyperactivity disorder (Potter et al., 2006). Citicoline 

supplementation has been shown to improve attention, working memory and performance 

speed (Bruce et al., 2014; McGlade et al., 2019) which suggests that citicoline may work as 

a therapeutic measure to improve glaucoma outcomes through similar pathways. Since 

citicoline is a precursor of choline-related compounds, it seems apparent that citicoline may 

aid in addressing the cholinergic glaucoma-stress relationship in addition to other 

neuroprotective and neurorestorative realms. More studies are necessary to confirm how 

specifically cholinergic dysfunctions are involved in glaucoma and whether the multifarious 

factors aforementioned are indeed effective targets for citicoline therapy. With this note, the 

final section deals with the status quo and the future prospectus of ACh modulation and 

citicoline therapy in glaucomatous vision loss.

8. Future Directions and Conclusions

In this paper, we put forth the hypothesis of the cholinergic nervous system as a mechanistic 

and therapeutic modality in vision and behavior, and exploit the evidence of its role in the 

etiopathogenesis of glaucoma. Figure 10 elucidates the above with cross references to 

citicoline biology. These preclinical and clinical studies justify citicoline supplementation by 

various routes including oral administration, intramuscular injection, intraperitoneal 

injection and eye drops across different neurodegenerative diseases and species. Various 

concentrations of citicoline have been used from 50 mg/kg body weight to 1g per day. 

Outcome measures like retinal catecholamine levels, thickness of retinal layers, expression 

of choline acetyl transferase and tyrosine hydroxylase, RGC density, expression of anti-

apoptotic BCL-2, apoptosis evaluation by TUNEL assays, Caspase 3, Caspase 9 activity, 

structural and functional brain imaging, pattern electroretinogram, visual evoked potential 

measurements, and optokinetic behavioral assessments have been investigated with study 

designs ranging from animal model studies to case control and randomized controlled trials. 

In light of the above overview, it seems that citicoline holds a strong promise to be a future 

treatment modality for glaucoma and other neurodegenerative diseases. It is not clear 
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whether citicoline affects IOP or ICP, but citicoline may act through the neurodegenerative, 

neuropathic and psychosomatic paradigms in glaucoma.

Two obvious approaches towards citicoline use emerge from the studies reported to date. 

One is aimed at exploring the therapeutic mechanism by employing animal and clinical 

studies, and the other is focused on the safety and efficacy by animal studies and randomized 

controlled trials. While citicoline has been found safe at the therapeutic doses being 

currently administered, an ideal clinical study to evaluate the neurotherapeutic effects of 

citicoline in glaucoma may be difficult to perform owing to the inherent issues in the natural 

history of glaucoma such as a long term and rather variable progression curve, the difficulty 

to predict disease severity and glaucoma risks in terms of elevated IOP, variable and unclear 

age of onset, involvements of the brain apart from the eye, the lack of consensus in cupping 

paradigm, the potential role of endothelial dysfunction, the systemic effects on disease onset 

and progression, role of stress and anxiety, and other psychosomatic involvements (Weinreb, 

2007). To circumvent this difficulty, a pre-glaucomatous state identification protocol and 

long-term follow up would be advantageous but that would require meticulous study design 

and long periods of monitoring. We explicate on this issue in the following paragraphs on 

the potential clinical trial settings and their feasibility in both early and advanced glaucoma 

(Guymer et al., 2019; Levin et al., 2017; Quigley, 2012).

The mechanistic assembly of cholinergic system-glaucoma relation can be broadly classified 

into 3 domains: protection of undamaged RGCs and axons, rescue of minimally damaged 

RGCs and axons, and regeneration of damaged RGCs and axons (Figure 8). In terms of 

conceptual neurobiology, there is no clear boundary between these three processes and the 

therapeutic effects of citicoline are presumably mediated through the combination and 

permutation of all three contributions. It is assumed that citicoline may mainly act through 

the first and second mechanisms (i.e. neuroprotection and neurorestoration) if glaucoma can 

be diagnosed early. These RGCs and axons often appear in the transition zones of the visual 

field and are often undetected or ignored clinically. Figure 9 demonstrates this scenario both 

schematically and from actual data obtained under clinical and experimental neuroimaging 

settings. Ophthalmologists generally examine visual field results in terms of “black-and-

white” where black means lost vision and white means intact vision. The often ignored grey 

areas may be from a mix of healthy and damaged RGCs or axons given the limited 

resolution of perimetry. Alternatively, there is initial evidence that corresponds these regions 

to the minimally damaged cells or axons in early apoptosis stage, whereby the most 

reservoir for vision rescue and regeneration can be potentiated (Fedorov et al., 2011; Gall et 

al., 2016; Henrich-Noack et al., 2017b; Kasten et al., 1998; Sabel et al., 2018a; Sabel et al., 

