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Abstract

In this review, we summarize studies investigating the types and distribution of voltage- and 

calciumgated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, 

bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences 

among cell subtypes within these major cell classes, as well as differences among species, and 

consider how different ion channels shape the responses of different neurons. For example, even 

though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent 

action potentials, many of these cells nevertheless possess fast sodium currents that can enhance 

their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well 

as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in 

photoreceptor cells exhibits specific properties matching the particular needs of these cells such as 

limited inactivation which allows sustained channel activity and maintained synaptic release in 

darkness. The particular properties of K+ and Cl− channels in different retinal neurons shape 

resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to 

characterize the specific distributions of ion channels in the more than 100 individual cell types 

that have been identified in the retina and to describe how these particular ion channels sculpt 

neuronal responses to assist in the processing of visual information by the retina.
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1. Introduction

Investigators have explored the complement of ion channels in retinal neurons using an array 

of electrophysiological, immunohistochemical and molecular approaches. Early 

electrophysiological studies focused largely on non-mammalian vertebrates but later 

investigations provided greater insight into the properties of mammalian retinas. In recent 

years, the number of identified cell types in retina has increased considerably. For example, 

initial studies distinguished ON and OFF types of bipolar cells but we now recognize more 

than a dozen subtypes of bipolar cells. There is an even larger number of amacrine and 

ganglion cell types. Accompanying this expansion of recognized cell types has been a 

tremendous expansion in our understanding of the molecular diversity of ion channels. In 

that context, we thought it useful to summarize the current state of knowledge regarding the 

types of ion channels present in different types of retinal neurons. We focus on voltage- and 

Ca2+-dependent ion channels that transform photocurrents and synaptic currents into voltage 

responses. We do not focus on other ligand-gated ion channels such as the cyclic nucleotide-

gated channels in photoreceptor outer segments or ion channels that couple directly to 

neurotransmitter receptors. Nor do we focus on aquaporins, gap junction hemichannels, TRP 

channels, or transporters. We use nomenclature recommended by the International Union of 

Pharmacology (IUPHAR) as summarized in “The Concise Guide to Pharmacology 2017/18”

(Alexander et al., 2017a; Alexander et al., 2017b; Alexander et al., 2017c), supplemented by 

some of the more commonly used terms. Before turning to the different cell types, we begin 

with a summary of the subtypes and structural features of the ion channels that are the focus 

of this review.

1.1 K+ channels

1.1.1 Inwardly rectifying K+ channels are formed from a tetrameric complex of 4 individual 

subunit proteins that each possess 2 transmembrane domains linked by a short pore-forming 

reentrant loop (P-loop) (Hibino et al., 2010; Tao et al., 2009). These channels lack a genuine 

voltage sensor but nevertheless exhibit an inwardly rectifying voltage-dependence that arises 

from blockade of outward currents by divalent cations at the intracellular surface of the 

channel pore. Some inwardly rectifying K+ channels (KIR1.1-7.1) are constitutively active, 

some are activated by Gβγ subunits of G-proteins (GIRK), and others are activated by a fall 

in intracellular ATP (KATP).

1.1.2 Two-pore K+ channels are formed from dimers with each subunit containing 4 

transmembrane alpha helices (M1-4) along with two P-loops linking M1 to M2 and M3 to 

M4 (Brohawn et al., 2012; Miller and Long, 2012). The presence of two P-loops in each 

subunit endows this group with its name. Like KIR channels, two-pore channels 

(K2P1.1-12.1) lack a genuine voltage sensor. Constitutive activity of two pore channels 

contributes to the leak K+ current in many cells and is important for setting the resting 

membrane potential (Feliciangeli et al., 2015; Renigunta et al., 2015).

1.1.3 Voltage-gated K+ channels (Armstrong, 2003; Kim and Nimigean, 2016; Kuang et al., 

2015) are constructed from heteromeric or homomeric combinations of 4 individual 

subunits. Each subunit possesses 6 trans-membrane domains (S1-S6) with a P-loop located 

between S5 and S6. These channels are activated by depolarizing potentials. The voltage 
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sensor in these and other similar voltage-dependent channels is the S4 trans-membrane 

domain that contains a number of positively charged amino acid residues (typically 

arginine). Membrane depolarization causes these residues to move towards the extracellular 

side of the membrane and the resulting conformational change in the protein opens the 

channel pore. It was originally proposed that voltage-sensing involves an outward helical 

screw motion of the S4 segment (Cha et al., 1999; Glauner et al., 1999), but subsequent 

structural analysis suggested that the S4 domain undergoes a paddle-like outward movement 

in response to depolarization (Jiang et al., 2003). Functional subtypes of voltage-gated K+ 

channels include delayed rectifier currents (IKDR) in which outward currents inactivate 

slowly and A-type currents (IKA) that inactivate rapidly. Rapid inactivation occurs through a 

“ball-and-chain” mechanism in which the amino terminus swings towards the channel pore 

to block conductance, involving either the K+ channel subunit itself or a segment of an 

accessory β subunit (Hille, 2001; Kurata and Fedida, 2006). Slow inactivation of IKDR 

involves conformational changes that restrict pore conductance. There are a few dozen 

subtypes of voltage-gated K+ channels (Kv1.1 to 12.3). Kv1-4 channels can form both 

homomeric and heteromeric channels with members of the same subclass (e.g., Kv1.1 with 

Kv1.2). Homomeric and heteromeric combinations of different Kv7 subunits form a special 

type of delayed rectifier current known as M-type currents. M currents were named for the 

ability of muscarinic agonists to inhibit these channels. Other agents that activate Gq/11 

signaling pathways can also inhibit these channels (Brown and Passmore, 2009; Greene and 

Hoshi, 2017). Kv5, 6, 8 and 9 subunits have a similar structure as other K+ channels, but do 

not form functional homomeric channels. However, they can form functional channels in 

heteromeric combination with Kv2 subunits (Bocksteins, 2016).

Kv10-12 subunits encode ether-a-gogo (eag, Kv10), ether-a-gogo-related (erg, KV11) and 

ether-a-gogo-like (elk, Kv12) channels (Bauer and Schwarz, 2018). Ether-a-go-go channels 

received their name because under ether anesthesia, Drosophila with mutations in this 

channel shake their legs like go-go dancers (Vandenberg et al., 2012). These channels have a 

much shorter domain linking S4 and S5 domains compared to Kv1-2 channels that suggests 

a different gating mechanism (Whicher and MacKinnon, 2016). Kv10-12 channels have a C-

terminal domain that is homologous to the cyclic nucleotide binding domain of CNG and 

HCN channels but lacks certain key residues so that it does not bind cyclic nucleotides.

In addition to the many pore-forming Kv channel subunits, a number of accessory K+ 

channel subunits have also been identified (Pongs and Schwarz, 2010). The many possible 

combinations of subunits and accessory proteins allows for an extremely large number of 

functionally and molecularly distinct K+ channels tuned to meet the particular needs of 

different cells.

1.1.4 Calcium-activated K+ channels (Adelman et al., 2012; Christophersen and Wulff, 

2015; Kaczmarek et al., 2017; Kshatri et al., 2018; Latorre et al., 2017) are functionally 

classified as small, intermediate and large conductance channels. Like voltage-gated K+ 

channels, Ca2+-activated K+ channels with small (KCa2.1-2.3; SK) and intermediate 

(KCa3.1; IK) single channel conductance are formed from four subunits, each containing 6 

trans-membrane domains with one P-loop. Ca2+ activates these channels in a voltage-

independent way by binding to calmodulin (CaM) associated with a CaM binding domain on 
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the C-terminus. Ca2+-activated K+ channels (KCa1.1) with a large single channel 

conductance (~250 pS in symmetrical K+) are referred to as big K+ (BK) or Maxi K+ 

channels. In addition to the 6 transmembrane domains possessed by most other voltage-

dependent channels, BK channels have an additional S0 trans-membrane domain, placing 

the N-terminus on the extracellular rather than the intracellular surface as is typical of 

channels with six transmembrane domains. In BK channels, binding of Ca2+ to domains on 

the intracellular surface can directly activate the channels (Yuan et al., 2011; Yuan et al., 

2010). The accompanying allosteric changes to the protein also lower the threshold for 

voltage-dependent activation by shifting voltage-dependence to more negative potentials. 

There is only a single gene for BK channels, but as with other channels, there are multiple 

splice variants. Accessory beta and gamma subunits can further modify the activity of BK 

channels.

1.1.5 Sodium-activated K+ channels (KNa1.1-1.2) (Kaczmarek, 2013; Kaczmarek et al., 

2017) are formed from 6 transmembrane domains and a P-loop, but the S4 segment appears 

less free to move and does not possess the sequence of positively charged amino acid 

characteristic of voltage-dependent K+ channels (Hite et al., 2015). Elevation of intracellular 

Na+ and Cl− can both activate these channels. KNa channels are expressed in many neurons 

but, to our knowledge, their presence in retinal neurons has not been investigated.

1.2 Voltage-gated Na+ channels

Voltage-gated Na+ (NaV) channels are the key class of ion channels used to generate action 

potentials and are responsible for Na+ entry during the rising phase of the action potential 

(Ahern et al., 2016; Catterall, 2017). Unlike K+ channels that are formed from combinations 

of 2-4 individual subunits, the Na+ channel pore is formed from a single large α1 subunit 

protein. The α1 subunit consists of 4 similar sequences (I-IV), each possessing six 

transmembrane alpha helices (S1-6) with a short P-loop between S5 and S6, similar to 

individual voltage-dependent K+ channel subunits. As with most other voltage-dependent 

channels, the S4 domains function as the voltage sensor. Na+ channels underlying 

regenerative spiking are characterized by rapid and pronounced inactivation. Na+ channel 

inactivation involves a “hinged lid” mechanism in which the cytoplasmic loop between 

domains III and IV folds into the channel mouth to prevent conductance. There are currently 

9 known isoforms of mammalian NaV channel alpha subunits (NaV1.1-1.9). NaV1.1, 

NaV1.2, and NaV1.6 are highly expressed in neurons from the central nervous system 

including retinal ganglion cells. In addition to the α subunit, functional channels typically 

associate with β subunits that can modify voltage-sensitivity and gating of the channel.

1.3 Voltage-gated Ca2+ channels

Voltage-gated Ca2+ channels share a common structure with a large pore-forming α1 subunit 

that assembles with an intracellular β subunit and extracellular α2δ subunit (Catterall, 2011; 

Dolphin, 2016). Skeletal muscle channels (CaV1.1) also have accessory γ subunits but these 

do not appear to associate with Ca2+ channels in neurons. Similar to voltage-gated Na+ 

channels, the pore-forming α subunit is a single large protein composed of four domains 

each with six transmembrane alpha helices, a voltage sensor on the transmembrane segment 

S4 and a P-loop between S5 and S6. Ca2+ channels are functionally classified into two major 
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classes: low- and high-voltage activated (LVA and HVA). LVA currents (CaV3.1-3.3) activate 

at more negative potentials than HVA currents. Because of their tiny single channel 

conductance and rapid inactivation resulting in transient currents, LVA currents are also 

referred to as T-type currents. HVA L-type currents (CaV1.1-1.4) were originally defined by 

their large single channel conductance and long-lasting activation due to slow inactivation. 

Pharmacologically, L-type Ca2+ currents (ICa) are selectively sensitive to dihydropyridine 

agonists (e.g., BayK8644) and antagonists (e.g., nifedipine). N-type currents (CaV2.2) are 

HVA channels that show intermediate properties between T and L-type channels. N-type 

currents were found to be neither too long-lasting nor too transient and N-type single 

channel conductance was neither too large nor too tiny. N-type currents are also 

predominantly expressed in neurons. Selective block of another current by funnel web spider 

toxin revealed additional HVA Ca2+ channels in cerebellar Purkinje cells (P-type). Keeping 

to this largely alphabetical arrangement, the next subtype identified by use of selective 

blockers was then named Q. P and Q type channels (CaV2.1) both derive from a single gene, 

CACNA1A. Finally, the residual current that remains after blocking the other HVA types 

with a cocktail of toxins was named R (CaV2.3).

1.4 HCN and CNG channels

HCN and CNG channels are cation channels that share considerable homology with other 

voltage-gated channels. The channels consist of 4 subunits that each possess 6 

transmembrane domains (S1-S6) with a pore-forming P-loop between S5 and S6. The S4 

segment contains a number of positively charged amino acids, but despite this similarity to 

other voltage-dependent channels, CNG channels show little or no voltage-dependence 

(James and Zagotta, 2018) and HCN channels (HCN1-4) are activated by membrane 

hyperpolarization rather than depolarization (Craven and Zagotta, 2006; Wahl-Schott and 

Biel, 2009). CNG and HCN channels have an intracellular cyclic nucleotide binding domain. 

CNG channels are opened by cyclic nucleotide binding and the voltage-dependence of HCN 

channels is strongly modulated by cyclic nucleotides (James and Zagotta, 2018).

HCN subunits form cation channels that are weakly selective for K+ over Na+ (PNa/PK = 

0.2-0.3) and show little Ca2+ permeability. Unlike other voltage-gated ion channels, 

depolarization of HCN channels causes the S4 segment to move inward rather than outward 

towards the extracellular surface (Lee and MacKinnon, 2017). HCN channels are therefore 

activated by hyperpolarization and are typically active only at quite negative membrane 

potentials. Binding of cAMP can shift HCN voltage-dependence to more positive potentials 

and thereby promote HCN activity at membrane potentials that are more often attained 

under physiological conditions. HCN channel activity promotes oscillatory behavior in many 

neurons where it is sometimes referred to as an anomalous rectifier current (Ia). It also 

contributes to pacemaker currents in the heart where it is termed the “funny” current (If). In 

this review, we refer to the current carried by HCN channels as “Ih” for hyperpolarization-

activated current.

Our focus is on voltage- and Ca2+-gated ion channels and so we touch only briefly on CNG 

channels. There are six mammalian subunits: CNGA1-3 form functional homotetrameric 

channels but CNGA4, CNGB1 and CNGB3 can only form functional channels in 

Van Hook et al. Page 5

Prog Retin Eye Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combination with CNGA1-3 subunits. CNG channels are non-selective for monovalent 

cations and also conduct Ca2+, allowing it to serve as a second messenger in regulating 

phototransduction and olfactory transduction. We refer the interested reader to other reviews 

(Biel, 2009; Craven and Zagotta, 2006; James and Zagotta, 2018; Kaupp and Seifert, 2002).

1.5 Ca2+-activated Cl− channels

Anoctamin 1 and 2 (Ano1 and 2, also known as TMEM16A and B) are Ca2+-activated Cl− 

channels (Falzone et al., 2018; Kunzelmann, 2015; Whitlock and Hartzell, 2017). Ano1 and 

2 are members of a larger family of anoctamin proteins (1-10) that also includes lipid 

scramblases and some cation channels. Ano1 and 2 anion channels are synergistically 

activated by voltage and Ca2+. The name “anoctamin” was given to TMEM proteins because 

it was originally thought that they possessed 8 transmembrane domains although it now 

appears that they have 10 transmembrane domains. Bestrophin proteins (Best1-4) can also 

form anion channels in expression system but there remains some question about whether 

these are truly Ca2+-activated Cl− channels (Hartzell et al., 2008). Best1 is strongly 

expressed in retinal pigment epithelium cells and mutations in this protein can cause Best 

vitelliform macular dystrophy (Johnson et al., 2017).

2. Rod and cone photoreceptor cells

There are two main classes of photoreceptor cells in the retina: rods and cones. Cones can be 

further classified into subtypes based on their spectral sensitivity. While the mechanisms of 

phototransduction are broadly similar in rods and cones, specific protein isoforms and 

structural differences promote greater sensitivity in rods and faster kinetics in cones. As we 

discuss below, rod and cone photoreceptors share many, but not all, of the same ion 

channels.

The outer segments of rods contain very few or no channels besides CNG channels involved 

in phototransduction (Baylor et al., 1984; Baylor and Nunn, 1986). Whole cell patch clamp 

recordings from dissociated rods and cones of amphibian retina revealed the presence of five 

types of ion channels in the inner segment and synaptic terminal (Attwell and Wilson, 1980; 

Bader et al., 1982; Barnes and Hille, 1989; MacLeish and Nurse, 2007): 1) inwardly 

rectifying cation currents activated by membrane hyperpolarization below −50 mV (Ih), 2) 

voltage-dependent K+ currents activated by depolarization above −60 mV (IKx), 3) sustained 

voltage-dependent ICa activated by depolarization above −50 mV, 4) Ca2+-activated K+ 

currents, and 5) Ca2+-activated Cl− currents. Rods and cones from mammalian retina share 

many of the same currents although Ca2+-activated K+ currents have not been observed in 

mammals (Cia et al., 2005; Demontis et al., 1999; Demontis et al., 2002; Han et al., 2000).

2.1 Voltage-gated Na+ channels

Recordings from many species, including non-human primates, have failed to reveal 

evidence for voltage-dependent Na+ currents in rods or cones. However, in a series of studies 

on small pieces of human retina excised during surgery for severe retinal detachment, Kawai 

and colleagues observed prominent, tetrodotoxin-sensitive action potentials in human rods 

and cones (Kawai et al., 2005; Kawai et al., 2001). The presence of NaV1.2 channels was 
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confirmed in these cells by single cell PCR (Kawai et al., 2005). Anode break activation of 

these channels by a hyperpolarizing voltage step generated spikes and so the authors 

suggested that these channels might speed depolarization at the end of a light flash. There is 

also some immunohistochemical evidence for Na+ channels in rodent retina with labeling of 

cones by antibodies to NaV1.9 and labeling of photoreceptor terminals by antibodies to 

NaV1.1 (Mojumder et al., 2007; O'Brien et al., 2008). As discussed in a perspective by 

Copenhagen, the consistent observation that Na+ channels are absent from all other 

preparations, including non-human primates (Gayet-Primo et al., 2018; Yagi and Macleish, 

1994), suggests that these channels are either uniquely present in human retina or, more 

likely, up-regulated in photoreceptors cultured after severe retinal detachment (Copenhagen, 

2001).

2.2 Ca2+ channels

At the output end of the cell, release of glutamate-filled vesicles from the synaptic terminals 

of rods and cones is controlled by the influx of Ca2+ through L-type Ca2+ channels (Schmitz 

and Witkovsky, 1997; Thoreson et al., 1997; Wilkinson and Barnes, 1996). L-type Ca2+ 

channels are the only type of Ca2+ channels found in rods and cones (Bader et al., 1982; 

Barnes and Hille, 1989; Corey et al., 1984; Lasater and Witkovsky, 1991; Taylor and 

Morgans, 1998; Wilkinson and Barnes, 1996; Yagi and Macleish, 1994). We highlight some 

key aspects of Ca2+ channels and their properties at photoreceptor synapses. For additional 

details, we refer the reader to recent reviews that focus in depth on the properties of Ca2+ 

channels at photoreceptor synapses (Pangrsic et al., 2018; Waldner et al., 2018).

Sites of Ca2+ influx and labeling by antibodies to L-type Ca2+ channels are both localized 

close to individual synaptic ribbons of rods and cones (Cadetti et al., 2006; Choi et al., 2008; 

Firth et al., 2001; Lee et al., 2015; Lv et al., 2012; Morgans, 2001; Morgans et al., 2001; 

Nachman-Clewner et al., 1999; Taylor and Morgans, 1998). Immuno-electron micrographs 

show that Ca2+ channels sit just beneath ribbons (tom Dieck et al., 2005). Beneath each 

ribbon, Ca2+ channels are clustered in tiny sub-domains (Lv et al., 2012). Ca2+ channels 

show limited membrane mobility, behaving as if tethered in place by a weak spring (Mercer 

et al., 2011a). The vast majority of channels appear to be located near ribbons since 

salamander rods lacking synaptic terminals exhibit reductions in ICa of 95% (Xu and 

Slaughter, 2005).

L-type Ca2+ channels in rods and cones are formed principally from the pore-forming α1 

subunit, CaV1.4, in combination with accessory β2 and α2δ4 subunits. CaV1.4 channels are 

expressed almost exclusively in retina although they also appear to be present in skeletal 

muscle (An et al., 2015) and T-lymphocytes (Kotturi and Jefferies, 2005). In the retina of 

many species (mouse, rat, chicken, human), labeling with antibodies to CaV1.4 is 

concentrated at synaptic ribbons of rods and cones (Firth et al., 2001; Lee et al., 2015; Liu et 

al., 2013b; Morgans, 2001; Morgans et al., 2001; Taylor and Morgans, 1998).

One of the initial findings suggesting a role for CaV1.4 at rod synapses was that mutations in 

this protein can lead to diminished synaptic output from rods and congenital stationary night 

blindness (Bech-Hansen et al., 1998; Strom et al., 1998; see review by Zeitz et al., 2015). 

Over 100 different nonsense, missense or frame-shift mutations in CaV1.4 have since been 
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identified. These mutations can lead to loss of function, altered function, or gain of function. 

The impact of a specific mutation on channel function influences the nature and extent of 

night blindness (Zeitz et al., 2015). Mice in which CaV1.4 is completely eliminated exhibit 

total loss of both rod and cone responses suggesting that this channel subtype is responsible 

for mediating release from both types of photoreceptors, at least in this species (Mansergh et 

al., 2005).

Like L-type channels in other tissues, photoreceptor Ca2+ channels are sensitive to 

dihydropyridines. However, photoreceptor Ca2+ channels in vivo and heterologously 

expressed CaV1.4 channels show a weaker sensitivity to dihydropyridine antagonists and the 

benzothiazepine, diltiazem, than cardiac CaV1.2 channels (Baumann et al., 2004; Hart et al., 

2003; Koschak et al., 2003; Wilkinson and Barnes, 1996). Together with poor penetration 

across the blood-retinal barrier, this explains why dihydropyridines and other Ca2+ channel 

blockers used for cardiovascular treatment do not cause vision changes (Uchida et al., 1997).

2.2.1 Voltage-dependence.—The L-type Ca2+ channels in rods and cones begin to 

activate above −60 mV and reach a peak around −20 mV. Voltage dependence of ICa 

measured in rods and cones from a number of species yields a midpoint activation voltage 

near −38 mV, very close to the dark resting membrane potential of photoreceptors (Babai 

and Thoreson, 2009; Grassmeyer and Thoreson, 2017; Schneeweis and Schnapf, 1999; 

Taylor and Morgans, 1998; Wu, 1985).

More than 20 splice isoforms of CaV1.4 have been identified and splice variants can differ in 

their voltage-dependence (Lee et al., 2015; Tan et al., 2012). While most variants activate at 

voltages that are more positive than those that activate the native channel, truncation of exon 

47 allows channels to activate at more hyperpolarized potentials (Haeseleer et al., 2016; Tan 

et al., 2012). The Ca2+-binding protein, CaBP4, complexes with CaV1.4 and can shift 

activation to more negative potentials, although not in channels lacking exon 47 (Haeseleer 

et al., 2004; Haeseleer et al., 2016; Park et al., 2014; Shaltiel et al., 2012; Yang et al., 2014). 

For most channel isoforms, the presence of CaBP4 is thus essential for rods and cones to 

activate at potentials necessary to span the normal physiological voltage range in dark and 

light. Loss of CaBP4 can cause congenital stationary night blindness or cone-rod 

degeneration (Aldahmesh et al., 2010; Haeseleer et al., 2004; Khan et al., 2013; Littink et 

al., 2009; Maeda et al., 2005; Zeitz et al., 2006).

2.2.2 Inactivation.—L-type ICa in rods and cones show little or no voltage-dependent 

inactivation when activated by lengthy depolarizing voltage steps (Bader et al., 1982; Barnes 

and Hille, 1989; Corey et al., 1984; Rabl and Thoreson, 2002; Taylor and Morgans, 1998). 

This property allows them to remain active in darkness when photoreceptors are 

continuously depolarized. CaV1.4 channels originally characterized in heterologous 

expression systems showed very slow voltage-dependent inactivation along with little or no 

Ca2+-dependent inactivation (Baumann et al., 2004; Koschak et al., 2003; McRory et al., 

2004). Apo-CaM binds to the IQ domain and the conformational change that occurs when 

Ca2+ ions bind to CaM leads to Ca2+-dependent inactivation. The absence of Ca2+-

dependent inactivation in most CaV1.4 channels is due to the presence of an autoinhibitory 

domain in the C terminus that competes with the binding of apo-CaM to an IQ domain on 
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the C-terminus. Because of these competitive interactions between apo-CaM and the 

autoinhibitory domain, higher endogenous levels of CaM promotes stronger Ca2+-dependent 

inactivation by promoting more binding of apo-CaM to the IQ domain. Phosphorylation of 

the autoinhibitory domain of CaV1.4 by protein kinase (PKA) also promotes apo-CaM 

binding to the IQ domain, thus further promoting Ca2+-dependent inactivation (Sang et al., 

2016). Some splice isoforms of CaV1.4 have truncated C-termini that lack this 

autoinhibitory domain, thereby allowing Ca2+-dependent inactivation (Haeseleer et al., 

2016; Lee et al., 2015; Tan et al., 2012). Thus, differences in the level of endogenous CaM, 

PKA activity, and the expression of splice isoforms can all potentially influence the degree 

of Ca2+-dependent inactivation.

2.2.3 Accessory subunits.—β2 subunits are the predominant accessory β subunits at 

rod and cone synapses. In electroretinogram (ERG) recordings, eliminating β2 subunits in a 

mouse knockout model almost completely eliminated rod- and cone-driven b-waves (that 

reflect On bipolar cell responses), with a-waves (that reflect photoreceptor responses) 

unchanged, showing a loss of synaptic transmission from photoreceptors (Ball et al., 2002). 

ERGs appear normal in mice lacking β1, 3 or 4 subunits. Antibodies to β2 label the OPL 

whereas antibodies to other β subunits do not (Ball et al., 2002; Lee et al., 2015). Direct 

interactions between β2 and CaV1.4 were confirmed with proximity ligation assays. A 

variant of β2 with an alternate exon 7, β2X13, appears to be the predominant subtype in 

human retina. This variant imparts greater voltage-dependent inactivation to the channel 

(Lee et al., 2015).

Mutations in α2δ4 also cause greatly attenuated b-waves and cone-rod dystrophy (Kerov et 

al., 2018; Wycisk et al., 2006a; Wycisk et al., 2006b). Deletion of α2δ4 in knockout mice 

eliminated rod-driven b-waves and reduced cone-driven b-waves, with little or no change in 

a-waves or rod and cone photocurrents (Kerov et al., 2018; Wang et al., 2017). Antibodies to 

α2δ4 label synaptic ribbons of rods and cones, forming a macromolecular complex with 

CaV1.4 and β2 (De Sevilla Muller et al., 2013; Lee et al., 2015; Mercer et al., 2011a). This 

suggests that α2δ4 is the predominant subunit at rod synapses although other isoforms may 

contribute in cones. α2δ4 subunits link to the extracellular membrane surface via glycosyl-

phosphatidyl inositol interactions (Davies et al., 2010). In the photoreceptor synaptic cleft, 

α2δ4 interacts with ELFN1 and this interaction is important for proper formation of rod 

synapses (Kerov et al., 2018; Wang et al., 2017). Eliminating either α2δ4 or ELFN1 disrupts 

the formation of rod synapses (Cao et al., 2015; Kerov et al., 2018; Wang et al., 2017). Cone 

synapses do not possess ELFN1 and are less strongly affected by deletion of α2δ4 (Kerov et 

al., 2018; Wang et al., 2017). α2δ and β2 subunits assist in trafficking Ca2+ channel α1 

subunits to the membrane (Dolphin, 2016) and so eliminating either subunit can reduce 

expression of functional CaV1.4 channels (Kerov et al., 2018; Wang et al., 2017). 