2011b). Citicoline might act in the window between cellular/axonal dysfunction and death 

which offers a pragmatic approach from the end-user point of view. Preclinically, optic nerve 

crush models may be useful in investigating the neurorestorative/neuroregenerative 

potentials of citicoline while ocular hypertension models are likely helpful to further our 

understanding of the neuroprotective/neurorestorative mechanisms thereof. Also, animal 

models that represent the normotensive subset of glaucoma such as impaired glutamate 

transporters and transgenic optineurin E50K or TBK1 mice may help in understanding 

neuroprotective and neurorestorative processes upon IOP-independent mechanisms of RGC 

apoptosis (Harada et al., 2019). In animal models, the outcome measures can be pattern 
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electroretinogram, visual evoked potential, IOP, ocular and cerebral integrity, protein 

expression profiling, and gene expression profiling. Visual behavioral assessments are often 

ignored in preclinical studies but are important to evaluate any overall improvement in 

functional vision after neurotherapeutics to the the eye and the brain’s visual system. 

Designing rigorous experiments in this direction may provide answers to the roles of the 

cholinergic system in glaucoma, and at the same time give rise to novel and relevant 

questions. Furthermore, detecting the disease early and tracing disease progression in the 

same subjects are important to research fields to minimize biovariability and develop better 

understanding of causality, whereas direct detection of the cholinergic signaling in vivo 
could help improve specificity of our investigative experiments and for personalized 

medicine.

With regards to clinical studies, various study designs like cohort, case control and 

retrospective cohort have been investigated (Ottobelli et al., 2013; Parisi, 2005; Parisi et al., 

2015; Parisi et al., 2008a; Parisi et al., 2008b; Parisi et al., 1999; Pecori Giraldi et al., 1989; 

Rejdak et al., 2003; Roberti et al., 2014; Virno et al., 2000) (Table 1). Given the safety of 

citicoline and the absence of serious adverse events reported, this compound has entered 

clinical trials for a variety of neurodegenerative diseases including glaucoma. There is, 

however, a caveat on the sustainability of the therapeutics as the additional beneficial effects 

supplemented by citicoline eye drops appear to fall back to baseline after the washout 

period. This indicates the need for further optimization of the pharmacokinetics of different 

administrative routes and treatment paradigm for improved long-lasting effects. On the other 

hand, there have been no clinical trials in the use of citicoline treatment on congenital 

glaucoma, juvenile onset glaucoma, developmental glaucoma or angle closure glaucoma. It 

is either unclear whether citicoline acts on secondary glaucoma including steroid-induced 

glaucoma or neovascular glaucoma. Since outcomes measures such as changes in 

scotomatous area, visual evoked potential, pattern electroretinogram, and visual field have 

been initially evaluated in citicoline supplementation, a more well-structured clinical trial 

makes the next coherent rationale. This may include a randomized controlled trial with four 

arms instead of two: (i) ocular hypertension with no glaucoma, (ii) high-tension glaucoma, 

(iii) normotensive glaucoma and (iv) healthy controls. Furthermore, the “visual quality of 

life” assessment has been ignored by the majority of clinical trials. The European Glaucoma 

Society guidelines emphasize on “incorporation of quality of life measure in the outcome of 

treatment” (Terminology and Guidelines for Glaucoma, 4th Edition, Clause B3). A general 

quality-of-life (e.g. WHO-BREF) or glaucoma-specific quality-of-life (e.g. GQL-15 or 

NEIVFQ25) assessment should be one of the outcome measures in the clinical trials to be 

carried out in future. Combining the clinical outcomes with exploratory studies like gene 

expression pattern, reactive oxygen species markers, aging markers, inflammatory markers, 

apoptosis markers, psychological personality evaluation, and stress level evaluation will 

reveal a wealth of information to determine the clinical, biological, genetic and psychosocial 

elements in glaucoma and citicoline treatment.