Diminished expression of CaV1.4 channels (Kerov et al., 2018; Liu et al., 2013b) may 

explain the diminished cone responses and impaired cone synapse formation seen after 

eliminating α2δ4 or β2 subunits (Katiyar et al., 2015; Kerov et al., 2018; Wang et al., 2017; 

Zabouri and Haverkamp, 2013) and may also contribute to impaired formation of rod 

synapses.
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2.2.4 Single channel properties.—Single channel recordings of Ca2+ channels from 

salamander rod terminals and mean-variance analysis of ICa in salamander cones have both 

yielded single channel properties similar to other L-type channels including a single channel 

conductance in 82 mM Ba2+ of 22 pS and maximal open probability of 0.2-0.36 (Thoreson 

et al., 2000)(Bartoletti et al., 2011). By contrast, recordings of CaV1.4 channels expressed in 

tsA-201 cells yielded a single channel conductance of only 4 pS with 100 mM Ba2+ as the 

charge carrier and a peak open probability of <0.015 (Doering et al., 2005). Another 

expression study found a slightly larger single channel conductance of 10 pS but also a very 

low open probability (Burtscher et al., 2014). Is the unusually low open probability unique to 

CaV1.4 in mammalian preparations or does it only emerge in expression systems that lack 

protein partners such as CaBP4? Are the same properties present in different splice variants 

of CaV1.4? Using channels with a hundredfold lower open probability means that a 

hundredfold more channels would be needed to achieve the same current, which in turn 

implies a need for thousands of Ca2+ channels beneath each ribbon (Bartoletti et al., 2011). 

This appears inconsistent with freeze fracture electron micrographs showing ~400 particles 

thought to be Ca2+ channels beneath each macaque cone ribbon (each of which is 700-1000 

nm long) (Raviola and Gilula, 1975).

2.2.5 Other Ca2+ channel subtypes.—In situ hybridization and 

immunohistochemical studies have suggested the presence of CaV1.3 in inner segments and 

synaptic terminals of rods and cones in a number of different species (Cristofanilli et al., 

2007; Henderson et al., 2001; Kamphuis and Hendriksen, 1998; Kersten et al., 2010; Ko et 

al., 2007; Morgans, 1999; Morgans et al., 2005; Xiao et al., 2007; Zou et al., 2012). It has 

been suggested that CaV1.3 may interact with whirlin in a periciliary membrane complex to 

promote Usher disease (Kersten et al., 2010) but this interaction was not confirmed by a 

subsequent study (Zou et al., 2012). Zou et al. also showed that much of the labeling with 

various CaV1.3 Ca2+ channel antibodies was non-specific since it was not altered by 

elimination of CaV1.3 (Zou et al., 2012). However, elimination of CaV1.3 from mouse retina 

did cause some changes in ribbon structure (Busquet et al., 2010; Shi et al., 2017) and one 

study showed a reduction in ERG a- and b-waves (Shi et al., 2017). Another study on mice 

lacking CaV1.3 showed a small but statistically insignificant reduction in the b-wave and no 

significant changes in visual behavior assessed with a Morris water maze (Busquet et al., 

2010). These data suggest that CaV1.3 channels may be present in photoreceptors but the 

role they play remains unclear. There is also immunohistochemical and in situ hybridization 

evidence for weak expression of CaV1.2 channels in photoreceptors (Kamphuis and 

Hendriksen, 1998; Ko et al., 2007; Nachman-Clewner et al., 1999; Xiao et al., 2007).

2.2.6 Ca2+ channel modulation.—Photoreceptor ICa can be modulated by many 

different signaling agents and pathways. Rods and cones can often be modulated differently 

by the same substance, suggesting differences in the regulation and channel composition at 

rod and cone synapses. For example, if we consider only salamander photoreceptors, 

activation of dopamine D4 receptors acts through pertussis toxin-sensitive G proteins to 

inhibit adenylate cyclase which in turn inhibits L-type ICa in large single cones, but these 

same pathways enhance ICa in rods and short wavelength-sensitive Scones (Stella and 

Thoreson, 2000). Likewise, inhibition of adenylate cyclase activity by CB1 cannabinoid 
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receptors also inhibits ICa in large single cones but enhances ICa in rods (Straiker and 

Sullivan, 2003). Nitric oxide acts through a different pathway not involving guanylate 

cyclase but also inhibits ICa in cones and enhances ICa in rods (Kourennyi et al., 2004; 

Kurenny et al., 1994). By contrast with these agents, somatostatin 2A receptors acts through 

pertussis toxin-sensitive G proteins similar to dopamine, but has the opposite effect, 

enhancing cone ICa and inhibiting rod ICa (Akopian et al., 2000). Stimulation of adenylate 

cyclase by activation of adenosine A2a receptors inhibits rod ICa. This is consistent with 

effects of PKA on rod ICa observed with dopamine or cannabinoids, but activation of A2A 

receptors also inhibits cone ICa, rather than stimulating cone ICa as occurs by direct 

stimulation of PKA (Stella et al., 2002; Stella et al., 2007). Finally, activation of Group III 

metabotropic glutamate receptors inhibits ICa in cones but not rods (Hosoi et al., 2005; Van 

Hook et al., 2017). Thus, even agents that act through some of the same signaling pathways 

(e.g., pertussis toxin-sensitive G proteins or adenylate cyclase) can have different effects on 

rod and cone ICa. In addition to divergent intracellular signaling pathways, one possible 

source for such differences could be the presence of splice variants of CaV1.4 that differ in 

the C-terminal autoinhibitory domain sensitive to phosphorylation by PKA (see section 

2.2.2). Splice variants of CaV1.4 that lack this C-terminal autoinhibitory domain would be 

expected to be insensitive to PKA modulation (Sang et al., 2016). Non-GPCR signaling 

pathways can also regulate photoreceptor ICa. For example, insulin inhibits ICa in 

salamander rods by mechanisms that involve tyrosine kinase activity (Stella et al., 2001). 

Polyunsaturated fats and retinoids, including 11-cis-retinal, also inhibit ICa in salamander 

rods (Vellani et al., 2000). Levels of dopamine, adenosine, and glutamate vary with light and 

dark and so it is hypothesized that these modulatory effects on ICa help to adjust gain at 

photoreceptor synapses with changing illumination (Hosoi et al., 2005; Stella et al., 2007; 

Thoreson et al., 2002) but details of how these different signaling pathways interact with one 

another remain unknown.

Evidence from chicken cones suggests that modulation of ICa is under circadian regulation. 

For example, somatostatin and nitric oxide both inhibit cone ICa in subjective night but not 

subjective day (Jian et al., 2009; Ko et al., 2013). Expression of Ca2+ channels in chicken 

cones is also under circadian regulation by pathways involving Ras-ERK, PI3-Kinase-Akt, 

and microRNA 26a (Ko et al., 2007).

ICa can be regulated by a number of negative feedback mechanisms that operate locally at 

the synapse. Protons are a powerful regulator of synaptic release from photoreceptors, 

altering both voltage-dependence and amplitude of ICa. Extracellular protons inhibit the 

amplitude of ICa and shift voltage-dependence of activation in a positive direction with the 

net effect of reducing Ca2+ channel activity in the normal physiological voltage range for 

photoreceptors. Protons released during synaptic vesicle fusion in rods and cones can feed 

back to inhibit presynaptic ICa and synaptic release (DeVries, 2001). Synaptic cleft proton 

levels are also regulated by changes in horizontal cell membrane potential (Hirasawa and 

Kaneko, 2003; Wang et al., 2014). The ability of horizontal cells to alter cleft proton levels is 

central to the mechanism of surround antagonism in which depolarization of horizontal cells 

leads to cleft acidification which in turn inhibits rod and cone ICa (Thoreson and Mangel, 

2012). In addition to containing protons, glutamatergic vesicles in rods and cones also 

contain Zn2+ ions that can inhibit ICa (Chappell et al., 2008; Wu et al., 1993).
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The binding of Cl− ions to the intracellular surface of L-type Ca2+ channels in 

photoreceptors promotes channel open probability and so reductions in intracellular Cl− can 

inhibit ICa (Babai et al., 2010; Thoreson et al., 1997). In rods, ECl is positive to the resting 

membrane potential and so activation of Ca2+-activated Cl− channels in rod terminals 

promotes Cl− efflux that can act as a feedback mechanism to inhibit ICa(Thoreson et al., 

2003; Thoreson et al., 1997; Thoreson et al., 2002). In addition to effects of reducing cell 

input resistance during activation of ICl(Ca), a reduction in intracellular [Cl−] of only 10 mM 

can reduce ICa by 20% (Thoreson et al., 2003; Thoreson et al., 1997). In cones, ECl is close 

to the dark resting membrane potential (Thoreson and Bryson, 2004) so this sort of feedback 

inhibition will only occur when cones are hyperpolarized (e.g., by light). Local negative 

feedback mechanisms involving Cl− ions, zinc, and protons may help to limit regenerative 

activation of ICa and the generation of Ca2+ spikes in rods and cones.

2.3 K+ channels

2.3.1 Voltage-dependent K+ channels—Beech and Barnes (Beech and Barnes, 1989) 

described the properties of a voltage-dependent K+ current in cones that they named IKx. IKx 

activates quickly with depolarization and de-activates slowly upon hyperpolarization. This 

current is active between −70 and −30 mV with a midpoint activation value of −45 to −55 

mV (Beech and Barnes, 1989; Gayet-Primo et al., 2018; Kurennyi and Barnes, 1997). A 

more transient K+ current that activates at more positive potentials than IKx has also been 

identified in primate rods and cones, (Gayet-Primo et al., 2018; Yagi and Macleish, 1994) as 

well as lizard cones (Maricq and Korenbrot, 1990b).

IKx shares a number of similarities with M-type K+ currents (Kv7) and there is evidence for 

M-type Kv7 channels in cone inner segments from immunohistochemistry and in situ 
hybridization (Zhang et al., 2011). However, IKx shows a different pharmacological profile 

from M-type currents, being more sensitive to Ba2+, insensitive to acetylcholine and LHRH, 

and insensitive to a Kv7 blocker XE991 (Beech and Barnes, 1989; Gayet-Primo et al., 2018). 

In situ hybridization suggests the presence of ether-a-gogo-related (EAG; Kv11) channels in 

the inner segments of bovine rods (Frings et al., 1998). However, the pharmacological 

properties do not support a substantial contribution from this subtype in primate rods 

(Gayet-Primo et al., 2018).

Using a combination of immunohistochemistry, electrophysiology and pharmacology, 

Gayet-Primo et al. (Gayet-Primo et al., 2018) established the presence of Kv8.2 and Kv2 

channels localized to the inner segments of primate rods and cones. Studies also indicate the 

presence of Kv2.1 and 8.2 in photoreceptor inner segments from human and mouse retina 

(Klumpp et al., 1995b; Pinto and Klumpp, 1998; Wu et al., 2006). Kv8.2 subunits do not 

form functional channels by themselves but can form functional heteromers with other 

subunits. The presence of Kv8.2 subunits in heteromeric channels shifts Kv2 current 

activation to more negative potentials, yielding electrophysiological properties similar to 

those of native IKx currents (Czirjak et al., 2007). Mutations to the Kv8.2 gene cause a cone 

dystrophy with supernormal rod ERGs (Ben Salah et al., 2008; Vincent et al., 2013; 

Wissinger et al., 2008; Wissinger et al., 2011; Zobor et al., 2012). Some of the disease-

causing mutations result in complete elimination of Kv8.2 whereas others impair its 
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interaction with Kv2 subunits. When co-expressed with Kv2.1 in Xenopus oocytes, both 

types of mutations in Kv8.2 eliminate currents with properties similar to IKx (Czirjak et al., 

2007). Cones express both Kv2.1 and Kv2.2, while rods predominantly express Kv2.1 

(Gayet-Primo et al., 2018). Kv2.2 was also absent from mouse photoreceptors (Klumpp et 

al., 1995b). Using a combination of molecular, electrophysiological and pharmacological 

approaches, Gayet-Primo et al. concluded that the high voltage-activated K+ currents in 

primate rods and cones arise from homomeric Kv2 channels (Kv2.1 in rods and a 

combination of Kv2.1 and Kv2.2 in cones) whereas lower threshold IKx are likely to arise 

from heteromeric Kv2/Kv8.2 channels (Gayet-Primo et al., 2018).

2.3.2 Ca2+-activated K+ channels—In rods and cones of salamander retina, strong 

depolarizing steps that activate ICa (see section 2.2) also activate noisy outward currents 

carried by large conductance Ca2+-activated K+ currents (BK) currents (Bader et al., 1982; 

Barnes and Hille, 1989; MacLeish and Nurse, 2007; Moriondo et al., 2001; Pelucchi et al., 

2008; Xu and Slaughter, 2005). Antibodies to BK (KCa1.1) and IK (KCa3.1) channels also 

label salamander rods, but not antibodies to SK channels (Pelucchi et al., 2008). The 

presence of IK and BK channels is also supported by pharmacology. Ca2+-dependent K+ 

currents in rods can be inhibited by a BK channel blocker, iberiotoxin; partially inhibited by 

the mycotoxin clotrimazole which inhibits IK channels (Pelucchi et al., 2008); but not 

inhibited by apamin which blocks SK channels (Pelucchi et al., 2008; Xu and Slaughter, 

2005). IK channels are gated exclusively by Ca2+ (Sforna et al., 2018) whereas BK channels 

can be opened by both depolarizing voltage and Ca2+ (Latorre et al., 2017). These 

differences in gating may account for the finding that IK channels appear to contribute more 

strongly at positive voltages than BK channels (Pelucchi et al., 2008).

Blocking Ca2+-activated K+ channels enhances excitability and promotes regenerative 

spiking in photoreceptors (Fain et al., 1977; Moriondo et al., 2001), suggesting that one role 

for these channels may be to prevent regenerative activation of Ca2+ channels and thus 

maintain the membrane voltage in darkness near −40 mV. On the other hand, it has also been 

proposed that efflux of K+ during activation of these channels can enhance ICa in rods which 

would promote excitability (Xu and Slaughter, 2005).

While there is clear evidence for these channels in salamander retina, there is no evidence 

for Ca2+-activated K+ currents in cones from lizard or primate retina (Cia et al., 2005; 

Maricq and Korenbrot, 1990b; Yagi and Macleish, 1994).

2.4 HCN channels

Both rods and cones exhibit prominent inwardly rectifying currents activated by 

hyperpolarization (Ih). Ih was first identified from its blockade by low millimolar 

concentrations of cesium (Fain et al., 1978). Although blocked by cesium, Ih is relatively 

insensitive to tetraethylammonium (TEA) (Bader and Bertrand, 1984; Bader et al., 1982; 

Demontis et al., 1999; Demontis et al., 2002; Hestrin, 1987; Maricq and Korenbrot, 1990a). 

Ih are similar to inwardly rectifying currents in a variety of other cells, including so-called 

“funny” currents in cardiac myocytes. Accordingly, Ih can be selectively inhibited by various 

bradycardic agents including ZD7288, ivabradine and zatebradine (Demontis et al., 2009; 
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Satoh and Yamada, 2000, 2002). Ih shows slow kinetics and a hyperpolarized voltage-

dependence, activating below ca. −50 mV with an activation midpoint around −70 to −80 

mV (Barrow and Wu, 2009; Demontis et al., 1999; Demontis et al., 2002; Malcolm et al., 

2003; Maricq and Korenbrot, 1990a). Ih channels show a permeability ratio PNa/PK of 

0.2-0.3 (Demontis et al., 1999; Demontis et al., 2002; Hestrin, 1987; Mao et al., 2003; 

Wollmuth and Hille, 1992), with a reversal potential under physiological conditions of 

−30-35 mV (Bader and Bertrand, 1984; Bader et al., 1982; Barnes and Hille, 1989; 

Demontis et al., 1999; Demontis et al., 2002; Maricq and Korenbrot, 1990a). The properties 

of Ih in cones are similar to those of rods (Barnes and Hille, 1989; Barrow and Wu, 2009; 

Maricq and Korenbrot, 1990a; Wollmuth and Hille, 1992; Yagi and Macleish, 1994). 

Properties of Ih are also similar in human rods and primate cones (Kawai et al., 2002; Yagi 

and Macleish, 1994). HCN1-type Ih channels are concentrated in the inner segment (Barrow 

and Wu, 2009; Della Santina et al., 2012; Demontis et al., 2002; MacLeish and Nurse, 

2007). These channels have a small single channel conductance of <1 pS with an average of 

~2,000 channels per rod or cone (Barrow and Wu, 2009). The low single channel 

conductance helps to reduce membrane noise.

In response to a bright light flash, rods show a transient hyperpolarization followed by a 

rapid depolarizing recovery of the membrane potential. This depolarizing rollback is due to 

the activation of Ih triggered during the initial light-evoked hyperpolarization of the rod. By 

eliminating this rollback, blocking Ih makes hyperpolarizing rod light responses more 

sustained and increases their peak amplitude. Cones do not normally show a prominent 

transient “nose” in response to light but blocking Ih increases the overall amplitude of their 

hyperpolarizing light responses (Barrow and Wu, 2009; Fain et al., 1978; Satoh and Yamada, 

2000, 2002). In addition to changes in response waveform, the slow activation kinetics of Ih 

produces high-pass filtering of the hyperpolarizing photoreceptor light response (Attwell, 

1986; Barrow and Wu, 2009; Demontis et al., 1999; Mao et al., 2003). Combined with low-

pass filtering by the passive membrane properties and photocurrent, this yields a net band-

pass filtering of photoreceptor light responses. By lowering cell input resistance to speed the 

membrane time constant, activation of Ih by membrane hyperpolarization improves the high 

frequency responses of cones (Howlett et al., 2017). This contributes to a form of light 

adaptation whereby high contrast changes that produce voltage excursions large enough to 

activate Ih can speed up cone responses. Ih also improves the ability of rods to adapt to light; 

rod photocurrents show a more significant reduction in sensitivity with increasing light 

levels than photovoltage (Pahlberg et al., 2017; Sothilingam et al., 2016). Eliminating Ih 

abolished these differences in the adaptation of photovoltage and photocurrent responses.

While loss of HCN1 does not directly cause retinal degeneration, it can worsen retinal 

degeneration caused by other mutations such as loss of CNG channel β subunits from rods 

or loss of CNG α subunits from cones (Schon et al., 2016). This worsening of degeneration 

does not appear to be due to an effect on resting membrane potential which did not differ in 

HCN1 KO rods but instead involves increased levels of calpain activity (Schon et al., 2016).
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2.5 Ca2+-activated Cl− channels

Another prominent current in rods and cones is the Ca2+-activated Cl− current (Bader et al., 

1982; Barnes and Hille, 1989). Immunohistochemical studies in salamander and mouse 

retina suggested the presence of Ano1 in both rod and cone terminals (Caputo et al., 2015; 

Jeon et al., 2013; Mercer et al., 2011b; Yang et al., 2008). Stohr et al. cloned Ano2 (aka 

TMEM16B) from mouse and human retina and showed that it formed Ca2+-activated anion 

channels (Stohr et al., 2009). They went on to show that Ano2 was selectively expressed at 

photoreceptor ribbon synapses. In rat retina, Ano2 is selectively expressed in rods but not 

cones; Ano1 expression was not seen in either cell type (Dauner et al., 2013).

Ca2+-activated Cl− currents were almost wholly eliminated in salamander rods lacking 

synaptic terminals (MacLeish and Nurse, 2007). Antibodies to Ano1 and Ano2 label the 

entire synaptic terminal and are not tightly confined to ribbons like antibodies to Ca2+ 

channels (Dauner et al., 2013; Mercer et al., 2011b; Stohr et al., 2009). Effects of Ca2+ 

buffers on Ca2+-activated Cl− currents in salamander rods and cones also suggest that these 

channels are distributed throughout the terminal. However, the ability of Ca2+-activated Cl− 

currents to persist in the presence of the fast Ca2+ buffer BAPTA suggests that some of these 

channels are located within 100 nm of Ca2+ channels (Mercer et al., 2011b). Consistent with 

tight co-localization between Ca2+-activated Cl− channels and Ca2+ channels, Ano1 

channels can coimmunoprecipitate with CaV1.4 Ca2+ channels when expressed in tsa201 

cells (Caputo et al., 2015).

The evidence for Ano1 in photoreceptors rests largely on immunohistochemistry while there 

is both immunohistochemical and molecular evidence for Ano2. Transcriptome analyses of 

rods and cones also suggest significant levels of Ano2 but not Ano1 (Busskamp et al., 2014; 

Hartl et al., 2017; Mo et al., 2016). On the other hand, Ano1 channels are 10 times less 

sensitive to Ca2+ than Ano2 channels (Vocke et al., 2013) and so the ability of 

submicromolar Ca2+ to stimulate Ca2+-activated Cl− currents in salamander rods and cones 

is more consistent with Ano1 (Mercer et al., 2011b).

2.6 CNG channels

The only ion channels in the outer segments of intact rods and cones are CNG cation 

channels gated open by cGMP (Baylor et al., 1984). The channels in rods consist of CNGA1 

and CNGB1 heteromers while cones have CNGA3 and CNGB3 heteromers. Cation influx 

through these channels support the dark current that is terminated by their closure during 

phototransduction. The reduced Ca2+ influx that accompanies channel closure plays a key 

role in adjusting the gain of phototransduction during light adaptation. Mutations in CNGA1 

and CNGB1 cause autosomal recessive retinitis pigmentosa while mutations in CNGA3 and 

CNGB3 cause achromatopsia. A detailed consideration of phototransduction and outer 

segment CNG channels is beyond the scope of this review and is reviewed in detail 

elsewhere (Arshavsky and Burns, 2012; Biel, 2009; Burns and Baylor, 2001; Fu and Yau, 

2007; Kaupp and Seifert, 2002; Michalakis et al., 2018).

CNG channels are also present in the synaptic terminals of cones. Ca2+ influx through these 

channels can trigger fusion of glutamate-filled vesicles (Rieke and Schwartz, 1994; 
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Savchenko et al., 1997). It has been suggested that the opening of CNG channels may extend 

the cone operating range, allowing release of glutamate at more negative potentials where 

the activity of Ca2+ channels begins to diminish. However, because of the increased driving 

force for cations, CNG currents typically increase with hyperpolarization, rather than 

diminishing like ICa. CNG channels in cone terminals can be regulated by constitutive levels 

of cGMP but can also be opened by increases in cGMP triggered by nitric oxide released 

from neighboring neurons and glia (Savchenko et al., 1997). Thus, these channels may help 

to regulate glutamate release in response to changes in nitric oxide levels.

2.7 Summary

The distribution of the principal ion channels in mammalian rods is summarized in Fig. 1 

showing that homomeric KV2.1 and heteromeric KV2.1/KV8.2 channels are distributed 

throughout the inner segment, along with HCN1 channels. CaV1.4 channels in a complex 

with β2a and α2δ4 subunits are clustered beneath the synaptic ribbon. Ano2 Ca2+-activated 

Cl− channels are distributed more diffusely throughout the synaptic terminal membrane. 

Ca2+-activated Cl− channels in cones appear to be a different subtype from Ano2. In primate 

cones, inner segments also possess Kv2.2.

Measurements of the membrane potential of rods and cones show it to be near −40 mV in 

darkness. These potentials are close to the activation midpoint value for IKx whereas Ih is 

minimally active at this potential (Attwell, 1986; Barnes, 1994). Thus, when light closes 

CNG channels in the outer segments, the dominant conductance will be IKx, and K+ efflux 

through these channels will drive the membrane potential in a hyperpolarizing direction. 

Strong hyperpolarization will activate Ih, driving the membrane potential back in a 

depolarizing direction. Activation of Ih thus limits the amplitude of hyperpolarizing rod and 

cone light responses and makes rod responses more transient. There is 

immunohistochemical evidence for KCNK2 two pore channels in mouse cones suggesting 

that along with IKx, K+ leak channels might also contribute to the negative driving force 

(Hughes et al., 2017).

The dark resting membrane potential of −40 mV in darkness is close to the activation 

midpoint value for ICa. Positioning the membrane potential close to the activation midpoint 

maximizes the changes in ICa caused by light-evoked voltage changes in membrane 

potential, which in turn maximizes the sensitivity of Ca2+-dependent glutamate release. 

However, this also places the cone in an unstable region of negative slope conductance. The 

likelihood for regenerative activation of Ca2+ channels is limited by the activation of strong 

countervailing conductances, especially IKX, and mechanisms that reduce Ca2+ channel 

activity during maintained darkness. The activation of Ca2+-activated Cl− channels leads to a 

conductance increase that tends to drive the membrane potential towards ECl. In cones, ECl 

is near the dark resting membrane potential; ECl is somewhat more depolarized in rods 

(Thoreson and Bryson, 2004; Thoreson et al., 2003). At potentials below ECl, the efflux of 

Cl− through Ca2+-activated Cl− channels will also directly inhibit ICa. In those 

photoreceptors that possess them, activation of BK channels can also provide a 

hyperpolarizing driving force to limit excitability. With maintained depolarization as occurs 

in maintained darkness, ICa will slowly inactivate as a result of Ca2+ and/or voltage-
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dependent inactivation. In addition, as found at calyceal synapses (Borst and Sakmann, 

1999; Stanley, 2000), the constant influx of Ca2+ ions into tonically open Ca2+ channels at 

rod ribbons depletes extracellular Ca2+ ions from the synaptic cleft to further inhibit ICa 

(Rabl and Thoreson, 2002). The maintained activity of Ca2+ channels in darkness stimulates 

continuous release of glutamate-filled synaptic vesicles. The release of protons and Zn2+ 

ions from synaptic vesicles can further inhibit ICa. Acidification of the synaptic cleft 

accompanying negative feedback from depolarized horizontal cells will also inhibit rod and 

cone ICa.

While these various mechanisms work to limit the likelihood of regenerative Ca2+ action 

potentials, depolarizing stimulation can trigger regenerative activation of Ca2+ channels 

under certain conditions. Illumination of the receptive field surround acting through 

horizontal cell feedback can produce a leftward (negative) shift in ICa activation and increase 

in ICa peak amplitude. This causes a net increase in rod and cone ICa at physiological 

potentials that can in turn generate depolarizing Ca2+ spikes in rods and cones (Burkhardt et 

al., 1988; Burkhardt et al., 1991; Lasansky, 1986; Maricq and Korenbrot, 1988; Piccolino 

and Gerschenfeld, 1978, 1980; Thoreson and Burkhardt, 1991). The likelihood of such 

spikes can be dramatically increased by enhancing ICa with application of Sr2+ or Ba2+ 

(Piccolino and Gerschenfeld, 1980). When ECl is more positive than the resting membrane 

potential, the activation of Ca2+-activated Cl− currents helps to maintain the membrane in a 

depolarized state, promoting regenerative potentials that can last for seconds (Thoreson and 

Burkhardt, 1991). Thus, elevating intracellular Cl− enhances the likelihood of these events 

(Barnes and Deschenes, 1992; Maricq and Korenbrot, 1988; Thoreson and Burkhardt, 1990). 