As citicoline addresses many aspects of neurodegeneration (Adibhatla et al., 2002; 

Bogdanov et al., 2018; Grieb, 2014; Hurtado et al., 2005; Matteucci et al., 2014; Parisi et al., 

2018), clinical trials of citicoline-based intervention in glaucoma may be guided by trials 

already reported on other neurodegenerative diseases (Cesareo et al., 2015; Ghiso et al., 
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2013; Mancino et al., 2018; Nucci et al., 2015; Ou et al., 2012). However, since glaucoma is 

a slowly progressing disease, clinical trials with long-term monitoring are often preferred yet 

remain challenging (Leske et al., 2003; Parisi et al., 2008a; Parisi et al., 1999; Virno et al., 

2000; Weinreb et al., 2018) considering the large sample size needed for deriving 

statistically and clinically meaningful results from the small effect size, the high cost of the 

studies, the potential patient dropout or loss of adherence, and the compromise in drawing 

robust conclusions from incomplete data (McGhee et al., 2016; Stanzione and Tropepi, 

2011). For example, if visual field tests are performed every 3 months for 2 years, a sample 

size of 495 patients per group would be necessary to detect 30 percent reduction in the mean 

deviation rate of change (De Moraes et al., 2017). There is, however, some hope regarding 

the design of smaller scale trials that may still provide useful and reliable results (Quigley, 

2012). For instance, the United Kingdom Treatment Study employed a novel method of 

clustered testing paradigm combined with point-wise event based approach to investigate 

visual field progression upon IOP lowering treatment in a trial spanning less than 2 years 

with 258 participants per arm (Garway-Heath et al., 2015; Wu et al., 2019). In most clinical 

trials for glaucoma, IOP is the primary outcome. Recently, a growing number of trials begin 

to use other outcome measures such as visual field, retinal nerve fiber layer thickness, and 

electroretinogram (De Moraes et al., 2017; Quigley, 2012; Quigley, 2019; Weinreb, 2007; 

Weinreb et al., 2018; Wu et al., 2019). Since citicoline is expected to act on glaucomatous 

neurodegenerative events rather than IOP (Adibhatla et al., 2002; Grieb, 2014; Hurtado et 

al., 2005; Matteucci et al., 2014; Ou et al., 2012; Parisi et al., 2018), visual field, pattern 

electroretinography, structural/functional imaging or quality of life may be considered as the 

primary/secondary outcomes for citicoline-based glaucoma trials (Quigley, 2012; Quigley, 

2019; Wu et al., 2019). Citicoline trials should also take IOP lowering into consideration 

since halting the regular anti-glaucoma medication may pose risks to the patients in addition 

to other ethical concerns. In such case, the milestone of effective citicoline intervention 

should be set above the effects from IOP lowering medication alone. Inter-observer 

variability and time of IOP measurements should be properly accounted for as spontaneous 

IOP fluctuations and other systematic errors could potentially mask the IOP-independent 

neurotherapeutic effects and render the data inconclusive or underpowered (Quigley, 2012; 

Quigley, 2019). In terms of dosage, citicoline does not pose major side effects up to 1600 

mg/day (Grieb et al., 2016; Grieb and Rejdak, 2002; Parisi et al., 2008a; Parisi et al., 1999; 

Parisi et al., 2018; Rejdak et al., 2003; Virno et al., 2000). However, its short- and long-term 

dose-dependency remains to be systematically evaluated such as using futility trials (Levin, 

2015; Schwid and Cutter, 2006; Tilley et al., 2006). To improve adherence, electronic 

reminders can be used (Boland et al., 2014) whereby different user-friendly and 

customizable mobile apps have been recently developed for this purpose. Caregivers can 

also be trained to ensure adherence. Last but not least, future studies can take into 

consideration more sensitive methods to monitor disease progression and detect therapeutic 

effects using smaller sample sizes as technology advances (Quigley, 2012; Quigley, 2019; 

Wu et al., 2019).

Increasing numbers of molecular, in vitro and in vivo studies have revealed that cholinergic 

signaling is closely related to various neurocognitive functions including visual information 

processing and RGC viability. In light of the above overview, glaucoma may also be 
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understood in terms of cholinergic dysfunction. Such a conceptual outlook provide the 

premise to subject cholinergic drugs to experimentation. To further bolster this, cholinergic 

drugs were one of the earliest therapeutic modalities for glaucoma. A search for novel 

cholinergic moieties is imperative in this connection. A naturally occurring, inexpensive and 

relatively harmless compound with good bioavailability and no adverse side effects would be 

an ideal candidate for glaucoma therapy. Citicoline is a natural product approved as a food 

supplement. It is safe at the currently approved dosage in clinical trials, and can be 

metabolized in the body into cytidine and choline which then reassembles in the brain to 