These long-lasting regenerative potentials are terminated when intracellular Ca2+ levels fall 

(Krizaj, 2012) and the activation of ICI(Ca) diminishes. These prolonged Ca2+ action 

potentials arise from bistability in the membrane voltage (Barnes and Deschenes, 1992; 

Kamiyama et al., 1996) that can be successfully simulated by computational models 

incorporating biophysical parameters of rod currents (Kamiyama et al., 1996). These long-

lasting regenerative events are probably not normally experienced by healthy photoreceptors 

that have robust Ca2+ handling mechanisms. However, occurrence of such events in 

unhealthy photoreceptors might impair signaling in disease states.

3. Horizontal cells

Most vertebrate species have four types of horizontal cells while most mammals have only 

two types (Gallego, 1986; Peichl et al., 1998). Rodent retinas have only a single type of 

horizontal cell (Peichl and Gonzalez-Soriano, 1994). Five major types of ion currents are 

present in horizontal cells of most species: fast TTX-sensitive Na+ current, Ca2+ current 

(ICa), transient outwardly rectifying K+ current (IKA), delayed rectifier outward K+ current 

(IKDR), and inwardly rectifying K+ current (IKIR) (Golard et al., 1992; Lasater, 1986; Lohrke 

and Hofmann, 1994; Malchow et al., 1990; Picaud et al., 1998; Shingai and Christensen, 

1983, 1986; Tachibana, 1983a; Ueda et al., 1992). There is no evidence for significant 

voltage-dependent Cl− currents in horizontal cells (Byzov and Trifonov Yu, 1981; Waloga 

and Pak, 1978). While the composition of ion channels is generally similar among horizontal 

cells, it can vary among species and among different types of horizontal cells. For example, 

rod-dominated H4 cells in white perch retina lack A-type K+ currents that are present in H1-
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H3 cells (Lasater, 1986) but in white bass retina, IKA is present in H4 cells but not H1 cells 

(Sullivan and Lasater, 1990a). In rod-dominated skate retina, external horizontal cells lying 

closer to rods have a greater density of IKIR and lower density of sustained outward currents 

than internal horizontal cells (Malchow et al., 1990). In cat retina, axonless A-type cells 

showed fast sodium currents whereas axon-bearing B-type cells did not (Ueda et al., 1992).

In every species, there appears to be at least one type of horizontal cell that has an axon that 

extends laterally through the OPL and then expands into a functionally distinct, large, axon-

terminal compartment. The other horizontal cell subtype(s) are axonless. In fish retina, the 

axon terminal compartment does not appear to contact any photoreceptors but nevertheless 

shows light-evoked voltage responses similar in amplitude and spectral characteristics to 

responses recorded in the cell body (Stell, 1975; Weiler and Zettler, 1979). It has therefore 

been concluded that light responses generated in the soma pass almost without decrement to 

the axon terminal. Transmission along the axon does not appear to be boosted by activation 

of voltage-dependent Na+ channels (Djamgoz and Stell, 1984; Weiler and Zettler, 1979). 

Recordings from enzymatically isolated axon terminals in fish retina show a similar 

complement of channels as somas, but a higher specific membrane resistance (Yagi and 

Kaneko, 1988). Similarly, the input resistance of axon terminals is much higher than somas 

of horizontal cells isolated from turtle retina (Golard et al., 1992). Thus, small currents that 

reach the high resistance axon terminal compartment can generate large voltage responses 

(Golard et al., 1992; Yagi and Kaneko, 1988).

In rodents and other mammals, the soma compartment contacts only cones whereas the axon 

terminal compartment contacts only rods. The only type of horizontal cell in rodent retina 

(B-type) is an axon-bearing horizontal cell. In mice that lack gap junctions between rods and 

cones, recordings from axon terminals that contact only rods nevertheless show the presence 

of cone inputs in their responses (Trumpler et al., 2008). By contrast, rod responses were not 

observed in somas of these same connexin 36 knockout mice. Trumpler et al. therefore 

concluded that cone signals can pass from soma to terminal but rod signals cannot go the 

other direction, from terminal to soma (Trumpler et al., 2008). On the other hand, Szikra et 

al. observed small depolarizing responses in cones evoked by light flashes that should only 

activate rods and concluded that rod signals can travel from terminal to soma (Szikra et al., 

2014). However, the cone recordings were similar in size (< 2 mV) and waveform to 

intraretinal ERGs raising the possibility of contamination by extracellular field potentials. 

As discussed above, the ability of signals to flow between the two compartments depends on 

their relative input resistances. Lowering the somatic resistance by reducing glutamatergic 

input or uncoupling of gap junctions would be one mechanism for improving transmission 

of voltage signals from axon terminal to soma. Differences in the expression of ion currents 

between soma and axon terminals might also contribute. While the types of ion channels in 

the two compartments do not appear to differ in most species, this may not be the case for 

mouse horizontal cells (Feigenspan et al., 2009).

3.1 Voltage-gated Na+ channels

Fast, TTX-sensitive Na+ currents that activate above −50 mV have been observed in isolated 

horizontal cells from a variety of species (Golard et al., 1992; Lasater, 1986; Lohrke and 
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Hofmann, 1994; Malchow et al., 1990; Shingai and Christensen, 1983; Ueda et al., 1992). 

Antibodies to 1.1, 1.2 and 1.6 sodium channels show labeling throughout horizontal cells in 

rodent and rabbit retina (Mojumder et al., 2007). Na+ currents in horizontal cells are not as 

large as those found in ganglion cells and action potentials are not normally observed in 

horizontal cells in situ. However, Na+ channels can facilitate regenerative action potentials in 

horizontal cells that are isolated from the retina or uncoupled from their neighbors (Blanco 

et al., 1996; Shingai and Christensen, 1986; Tachibana, 1981). While it seems plausible that 

rapid activation of Na+ channels might assist in speeding membrane depolarization at light 

offset, blocking these channels with TTX had no obvious effect on light responses (Akopian 

et al., 1997; Djamgoz and Stell, 1984; Perlman et al., 1993).

3.2 Ca2+ channels

Horizontal cells in all species studied exhibit a small, sustained inward ICa that begins to 

activate around −40 to −30 mV (Golard et al., 1992; Liu et al., 2013a; Lohrke and Hofmann, 

1994; Malchow et al., 1990; Picaud et al., 1998; Schubert et al., 2006; Shingai and 

Christensen, 1983; Sullivan and Lasater, 1992; Tachibana, 1983a; Ueda et al., 1992). This 

sustained current is sensitive to dihydropyridine agonists and antagonists (Chapot et al., 

2017; Golard et al., 1992; Liu et al., 2013a; Lohrke and Hofmann, 1994; Pfeiffer-Linn and 

Lasater, 1996b; Picaud et al., 1998; Ueda et al., 1992) indicating that it involves L-type 

channels. The single channel conductance is similar to other L-type channels (Pfeiffer-Linn 

and Lasater, 1996b). In mouse and fish retina, sustained ICa can also be weakly inhibited by 

ω-agatoxin IVA (Liu et al., 2013a; Pfeiffer-Linn and Lasater, 1996b; Schubert et al., 2006), 

suggesting the additional presence of CaV2.1 (P/Q-type) channels (Bourinet and Zamponi, 

2017). In mouse horizontal cells, ω-conotoxin also inhibited ICa consistent with the presence 

of N-type channels (Liu et al., 2013a; Schubert et al., 2006). Immunohistochemical studies 

from mouse retina also show the presence of L, N and P/Q-type channels in the dendritic 

tips of horizontal cells. It has been proposed that Ca2+ channels in horizontal cell dendrites 

may mediate Ca2+-dependent release of GABA (Liu et al., 2013a).

There is evidence for transient ICa in horizontal cells from fish, Xenopus, and rabbit 

(Akopian et al., 1997; Lohrke and Hofmann, 1994; Pfeiffer-Linn and Lasater, 1996b; 

Shingai and Christensen, 1983; Sullivan and Lasater, 1992) but not turtle, cat or mouse 

(Golard et al., 1992; Liu et al., 2013a; Schubert et al., 2006; Ueda et al., 1992). This 

transient ICa is insensitive to dihydropyridines, activates at more negative potentials than 

sustained inward currents, and can be inhibited by Ni2+ (Akopian et al., 1997; Pfeiffer-Linn 

and Lasater, 1996b; Sullivan and Lasater, 1992), consistent with T-type ICa. Although these 

currents are generally small in horizontal cells, voltage-dependent activation of Ca2+ 

channels as horizontal cells depolarize during light offset may help speed repolarization of 

the membrane (Akopian et al., 1997).

3.3 K+ channels

3.3.1 Inwardly rectifying K+ channels—One of the most prominent currents in 

horizontal cells is IKIR. IKIR is also referred to as the anomalous rectifier current. Unlike the 

inward rectifying cation current Ih in photoreceptors, the inward rectifier in horizontal cells 

is selective for K+ ions (Golard et al., 1992; Shingai and Christensen, 1986; Yagi and 
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Kaneko, 1988). Unlike Ih, IKIR is also not blocked by ZD7288 (Feigenspan et al., 2009). 

Like IKIR in other preparations, horizontal cell currents are relatively insensitive to TEA or 

4-AP but blocked by low concentrations of extracellular Cs+ or Ba2+ (Shingai and 

Christensen, 1986; Tachibana, 1983a; Ueda et al., 1992). The single channel conductance of 

20 pS in 125 mM external K+ (Shingai and Quandt, 1986) is similar to that of IKIR in other 

preparations (Newman, 1993; Park et al., 2008; Sakmann and Trube, 1984).

Small outward currents through inward rectifier K+ channels at potentials above EK 

contribute to maintenance of the resting membrane potential in many neurons (Hibino et al., 

2010). IKIR is active throughout the normal physiological voltage range of horizontal cells 

(−30 to −90 mV), contributing to the resting membrane potential of these cells in darkness 

and to the driving force for hyperpolarizing excursions during light (Dong and Werblin, 

1995; Feigenspan et al., 2009). However, IKIR is not the only current responsible for this 

hyperpolarizing driving force since even after blocking IKIR, the light-evoked 

hyperpolarization of horizontal cells approaches EK. Small leak K+ currents in horizontal 

cells (Lasater, 1986; Tachibana, 1983a) may contribute the additional driving force. 

Transcriptome data from horizontal cells show significant levels of KCNK1 two pore 

channel mRNA (Hartl et al., 2017). Immunohistochemical studies also show evidence for 

KCNK1 and KCNK3 channels in horizontal cells early in development and KCNK2 

channels in adult mouse retina (Hughes et al., 2017).

IKIR may play other roles in horizontal cells besides setting the resting membrane potential. 

In adult rabbit retina, Kir2.1 channels are localized to a macromolecular complex with 

glutamate receptors and scaffold proteins at the dendritic tips of B-type horizontal cells in 

the OPL (Vila et al., 2017). The authors suggested that currents flowing through these 

channels could generate ephaptic changes in the extracellular voltage within the invaginating 

cone synapse that might contribute to negative feedback modulation of cone ICa by 

horizontal cells (Vila et al., 2017).

IKIR in horizontal cells are larger than similar currents in many other neurons. Kir4.1 

channels in glial Müller cells have been shown to be important for buffering extracellular K+ 

changes by siphoning K+ from regions of high extracellular K+ (e.g., synaptic plexiform 

layers) to regions of lower K+ (e.g., adjacent to the vitreous and vasculature) (Kofuji and 

Newman, 2004). In newborn mice, Kir4.1 channels are expressed in horizontal cells prior to 

their expression in Müller cells, leading Bosco et al. to propose that before Müller cells are 

fully developed, horizontal cells may play a similar role in buffering and siphoning of K+ 

from the OPL (Bosco et al., 2005). In support of this, they noted close contacts between 

horizontal cells and outer retinal blood vessels. Kir4.1 expression disappears from horizontal 

cells in adult mice (Bosco et al., 2005), but these cells nevertheless continue to express 

prominent IKIR. In rabbit retina, Kir 2.1 channels are expressed at the tips of horizontal cell 

dendrites within the synaptic invaginations of cone pedicles (Vila et al., 2017). We suggest 

that such channels would be well positioned to assist in buffering extracellular K+ changes 

that can occur near the terminals of rods and cones in the OPL (Dick and Miller, 1985; Dick 

et al., 1985; Karwoski et al., 1985). Elevation of extracellular K+ also substantially increases 

the conductance of IKIR and shifts its reversal potential to more positive values (Dong and 

Werblin, 1995), promoting the influx of K+ at more positive potentials. Thus, localized 
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changes in extracellular K+ within invaginating rod and cone synapses might be buffered by 

the flux of K+ in and out of horizontal cells via IKIR.

3.3.2 Outwardly rectifying K+ channels—Two types of outwardly rectifying K+ 

currents are observed in most horizontal cells: rapidly inactivating A-type currents and 

sustained delayed rectifier currents. A-type K+ currents activate around −40 mV whereas 

sustained K+ currents activate at −30 to −10 mV (Shingai and Christensen, 1986; Sullivan 

and Lasater, 1990a, b; Tachibana, 1983a; Ueda et al., 1992). Sustained currents are therefore 

less likely to contribute to responses in the normal physiological voltage range (−30 to −90 

mV). Similar to other preparations, sustained outward currents are more sensitive to 

extracellular TEA and intracellular Cs+ whereas A-type currents are more readily blocked by 

4-AP (Lasater, 1986; Lohrke and Hofmann, 1994; Malchow et al., 1990; Shingai and 

Christensen, 1986; Sullivan and Lasater, 1990a; Tachibana, 1983a; Ueda et al., 1992). The 

molecular identities of these channels have not been characterized.

3.3.3 Ca2+-activated K+ channels—While Ca2+- activated K+ channels have not been 

found in horizontal cells from fish, turtle, cat, and human retina (Golard et al., 1992; Picaud 

et al., 1998; Sullivan and Lasater, 1990a; Tachibana, 1983a; Ueda et al., 1992), a careful 

study of B-type horizontal cells established the presence of BK channels in mouse retina 

(Sun et al., 2017). Single channel recordings also showed evidence for large conductance 

Ca2+-activated K+ channels in B-type horizontal cells from rabbit retina (Lohrke and 

Hofmann, 1994). From the rapid inactivation kinetics of BK channels in mouse horizontal 

cells, Sun et al. suggested that the channel complex may incorporate β2 subunits (Sun et al., 

2017).

3.4 Bistable membrane behavior in horizontal cells

Despite the presence of voltage-dependent Na+ and Ca2+ currents, horizontal cells do not 

typically generate Na+- or Ca2+- dependent action potentials in vivo. This is because of the 

low input resistance of horizontal cells that arises from strong gap junction coupling 

between horizontal cells and from the tonic activation of ionotropic glutamate receptors by 

glutamate released from photoreceptors (Aoyama et al., 2005; Miyachi and Murakami, 

1989; Winslow and Ma, 1990). However, Na+ and Ca2+ - dependent action potentials are 

readily observed in solitary horizontal cells after enzymatic isolation (Blanco et al., 1996; 

Johnston and Lam, 1981; Shingai and Christensen, 1983; Tachibana, 1981, 1983b) and can 

be evoked in horizontal cells in vivo after inhibiting countervailing K+ currents (Murakami 

and Takahashi, 1987). The membrane potential of isolated horizontal cells typically shows 

two stable values: one at a negative value approaching EK and the other at a more positive 

value matching the plateau potential for action potentials. As in cardiac muscle cells, slow 

inactivation of ICa ultimately allows the continued activity of countervailing K+ currents to 

drive an abrupt transition from the more positive potential back to the more negative stable 

membrane potential value, terminating the action potential. In mammalian horizontal cells, 

erg1 K+ channels appear to contribute to this balancing act between Ca2+ and K+ since 

blocking erg1 channels with haloperidol enhances depolarizing responses generated at light 

offset by horizontal cells in vivo and promotes Ca2+ spikes in isolated cells (Feigenspan et 

al., 2009). Similar to its role in ventricular myocytes (Hibino et al., 2010), diminished 
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activity of KIR channels at more depolarized potentials also promotes Ca2+ action potentials 

in isolated horizontal cells. In intact fish retina, blocking A-type K+ currents with 4AP 

enhanced depolarizing spikes at light offset in horizontal cells (Perlman et al., 1993). 

Computational models incorporating biophysical properties can reproduce horizontal cell 

responses, including the long-lasting action potentials seen in isolated horizontal cells 

(Aoyama et al., 2005; Usui et al., 1996; Winslow and Ma, 1990). While these long-lasting 

depolarizing action potentials do not appear to occur often in healthy tissue in vivo, the 

presence of two stable membrane potential values may help to speed both depolarizing 

responses at light offset and hyperpolarizing deflections at light onset.

3.5 Modulation of ion channels in horizontal cells

As in other neurons, ion currents in horizontal cells are subject to modulation by many 

factors. In fish retina, dopamine acting through D1 receptors of horizontal cells can 

stimulate both PKA and PKC to enhance L-type currents but depress T-type currents 

(Pfeiffer-Linn and Lasater, 1993; Pfeiffer-Linn and Lasater, 1996a, 1998). On the other 

hand, in mouse retina, activation of D1 receptors acting through Gβγ subunits inhibits L-

type ICa (Liu et al., 2016). Activation of G proteins can also regulate A-type K+ currents by 

shifting their voltage-dependence of inactivation towards more positive potentials (Akopian 

and Witkovsky, 1994).

Glutamate can modulate horizontal cell ion currents by acting through G proteins and by 

modulation of intracellular pH. Activation of Group I and III mGluRs enhances L-type ICa in 

catfish horizontal cells (Linn and Gafka, 1999). Group III mGluRs can also suppress inward 

rectifier currents, likely by acting through PKG (Dixon and Copenhagen, 1997; Kaneko and 

Tachibana, 1985a). Glutamate application to horizontal cells also lowers intracellular pH to 

inhibit L-type ICa (Dixon et al., 1993; Takahashi et al., 1993). Extracellular acidification can 

also inhibit L-type currents in horizontal cells (Jonz and Barnes, 2007). Extracellular 

acidification inhibits inward rectifier currents in horizontal cells (Jonz and Barnes, 2007) and 

intracellular alkalinization enhances those currents (Takahashi et al., 1993).

4. Bipolar cells

In mouse retina, at least 14 different types of bipolar cells have been identified based on 

functional, morphological and genetic criteria (Seung and Sümbül, 2014; Vlasits et al., 

2018). All bipolar cells can be divided into two categories of roughly equal size based on the 

polarity of their light response, a fundamental classification criterion first described half a 

century ago (Dowling and Werblin, 1969; Kaneko, 1970; Werblin and Dowling, 1969). On 

cells depolarize to light and their axons terminate in the more proximal half of the inner 

plexiform layer (IPL) closer to the vitreous (sublamina B). Conversely, Off type bipolar cells 

hyperpolarize to light and their axons terminate in the distal sublamina A. The reason for 

this dichotomy is the type of glutamate receptor each class expresses: On bipolar cells 

express the L-AP4 sensitive metabotropic mGluR6 receptor that closes a cation conductance 

leading to membrane hyperpolarization (Masu et al., 1995; Nawy and Copenhagen, 1987; 

Shiells et al., 1981; Slaughter and Miller, 1981) while Off bipolar cells express ionotropic 

AMPA or kainate receptors whose activation generates cationic current (DeVries, 2000; 
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Saito and Kaneko, 1983; Slaughter and Miller, 1983). Voltage-gated channels play no role in 

this aspect of signaling. Bipolar cells are numbered from 1 to 9 according to the depth of 

their axon terminals, proceeding from the distal edge of sublamina A to the proximal border 

of sublamina B. An additional rod bipolar cell (RBC) projects to the most proximal position 

of any bipolar cell. Types 5 and 3 are further divided into subtypes, and an X-type has also 

recently been added. In retrospect, it might have been prudent to name bipolar cells using 

only odd or even numbers, leaving room for addition of newly discovered subtypes.

Why are 14 types necessary? Part of the explanation lies in the specificity of photoreceptor 

input. For example, the RBC receives input primarily from rods while other bipolar cells 

principally receive input from cones and are referred to as cone bipolar cells (CBCs). The 

RBC is functionally an On cell (Dacheux and Raviola, 1986; Dolan and Schiller, 1989; 

Karschin and Wassle, 1990). Another On type is specialized to receive input only from short 

wavelength-sensitive cones (Dacey and Lee, 1994; Li and DeVries, 2006; Mariani, 1984). In 

addition, bipolar cells may be optimally tuned to respond preferentially at specific temporal 

frequencies. There is wide consensus across species and studies that RGCs partly inherit 

their response characteristics from presynaptic bipolar cells. This is true for both On and Off 

subtypes. Thus each type of bipolar cell is thought to form a functional channel that carries 

kinetically distinct information to downstream RGCs. In support of this idea, ganglion cells 

that respond transiently to illumination and those with a sustained response collect input 

from distinct populations of bipolar cells within highly organized layers of the IPL. Both 

imaging and patch clamp studies have confirmed that synaptic Interactions between bipolar 

and transient RGCs are confined to the midline of the IPL, while the outer borders contain 

synapses formed between cells that have sustained responses to illumination (Baden et al., 

2013; Borghuis et al., 2014; Borghuis et al., 2013; Ichinose et al., 2014). Perhaps more 

remarkably, synaptic input from bipolar cells carrying kinetically distinct information is 

segregated into separate dendritic compartments on the same postsynaptic starburst amacrine 

cell (Greene et al., 2016; Kim et al., 2014).

Evidence presented below suggests that selective expression of voltage-gated channels 

contributes to diversity of bipolar cell responses to light. An alternative possibility is that 

this diversity originates from differences in the response kinetics of the glutamate receptors 

expressed by bipolar cell subtypes at photoreceptor - bipolar cell synapses. Currently, 

support for this idea is not compelling. For example, it was postulated that sustained Off 

bipolar cells express slowly desensitizing kainate receptors while more transiently 

responding cells express rapidly desensitizing AMPAR receptors in squirrel retina (DeVries, 

2000). However, this does not seem to be the case in mouse retina; as kainate receptors are 

thought to be expressed in transient bipolar cells (Borghuis et al., 2014; Ichinose and 

Hellmer, 2016; Puthussery et al., 2014). Differential expression of AMPAR auxiliary 

subunits such as TARPs, NETOs or cornichons would be expected to add complexity to both 

AMPA and kainate currents (Jackson and Nicoll, 2011; Tomita, 2010) and could potentially 

contribute to response diversity, but this next level analysis of Off bipolar cell glutamate 

receptors has not yet been undertaken.

As mentioned above, synaptic input to On bipolar cells is mediated by a single type of 

glutamate receptor, the metabotropic receptor mGluR6. During the presentation of light, 

Van Hook et al. Page 23

Prog Retin Eye Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unbinding of glutamate from mGluR6 triggers opening of the downstream synaptic channel, 

Trpm1 (Koike et al., 2010; Morgans et al., 2009; Shen et al., 2009). There is a general 

consensus that the length of time that Trpm1 channels remain open in response to light or 

pharmacological block of mGluR6 can vary from cell to cell, thus generating relatively 

sustained or transient responses (Awatramani and Slaughter, 2000; Kaur and Nawy 2012; 

Zhao et al., 2017). However, analysis of the duration of synaptic currents suggests that they 

generate a single broad distribution, rather than discrete groups corresponding to transient 

vs. sustained On bipolar cells (Kaur and Nawy, 2012), and the role of the transduction 

cascade in generating a transient-sustained dichotomy amongst On bipolar cell types is still 

in doubt. As discussed below, intrinsic voltage gated channels appear to play a critical role in 

the generation of sustained and transien bipolar cell subtypes.

4.1 Voltage-gated Na+ channels

4.1.1 Voltage-gated Na+ channels and transient vs. sustained responses to 
light—A classic view of bipolar cells is that regenerative voltage- gated channels are absent 

and that information passes from dendrites through the soma to the axon terminal in a 

passive way. A number of papers have challenged this assertion, showing functional 

evidence for Na+ channel expression in bipolar cells of many species (Cui and Pan, 2008; 

Hellmer et al., 2016; Ichinose and Lukasiewicz, 2007; Ma et al. 2005; Margolis et al., 2014; 

Puthussery et al., 2013; Saszik and DeVries, 2012; Trenholm and Awatramani, 2015; 

Zenisek et al., 2001). Although a complete consensus has not been reached regarding their 

function, the specific types of bipolar cells that express them, their cellular location, or their 

regulation, several themes have emerged. One is the observation that they are expressed in 

CBCs, but not RBCs. These observations thus far hold across species varying from teleosts 

to primates. Anothe theme is that Na+ channels are expressed in transient type bipolar cells, 

perhaps responsible for generating the transient responses observed in current clamp or 

imaging studies, but at the very least enhancing this response. Strict verification of this idea 

requires that several criteria be met. First, all types of bipolar cells must be identified, and 

this now appears to be the case, although such a claim has been made before. Second, the 

temporal properties of the light response of each type must be known. Third, evidence for 

Na+ channel expression of each type must be known, and the effect of either genetic or 

pharmacologic Na+ channel block on the temporal properties of the light response must be 

determined. The recent discovery of new types of bipolar cells, due in large part to efforts to 

define the mouse retinal connectome (Helmstaedter et al., 2013), has been invaluable in this 

regard.

Imaging of bipolar cell terminals In mouse using the Ca2+ dye OG1 revealed that cells near 

the IPL midline have more transient responses to light than cells at the IPL margins (Baden 

et al., 2013). These authors concluded that axon terminal clusters corresponding to cone 

bipolar cell (CBC) types 3a and 3b (Off cells) and CBC types 5 and 6 (On cells) exhibited 

the most transient responses to changes in illumination. This approach is valuable for 

sampling multiple bipolar cells to the same stimuli. However, without the use of genetic 

tools or markers to identify specific bipolar cell types, conclusive identification of individual 

bipolar cell types with bulk dye loading is difficult. Qualitatively similar results were 

obtained by expressing the glutamate “sniffer” iGluSnFR in cells postsynaptic to bipolar 
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cells to monitor glutamate release (Borghuis et al., 2013). To date, supporting data from 

patch clamp studies has produced mixed results. For example, CBC type 2 might be 

expected to provide sustained input to sustained α Off RGCs based on their co-stratification 

(Della Santina et al., 2016), but their responses appear transient (Della Santina et al., 2016; 

Ichinose and Hellmer, 2016), perhaps important for providing input to On-Off direction 

selective RGCs (Duan et al., 2014). On CBC types 5a and 5b have been classified as 

transient, consistent with predictions based on their layers of axon termination (Hellmer et 

al., 2016), although it is unclear which 2 of the 3 currently accepted subtypes (Greene et al., 

2016) were recorded from. CBC types X and 7 have been classified as transient (Ichinose et 

al., 2014). Based on its positioning near type 5 CBCs, this is expected for type X. However, 

the light response of type 7 might be expected to be sustained based on position in the IPL, 

and from imaging of Ca2+ signals from cells whose axons terminate in the proximal layers 

of sublamina b (Baden et al., 2013). A caveat to the designation of transient vs. sustained 

bipolar cell light responses is that the shape of the light response depends critically on a 

number of factors including adaptation state, stimulus intensity, the presence or absence of 

inhibition, and current vs. voltage clamp. For example, the response of type 2 CBCs is often 

sustained when measured in current clamp, but the excitatory component, isolated by 

measuring in voltage clamp near the reversal potential for inhibitory conductances, is 

transient (Della Santina et al., 2016).