form citicoline. Citicoline is the source of phosphatidylcholine, ACh, sphingomyelin and 

cardiolipin and hence is important in maintaining the structural and functional viability of 

various neurons including RGCs. Citicoline also prevents glutamate excitotoxicity and 

improves dopamine signaling. This indicates that citicoline may be a potential drug to treat 

neurodegenerative diseases including glaucoma. It is also pertinent to examine if citicoline 

can be combined with other substances [e.g. scutellarin (Hu et al., 2018; Zhu et al., 2018) 

and quercetin (Lee et al., 2016; Lee et al., 2010; Lee et al., 2011a)] and treatments that in 

part regulate ACh or ACh receptor levels for further improving the antioxidant and 

antiapoptotic properties in glaucoma and other neurodegenerative disorders. Taken together, 

intensified research efforts targeting the cholinergic system as glaucoma neurotherapeutic 

sites are warranted to help reduce the global prevalence and burden of the disease. Next 

decade is likely to shed light on this issue.
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Abbreviations

ACh Acetylcholine

AChE Acetylcholine esterase

AChR Acetylcholine receptor

Akt AKT Serine/Threonine Kinase

ATP Adenosine triphosphate

BCL2 B cell lymphoma gene 2

CDP Cytidine-5’-diphosphocholine

ChAT Choline acetyltransferase

CMP Cytidine monophosphate

CNS Central nervous system

DNA Deoxyribonucleic acid
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GABA Gamma aminobutyric acid

GFP Green fluorescent protein

ICP Intracranial pressure

IOP Intraocular pressure

JAK2 Janus Kinase 2

Kir3 Inwardly Rectifier K+ Channel 3

Kv7 Voltage-Gated Potassium Channel Subunit Kv7

mAChR Muscarinic acetylcholine receptor

MRI Magnetic resonance imaging

mRNA Messenger RNA

MRS Magnetic resonance spectroscopy

nAChR Nicotinic acetylcholine receptor

NMDA N-methyl-D-aspartate

PCYTA Choline-phosphate cytidylyltransferase A

PDHA Pyruvate dehydrogenase

PEMT Phosphatidylethanolamine n-methyltransferase

PERG Pattern electroretinogram

PI3K Phosphoinositide-3-Kinase

PKC Protein kinase C

PLC Phospholipase C

RGC Retinal ganglion cell

RNA Ribonucleic acid

ROS Reactive oxygen species

VEP Visual evoked potential

VGCC Voltage gated calcium channel

YFP Yellow fluorescent protein
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Highlights

• The cholinergic nervous system has a crucial role to play in visual function.

• Choline metabolites are imperative for mitochondria, myelin and neuronal 

functions.

• Neurodegenerative events have been identified in human and experimental 

glaucoma.

• Cholinergic system can be an effective target for glaucoma management and 

therapy.
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Figure 1: Conceptual guide of the cholinergic system in vision.
This figure highlights the key messages of this paper that are important to the understanding 

of the cholinergic system and the therapeutic effects of cholinergic drugs including citicoline 

on the visual system.
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Figure 2: Representative portrayal of the micro-anatomy and molecular biology of the 
cholinergic synapse.
This illustration gives an overview of the molecular processes, proteins, receptors and 

pathways of the cholinergic synapses and their locale in and outside of the neurons. The 

timeline of the synaptic function runs from left to right. In the presynaptic neuron, ACh is 

synthesized from the building blocks in the mitochondria, and is transported by the vesicles 

and released in the synapse. ACh signaling occurs through binding with the muscarinic and 

nicotinic receptors on the postsynaptic membrane. Such signaling leads to important 

molecular processes including neuronal plasticity, regulation of apoptosis and other cellular 

functions. Visual plasticity and perception are relevant to cholinergic signaling in the visual 

cortex, whereas RGC survival/apoptosis is imperative in glaucoma. This figure also depicts 

the subtle differences between central cholinergic synapse and the cholinergic synapse in the 

RGCs. Specifically, the ChAT in RGCs is in an alternative spliced form called pChAT. In 

case of insufficient production of acetylcholine in the presynaptic neuron, choline is taken 

back from the synapse in an autoregulatory attempt to the presynaptic membrane thereby 

rescuing the cellular reservoir of choline for other functions like vesicle formation and 

membrane component synthesis. ACh also interacts between neurons (including RGCs) and 

glia, which helps maintain their proper functioning and calcium uptake for the prevention 

and mediation of hyperactivation.
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Figure 3: The cholinergic system in the eyes and brains of humans and rodents.
This figure illustrates the cholinergic mapping of the human and mouse brains. Note that the 

labels for the human brain also apply to the mouse brain. Humans and rodents share several 

similarities in the central cholinergic system. For example, the cholinergic neurons in the 

visual pathway mainly originate from the basal forebrain which may play a role in glaucoma 

in terms of visual plasticity, visual perception and regulation of intracranial pressure. The 

pedunculopontine-lateral dorsal tegmental projections have also been depicted in both 

human and mouse brains. Apart from the cholinergic innervations within the brain, the eye is 

sensitive to cholinergic function. Cholinergic modulation of ocular structures can help 

regulate the intraocular pressure (the only modifiable risk factor in glaucoma). 

Cholinomimetics cause contraction of ciliary bodies and widening of anterior chamber angle 

leading to higher rate of aqueous clearance. The muscarinic cholinergic activation decreases 
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the aqueous production thereby leading to lowering intraocular pressure. In addition to 

aqueous humor dynamics, activation of α−7 nicotinic ACh receptors in the eye induces 

neuroprotection of retinal ganglion cells (Linn, 2016).
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Figure 4: Chemical structure of citicoline.
The chemical name of citicoline is 5’-O-[hydroxy({hydroxy[2-

(trimethylammonio)ethoxy]phosphoryl}Moxy)phosphoryl]cytidine. It contains two major 

structural components, choline and cytidine. Choline is bound to the ribose ring through a 

pyrophosphate bond. This chemical bridge between ribose and choline gives citicoline the 

chemical property to be easily broken down and readily resynthesized given the favorable 

conditions or the presence of relevant enzymes. This property is important to the delivery of 

citicoline to the CNS, as citicoline cannot cross the blood-brain barrier while choline and 

cytidine can, hence citicoline has to be hydrolyzed to cytidine and choline in the liver and 

resynthesized in the brain via the pyrophosphate bridge. Ribose and cytosine make citicoline 

a component important for RNA biology, though the exact role of which has not yet been 

deciphered. It is speculated that nucleic acid synthesis may be one of the roles of citicoline 

in the light of its chemical composition.
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Figure 5: Citicoline synthesis and metabolism.
Citicoline and choline are closely related metabolically and are involved in the synthesis of a 

variety of active biochemical moieties that have widespread roles to play in membrane 

biology, neurotransmission, apoptosis and bioenergetics in the visual system. When being 

acted upon by the enzyme CDP-choline 1,2,-diacylglycerol cholinephosohotransferase, 

citicoline leads to the formation of phosphatidylcholine, which is an important component of 

neuronal membranes and is imperative to the membrane integrity of the retinal ganglion 

cells. Phosphatidylcholine can be converted to sphingomyelin and subsequently to myelin, a 

major white matter component in the brain. Phosphatidylcholine can also be converted to 

choline, which forms betaine upon catalytic reaction by choline oxidase, and subsequently to 

serine, which modulates the non-NMDA ionotropic glutamate receptors expressed by inner 

retinal neurons. By a variety of enzymes including choline acetyltransferase, choline is 

converted into ACh, which acts as a neurotransmitter and modulates aqueous humor 

production through parasympathetic activity. ACh can act as a substrate for the synthesis of 

choline, a process mediated by acetylcholinesterate.
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Figure 6: Citicoline bioavailability and pharmacokinetics in different body compartments.
This schematic diagram outlines how citicoline behaves as an exogenous agent (a drug or a 

supplement) in the mammalian biological system and how this external agent enters the 

brain. After being administered via oral, intramuscular, ocular, intraperitoneal or intravenous 

route, citicoline enters the organ of first pass, followed by the systemic circulation and the 

liver. Since citicoline cannot cross the blood-brain barrier, it needs to be hydrolyzed into 

choline and cytidine in the liver, which readily cross the blood-brain barrier. Once choline 

and cytidine enter the brain via the systemic circulation, they recombine to form citicoline 

which can be used up for various cholinergic functions including neurotransmission, myelin 

regulation, neuronal membrane rescue and regeneration.
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Figure 7: In vivo metabolic assessments of the brain in glaucoma.
Using magnetic resonance spectroscopy, the neurochemistry of the visual cortex in 

glaucoma can be evaluated non-invasively and can be compared across species spanning 

from the conventional experimental rat model of unilateral chronic ocular hypertension (A) 
to glaucoma patients (B). It is important to note that both humans and rodents show a lower 

choline (Cho) level in the glaucomatous visual cortex relative to the control visual cortex, 