Examination of bipolar cell types that exhibit regenerative Na+ currents in mouse retina is 

roughly consistent with the idea that Na+ channels are preferentially expressed in transient 

bipolar cells. Currents were absent or rarely seen in type 2 and type 7 bipolar cells, both of 

which are predicted to produced sustained responses based on stratification layer (Hellmer et 

al., 2016). Conversely, type XBC and type 5-2 CBCs, which most likely is identical to the 

type 5f CBC of a previous study (Ichinose et al., 2014), expressed robust Na+ currents, as 

did type 3A. The same study showed evidence for labeling of axons in these same bipolar 

cell populations by a Na+ channel antibody (Hellmer et al., 2016). A TTX-sensitive current 

was also detected in one subtype of the rat homolog of CBC type 5 and type 3 (Cui and Pan, 

2008). Both types of cells responded to depolarization with regenerative spike-like activity, 

but effects of light were not examined, nor was the contribution of Na+ channels to transient 

signaling. Thus, although Na+ currents have been clearly documented in mouse and rat 

retina, their role in shaping the output of bipolar cells needs further investigation: they 

appear to be expressed preferentially in bipolar cells that contact transiently responding 

RGCs, but it is unclear if selective block of Na+ channels that are expressed in bipolar cells 

would significantly alter RGC response properties.

In ground squirrel retina, only one type of bipolar cell, the On type cb5, was found to have 

Na+ currents (Saszik and DeVries, 2012). The authors went on to divide cb5 bipolar cells 

into two groups: one group, termed cb5b, had large Na+ currents (>400 pA) and was 

immunoreactive for both calbindin and PKC, while another group, cb5a, had smaller Na+ 

currents and was labeled only by calbindin antibodies. Using perforated patch recording to 

maintain the native resting potential of cb5b cells, the authors showed that light rarely 

initiated spiking, as Na+ channels were largely inactivated at the dark membrane potential. 

Importantly, cb5b cells were capable of generating spikes during presentation of flickering 

stimuli, as rebound hyperpolarization during the dark phase of the stimulus was sufficient to 
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remove channel inactivation. Thus, Na+ channels may amplify responses to rapidly changing 

visual input, but stay silent during low temporal frequency stimuli. As expected, cb5b 

bipolar cells co-stratified with transient On RGC dendrites.

In primate retina, large Na+ currents (≈ 400 pA at −60 mV) were observed in an Off (DB3a) 

and On (DB4) bipolar cell, both of which are part of the rapidly responding magnocellular 

pathway of primates. In current clamp, depolarizing pulses from resting potential were able 

to evoke fast TTX-sensitive spikes (Puthussery et al., 2013). These authors went on to show 

localization of Na+ channels to the initial segment of the axon using antisera to Nav1.1. 

Finally, following TTX application, they showed a marked reduction in excitatory input to 

parasol RGCs that likely collect input from these bipolar cells. Although the reduction was 

relatively modest, this may be due to the nature of the light stimulus paradigm, which did 

not contain temporal frequencies that are likely to be optimal for spike generation in 

presynaptic bipolar cells, and so the contribution to ganglion cell signaling may have been 

underestimated.

Expression of Na+ channels would seem to be a strategy for amplifying or speeding 

responses in bipolar cells that mediate photopic, but not scotopic vision. This is evident in 

mouse retina, where Na+ currents are not observed in rod bipolar cells (Ma et al., 2005; Tian 

et al., 2010), and in teleost retina, where Mb1 cells that received mixed rod/cone input also 

lack Na+ currents (Zenisek et al., 2001). In primate retina there is anatomical evidence that a 

mixture of rod and cone input is conveyed to parasol RGCs by giant bipolar (GB) On type 

cells and cb3b Off bipolar cells (Tsukamoto and Omi, 2014, 2016). It will be interesting to 

determine whether primate bipolar cells that receive rod input are capable of producing Na+ 

spikes.

4.1.2 Na+ channel modulation—There is substantial evidence that Nav channel 

function in cone bipolar cells is subject to modulation, particularly by dopamine receptors. 

Not surprisingly, results vary depending upon variables such as species, adaptation state, 

bipolar cell type, and time of day. Dopamine released in the light-adapted state inhibits Nav 

function in amphibian retina. Thus, TTX reduces light responses of On cone bipolar cells in 

the dark-adapted but not light-adapted retina (Ichinose and Lukasiewicz, 2007). The 

underlying mechanism is primarily a shift in the voltage-dependence of Na+ channel 

inactivation, such that Na+ channels are mostly inactivated at resting potentials in the light 

adapted state. These authors went on to show that the suppressive effects of light adaptation 

on Na+ current were mimicked by application of dopamine receptor agonists in the dark 

adapted state, and that D1 antagonists prevented inhibition of Na+ current in the light-

adapted state. Presumably this form of dopamine-dependent plasticity allows for 

amplification of bipolar cell pathways by Na+ channels during times when light is scarce, 

and reduces saturation when light is plentiful. Roles for dopamine receptors may differ in 

mammalian retina, as the b-wave, an indicator of On bipolar cell activity, is reduced in D1 

receptor knockouts in the light, but not dark-adapted retina (Jackson et al., 2012). In 

addition, the b wave is reduced in the light-adapted state following intravitreal injection of 

TTX or in mice lacking functional Nav1.6 channels (Mojumder et al., 2008; Smith and Cote, 

2012; Smith et al., 2015a). This apparent conflict may be explained by the observation that 

the suppressive effect of dopamine on the b wave in the light adapted retina is not due to a 
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direct effect of dopamine on Na+ channels of bipolar cells, but rather through an amacrine 

cell disinhibition circuit (Smith et al., 2015b). In this scenario, inhibition of amacrine cell Na
+ channels decreases tonic inhibitory drive onto a downstream amacrine cell. This 

downstream amacrine cell now more strongly inhibits rod bipolar cells via GABAC 

mediated feedback (Smith et al., 2015b). Modulation of Na+ currents may be a critical factor 

in extending the dynamic range of bipolar cells as lighting conditions change, and our 

current knowledge is insufficient to draw firm conclusions regarding the role of dopamine or 

other potential modulators.

4.2 Ca2+ channels

High voltage-activated L-type Ca2+ channels mediate transmitter release from bipolar cell 

ribbon synapses (Heidelberger and Matthews, 1992; Tachibana and Okada, 1991; Tachibana 

et al., 1993), as they do for photoreceptors. The molecular composition of L-type channels 

in photoreceptors is more clearly established (see section 2.2), but the identity or even the 

number of isoforms expressed in bipolar cells remains unclear. In goldfish, CaV1.3 was 

identified using RT-PCR as the major constituent of Ca2+ channels (Logiudice et al., 2006), 

but the field of candidates appears to be more crowded in mammalian bipolar terminals, as 

there is also evidence for expression of CaV1.4 (Baumann et al., 2004; Berntson et al., 2003) 

and CaV1.2 (Satoh et al., 1998). T-type channels are also expressed in rat bipolar cells (de la 

Villa et al., 1998; Kaneko et al., 1989; Pan, 2000; Protti and Llano, 1998), but their role in 

transmission is controversial: experiments showing that T-type, but not L-type ICa are 

present when recording from the cell body of bipolar cells with severed axons suggest that T 

type channels are not present on the axon terminal (Hartveit, 1999), a conclusion supported 

by immunolabeling and local application of L- and T-type antagonists to axon terminals 

(Satoh et al., 1998). This has led to the idea that T-type channels play a role in signal 

propagation rather than the gating of transmitter release. Conversely, work from the Pan lab 

suggests that transmitter release persists following pharmacological blockade of L-type 

channels at voltages that activate primarily T-type channels (Pan et al., 2001). A potential 

explanation for this paradox is the differential expression of Ca2+ channel isoform by cone- 

and rod-driven bipolar cells, as T-type channels are preferentially expressed in CBCs, 

particularly type 3 (Cui et al., 2012; Hu et al., 2009). Understanding why T-type channels 

are selectively expressed on a single type of CBC would provide insight into channel-

specific processing of visual information.

Regenerative currents originating from activation of Ca2+ channels have also been detected 

in bipolar cells of goldfish (Burrone and Lagnado, 1997; Cui and Pan, 2008; Palmer, 2006; 

Protti et al., 2000; Zenisek and Matthews, 1998) and zebrafish (Baden et al., 2011; Dreosti et 

al., 2011). In some cases, depolarizing current pulses resulted in maintained and stereotyped 

electrical resonance, due to the interaction of L-type and Ca2+-sensing BK channels 

(Burrone and Lagnado, 1997). Non-invasive monitoring of Ca2+ using the GCaMP reporter 

demonstrated that the occurrence of spikes did not alter the frequency, but enhanced the 

amplitude of Ca2+ transients locked to the frequency of the light stimulus (Baden et al., 

2011; Dreosti et al., 2011). Thus, L-type channels appear to perform two functions in fish 

bipolar cells, gating transmitter release and generating spikes that allow for periods of 

maintained Ca2+ influx. A single spike is thought to be sufficient to empty the readily 
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releasable pool of vesicles (Mennerick and Matthews, 1996; Palmer, 2006). Although such 

an event would prevent further signaling until the pool is replenished, such signals are 

produced relatively rarely (Baden et al., 2011). Thus, a single presynaptic terminal has the 

potential to signal both tonic and phasic information.

Although Ca2+ channels underlie regenerative currents in goldfish Mb1 cells, they appear to 

play a more limited role in generating spikes in bipolar cells of mammalian retina than Na+ 

channels. Instead, their role seems to be more focused on gating transmitter release. In 

mouse rod bipolar cells, the opening of a single L-type channel per active zone is sufficient 

to support univesicular release from bipolar cell terminals (Jarsky et al., 2010) but the 

opening of multiple channels per active zone is required in goldfish Mb1 bipolar cells 

(Coggins and Zenisek, 2009). This difference may arise because spikes generated by the 

interplay of Na+ and K+ channels allow for higher spike frequency than L-type Ca2+ 

channels. Importantly, expression of Ca2+ and Na+ channels allows for separate populations 

of channels dedicated to the tasks of synaptic transmission and spiking, allowing for 

selective placement of spike-generating channels in specific bipolar cell populations.

4.3 K+ channels

4.3.1 Voltage-gated K+ channels—An outwardly rectifying K+ channel was first 

described by Kaneko and Tachibana in isolated On bipolar cells of the goldfish (Kaneko and 

Tachibana, 1985a) and subsequently found in perch (Kaneko and Tachibana, 1985b; Lasater, 

1988), zebrafish (Connaughton and Maguire, 1998), mouse and rat (Kaneko et al., 1989; 

Karschin and Wassle, 1990; Klumpp et al., 1995a; Klumpp et al., 1995b). This current can 

be regulated by a variety of second messenger pathways, potentiated by dopamine via D1 

receptors and inhibited by endocannabinoids via CB1 receptors (Fan and Yazulla, 2005). 

There may be differences in expression patterns of outward rectifiers in cone- and rod-driven 

bipolar cells in rat as currents recorded from CBCs were of larger magnitude and activated at 

more negative voltages than their counterparts in RBCs (Hu and Pan, 2002; Ma et al., 2005). 

The reason for these differences is unclear. They could potentially play a role in 

repolarization following Na+ channel activation since, as discussed above (section 4.1.1), Na
+ channels are preferentially expressed in CBCs. Indeed, CBCs with robust Na+ currents had 

matching outward rectifying currents (Ma et al., 2005), although correlation with specific 

CBC subtypes was not attempted. Immunohistochemical evidence suggests that shaker 

(KV1.2) and shab (KV1.3) channels are expressed in bipolar cells of goldfish retina (Yazulla 

and Studholme, 1998) and in mouse RBCs (Klumpp et al., 1995a; Klumpp et al., 1995b). 

The role of these channels is unknown. Mammalian RBCs have a dark potential of about 

−45 to −50 mV (Berntson and Taylor, 2000; Euler and Masland, 2000; Oesch and Diamond, 

2011), and peak depolarizing light responses are generally less than 20 mV in amplitude 

(Berntson and Taylor, 2000; Euler and Masland, 2000; Trexler et al., 2005), a voltage 

excursion that is not sufficient to substantially activate the delayed rectifier expressed in 

RBCs (Kaneko et al., 1989; Karschin and Wassle, 1990). Furthermore, comparison of 

current and voltage-clamped light responses obtained from the same cell confirm that 

voltage-gated channels do not significantly shape the light response in RBCs (Berntson and 

Taylor, 2000). In salamander retina, activation of outwardly rectifying K+ currents restrains 

the membrane potential from depolarizing above −30 mV (Thoreson and Burkhardt, 2003).
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A-type currents have been described in bipolar cells from cold blooded vertebrates 

(Connaughton and Maguire, 1998; Lasater, 1988; Tessier-Lavigne et al., 1988) but not 

mouse (Klumpp et al., 1995a) or rat (Karschin and Wassle, 1990). The cell type-specific 

distribution of these and other K+ currents among different types of bipolar cells in cold-

blooded vertebrates has not been carefully investigated.