whereas the creatine (Cr) level appears relatively comparable between glaucoma and control 

visual cortices. This suggests the reduction of choline-containing compounds in the 

glaucomatous visual cortex during trans-synaptic degeneration. The volumes of interests 

sampled are shown in the purple (A) and white boxes (B) in the multiplanar magnetic 

resonance brain images on the left for references. (Reproduced with permission from (Chan 

et al., 2009) and (Murphy et al., 2016))
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Figure 8: The classical triad of citicoline actions on neurodegeneration.
This figure summarizes the biochemical and biological activities of citicoline into the triad 

of pharmacodynamics for treating neurodegeneration. Citicoline protects undamaged axons 

and hence is neuroprotective (Adibhatla et al., 2002; Bogdanov et al., 2018; Grieb, 2014; 

Hurtado et al., 2005; Parisi et al., 2018). It rescues the partially damaged neurons 

presumably through membrane re-integration and therefore is neurorestorative (Saver, 

2008). The regenerative function of citicoline arises from the initial in vitro evidence for the 

drug to regenerate neuronal cells (Ozay et al., 2007; Skripuletz et al., 2015).
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Figure 9: Representation of various severity of ocular and central vision loss in glaucoma and the 
candidate plan for neurotherapeutic intervention.
This figure explicates the idea of glaucoma being a neurodegenerative disorder with definite 

ocular and brain manifestations. (A) portrays a schematic representation of healthy (1st 

column), partially lost (2nd column) and completely lost visual function (3rd column). The 

corresponding clinical manifestations are illustrated in terms of peripapillary retinal nerve 

fiber layer (RNFL) thickness by optical coherence tomography (B) and visual field 

perimetry (C). The concomitant structural and functional brain changes in diffusion tensor 
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MRI (D) and functional MRI (E) across increasing extents of vision loss bolsters the notion 

of glaucoma being a neurodegenerative disease of the visual system. This figure also 

considers the candidature of each condition for neurotherapeutic intervention. Since 

citicoline is neuroprotective, a healthy visual field (in high risk individuals) is a candidate 

for neuroprotection. The neurorestorative and neuroregenerative properties of citicoline 

make it a candidate for partially damaged and completely damaged visual field (A). Color 

representations for the principal diffusion directions in (D): blue, caudal-rostral; red, left-

right; green, dorsal-ventral. (RNFL: retinal nerve fiber layer; FA: fractional anisotropy; OT: 

optic tract; VC: visual cortex; BOLD fMRI: blood-oxygenation-level-dependent functional 

MRI)
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Figure 10: Overview of the involvements of cholinergic metabolism in neuroprotection, 
neurorestoration and vision rehabilitation in both basic and clinical domains.
ACh and citicoline are reciprocal precursors and are interconvertible through various 

enzymatic systems. Choline and cytidine are also the metabolites within this network. The 

reported effects of this pool of moieties (citicoline, ACh, choline and cytidine) include: (1) 

Preservation of cardiolipin for rescuing mitochondrial function and consequently aiding in 

neuroprotection and neurorestoration; (2) Preservation of sphingomyelin for myelin 

formation and thereby protection of neurons and assurance of proper membrane function; 

(3) Restoration of phosphatidylcholine for improved ACh synthesis. This may help prevent 

oxidative stress and is important in neuroprotective and neurorestorative processes by 

maintaining mitochondrial function and viability and preventing mitochondrial genome 

instability; (4) Stimulation of glutathione synthesis works through two main mechanisms 

including prevention of oxidative stress and direct neuroprotection. Prevention of oxidative 

stress, in particular, ensures better bioenergetics and prevents neuronal apoptosis; (5) 

Lowering of glutamate concentration. This primarily prevents glutamate excitotoxicity 

thereby promotes neuroprotection and neurorestoration; (6) Releasing calcium from 

endothelial cells for modulating nitric oxide and improving endothelial function. Proper 
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functioning of the microvasculature and proper tissue perfusion is important for neuronal 

viability. Ameliorating endothelial dysfunction leads to improved microvasculature and 

better blood flow, which, in turn, prevents neuronal apoptosis; (7) Myelin synthesis for axon 

protection and prevention of the axonal degeneration; and (8) Binding to muscarinic and 

nicotinic receptors for activating molecular pathways that are involved in the prevention of 

RGC death and neuronal apoptosis, neurorestoration, modulation of neuroplasticity, 

contraction of ciliary bodies, and widening of the anterior chamber angle with increased 

aqueous outflow and consequent drop in IOP.
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