4.3.2 BK channels—As discussed in section 1.1.4, BK channels are large conductance 

K+ channels activated by both voltage and micromolar concentrations of Ca2+. Opening in 

response to local increases in Ca2+, they repolarize membrane potential. They often co-

localize with Ca2+ channels, together regulating Ca2+ levels on a nanoscale (Lee and Cui, 

2010). Depending upon their relative distance and numbers, these two channels can act in 

concert to generate oscillating responses at specific frequencies (Roberts et al., 1990). In 

bipolar cells, such an intimate relationship between BK and L-type Ca2+ channels also exists 

and has been studied extensively (Burrone and Lagnado, 1997; Llobet et al., 2003; Palmer, 

2006; Protti et al., 2000; Sakaba et al., 1997; Zenisek and Matthews, 1998). In particular, 

work from the Lagnado laboratory using whole cell and cell-attached patch clamp recording 

has demonstrated that co-localized BK and Ca2+ channels contribute to electronic resonance 

that serves to amplify bipolar cell responses (Burrone and Lagnado, 1997; Llobet et al., 

2003).

It should be noted that all of the studies cited above were carried out in On type bipolar cells 

of the goldfish retina. The situation in mammalian retina may be quite different. To date BK 

channels have not been detected immunohistochemically on terminals of bipolar cells in 

mouse or rat retina, but rather on A17 amacrine cell processes in close apposition to rod 

bipolar cell terminals (Grimes et al., 2009; Tanimoto et al., 2012). Furthermore, an ERG 

study taking advantage of a BK channel knockout mouse failed to demonstrate any 

functional deficit other than a change in the duration of the b-wave at low light intensities 

that was attributed to increased inhibitory feedback from BK-expressing A17 amacrine cells 

(Tanimoto et al., 2012), although horizontal cells, which also express BK channels, might be 

expected to play a role as well (Sun et al., 2017). It remains to be determined whether BK 

channels have thus far escaped detection in higher mammals, or are confined to horizontal, 

amacrine and ganglion cells. If so, this serves as a reminder that findings in lower 

vertebrates may not necessarily translate to mammalian retina. It is tempting to speculate 

that regenerative activity in mammalian bipolar cells relies on Na+-dependent action 

potentials, rather than Ca2+ channels, reducing the need for a Ca2+-sensing K+ channel.

4.4 HCN channels

In rat retina, type 3 Off cells stain for HCN4, while type 5 cells express HCN1, HCN2 and 

HCN4 (Fyk-Kolodziej and Pourcho, 2007; Müller et al., 2003). Interestingly, only the CB5b 

subtype of type 5 CBC was shown to express HCN channels, while the CB5a subtype did 

not (Fyk-Kolodziej and Pourcho, 2007). Anatomically, the two subtypes can be 

distinguished by the pattern of axon stratification, as CB5b exhibit diffuse axon terminals, 

whereas CB5a have a narrower stratification. Functionally, CB5a cells have low pass 

filtering characteristics, while CB5b have band pass characteristics (Ichinose et al., 2014), 

consistent with the predicted roles of HCN channels. Unlike Nav expression, there is 
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functional and immunohistochemical evidence for expression of HCN channels in the rod 

pathway. HCN2 channels are found in rod bipolar cells (Cangiano et al., 2007; Müller et al., 

2003), although differing reports on the location of the channels point to localization in 

either dendrites (Cangiano et al., 2007) or axon terminals(Müller et al., 2003). In mouse, 

they appear restricted to bipolar cell dendrites, colocalizing with mGluR6. In primate retina, 

an HCN current with kinetic properties similar to HCN1 has been described for DB3a, 

DB3b and DB4 cells (Puthussery et al., 2013), suggesting that HCN currents are highly 

conserved amongst bipolar cells that comprise transient signaling in the retina. In primate 

bipolar cells, HCN channels are localized to axon terminals.

4.5 Summary

Bipolar cells are high resistance, electrically compact cells, ensuring that small currents 

evoked by fluctuations in photoreceptor transmitter release can be reliably transmitted to the 

inner retina. The distribution of ion channels among different subtypes of bipolar cells is 

summarized in Table 1. In addition to channels that maintain resting potential and passive 

flow of information, strategically placed Na+, Ca2+ and K+ channels in specific subsets of 

bipolar cells generate regenerative responses that allow for the encoding of information with 

greater fidelity at high temporal frequencies. In mammalian retina evidence collected to date 

suggests that these channels are preferentially expressed in bipolar cells that terminate in the 

middle layers of the IPL, providing input to transiently responding RGCs. In addition to 

intrinsic, voltage-gated channels, retinal circuitry undoubtedly contributes to generating 

sustained or transiently responding bipolar cells. In particular, the precise timing of negative 

feedback from amacrine cells is of critical importance (Eggers and Lukasiewicz, 2011; 

Eggers et al., 2007; Moore-Dotson et al., 2015). A thorough understanding of the role of 

voltage-gated channels will require a complete wiring diagram of bipolar cell to ganglion 

cell connections, and bipolar cell specific knockouts of voltage-gated channels, allowing for 

the assessment of the impact of each channel on RGC kinetics and sensitivity.

5. Amacrine cells

Amacrine cells (ACs) are the most diverse population of neurons in the retina and are 

responsible for shaping the visual signal as it is passed from bipolar cells to RGCs. They do 

this by making feedback inhibitory synapses (GABAergic or glycinergic) onto bipolar cell 

axon terminals and by providing feed-forward inhibition onto RGCs (Diamond, 2017; 

Eggers and Lukasiewicz, 2011; Masland, 2012b). ACs also provide inhibition to other ACs, 

creating complex feedback and feed-forward inhibitory networks.

AC cell bodies occupy the inner nuclear layer (INL) and the RGC layer and are often 

referred to as “displaced” ACs when found in the RGC layer. Their dendrites and, in some 

cases, axons occupy strata of the IPL along with the bipolar cell axon terminals and ganglion 

cell dendrites. The selective layering of AC processes in the IPL gives clues to the identities 

of the bipolar cells and retinal ganglion cells with which they communicate. Bi- or multi-

stratified ACs (with dendrites spanning multiple sublayers of the IPL) provide “crossover 

inhibition”, the relay of signals between On and Off channels of the retina (Diamond, 2017) 

and are conventionally thought to be glycinergic (Menger et al., 1998). Wide-field ACs, on 
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the other hand, are conventionally thought to be GABAergic (Pourcho and Goebel, 1983; 

Vaney, 1990). As discussed in the following sections, wide-field ACs are able to fire action 

potentials, which allow them to carry signals along the length of their dendrites and axons, 

while narrow-field ACs are thought to signal via passive mechanisms (Bloomfield, 1992). 

However, as we describe for AII ACs below, this “rule” is not hard and fast.

ACs also release other neurotransmitters and neuromodulators. Dopaminergic ACs (DACs), 

for instance, are the sole source of dopamine, a signal for light adaptation in many retinas 

(Witkovsky, 2004), although they also release GABA (Hirasawa et al., 2012; Hirasawa et al., 

2009). Starburst ACs (SACs) are cholinergic and are identified in immunolabeling 

experiments by their expression of choline acetyltransferase (Taylor and Smith, 2012). Like 

DACs, they also release GABA, which is key for providing directional selectivity of 

direction-selective ganglion cells (DSGCs). An additional strange AC class was recently 

identified based on expression of a vesicular glutamate transporter, vGlut3. The vGlut3 AC 

has numerous identified post-synaptic targets, providing glutamatergic input to some and 

glycinergic input to others (Grimes et al., 2011; Lee et al., 2016).

Current estimates from mouse and rat studies indicate that there are >45 distinct AC classes 

(Diamond, 2017; Helmstaedter et al., 2013; MacNeil et al., 1999; MacNeil and Masland, 

1998; Masland, 2012a; Masland, 2012b), yet only a handful have been studied in detail. 

Generally, several ion channel subunits as well as voltage-gated currents such as ICa, INa, Ih, 

IKA, and IKDR have been described in various ACs from several species (Barnes and 

Werblin, 1986; Bloomfield and Völgyi, 2007; Cameron et al., 2017; Eliasof et al., 1987; 

Horio et al., 2018; Huba et al., 1992; Koizumi et al., 2004; Lasater and Witkovsky, 1990; 

Maguire, 1999; Mitra and Slaughter, 2002; Solessio et al., 2002; Taylor, 1996; Yang et al., 

1991). A particularly nice body of literature from groups studying amphibian retinas has 

shown the presence of multiple voltage-gated currents in ACs and explored their roles in 

shaping spiking and synaptic output. In salamander retina, 95% of ACs exhibit INa (Heflin 

and Cook, 2007). Some ACs are capable of repetitive spiking whereas others can generate 

only a single spike in response to depolarizing voltage steps and often fail to spike altogether 

during light-evoked depolarization. ACs that generate repetitive spiking have larger INa and 

those that generate a single spike have smaller INa (Heflin and Cook, 2007). The tendency to 

fire a single spike can also be promoted by the presence of a slowly activating IK that fails to 

provide sufficient hyperpolarizing relief of Na+ channel inactivation (Barnes and Werblin, 

1986; Eliasof et al., 1987). Although a number of exceptions to this generalization were 

observed, wide-field ACs are more likely to generate bursts of spikes whereas small-field 

ACs are more likely to generate only a single spike (Heflin and Cook, 2007). Cells that are 

only capable of firing single spikes are not always transient ACs but can also exhibit 

sustained post-synaptic potentials. Similarly, not all ACs that exhibit repetitive spiking are 

“sustained” ACs (Heflin and Cook, 2007).

Release of GABA and glycine from salamander ACs involves both Na+-dependent spiking 

and graded potentials (Bieda and Copenhagen, 1999; Cook and Werblin, 1994). Release 

evoked by widefield illumination is more sensitive to inhibition of Na+ channels than release 

evoked by illumination restricted to the receptive field center (Bieda and Copenhagen, 

1999). The generation of dendritic spikes in large field ACs can boost excitatory post-
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synaptic potentials and thereby coordinate release from multiple sites (Cook and Werblin, 

1994; Miller and Dacheux, 1976; Miller et al., 2006; Werblin, 1977). Both N- and L-type 

Ca2+ channels localized primarily to dendrites (Maguire, 1999) contribute to the Ca2+ influx 

that triggers glycine release from ACs (Bieda and Copenhagen, 2004). Although widefield 

ACs of teleost retina also possess both N and L-type Ca2+ channels, only L-type channels 

appear to mediate release from these cells (Vigh and Lasater, 2004). This was also true for 

GABAergic ACs from chick retina (Gleason et al., 1994).

In ACs that have been enzymatically isolated from salamander retina, the close association 

between L-type Ca2+ channels and Ca2+-activated K+ (BK) channels promote the 

appearance of spontaneous outward currents (Mitra and Slaughter, 2002). Similar to muscle 

cells and a number of other neurons, Ca2+ influx that accompanies opening of a Ca2+ 

channel can be boosted by Ca2+-induced Ca2+ release from intracellular stores leading to 

activation of nearby BK channels that generate an outward current. Spontaneous outward 

currents involving similar mechanisms have also been observed in teleost ACs, although 

there is a role for both BK and SK channels in these cells (Solessio et al., 2002; Vigh et al., 

2003). These currents contribute to oscillatory behavior and shape bandpass filtering 

characteristics of the AC membrane (Vigh et al., 2003). Amacrine cells in salamander retina 

also exhibit IKA and IKDR (Eliasof et al., 1987; Mitra and Slaughter, 2002).

Rodent retinas are the current preferred model system for studying retinal function. Because 

of the diverse structure and function of retinal ACs in rodent retinas, it is challenging to 

describe function of specific ion channels in ACs in general terms. Therefore, rather than 

organizing this section by ion channel type, we have organized it by AC type, describing the 

role of various ion channels in the function of several well-characterized AC classes: AII’s, 

A17’s, SACs, DACs, and wide-field CRH ACs. The principal ion channels in these different 

subtypes, as well as amacrine cells from salamander retina, are summarized in Table 2.

5.1. AII amacrine cells

AII ACs are a key hub for information flow in the inner retina and largely function to 

transmit signals arising from rods and RBCs to CBCs under scotopic conditions as part of 

the “primary rod pathway” (Bloomfield and Vülgyi, 2009; Demb and Singer, 2012). These 

retinal interneurons have been studied extensively in retinas of mammals such as rat, mouse, 

and rabbit. All’s receive excitatory glutamatergic synaptic input from RBCs in their distal 

dendrites near the border of the IPL and GCL. Alls then relay that On depolarization to On 

cone bipolar cells via gap junction electrical synapses in their distal dendrites. Off signals 

are relayed to Off CBCs via inhibitory glycinergic synapses at All lobular dendrites. All’s 

are also important in photopic (cone-driven) signaling conditions, where they contribute to 

crossover inhibition and provide a direct inhibitory drive to some classes of Off RGCs 

(Manookin et al., 2008).

Glycinergic synaptic transmission from All’s is mediated by Ca2+ influx exclusively through 

CaV1.3 L-type channels (Balakrishnan et al., 2015; Bieda and Copenhagen, 2004; 

Habermann et al., 2003). L-type channels are key for synaptic transmission at excitatory 

ribbon synapses of photoreceptors, bipolar cells, and hair cells, where sustained calcium 

entry supports tonic neurotransmitter release (Joiner and Lee, 2015; Matthews and Fuchs, 
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2010). Despite their lack of a ribbon, AII synaptic output is also quite sustained, which 

appears to result in part from the use of L-type channels (Balakrishnan et al., 2015). ICa are 

present in early postnatal AII’s, but dramatically increase in amplitude by P9 in mice, which 

is around the same time at which glycinergic inputs can be detected in Off cone BCs 

(Balakrishnan et al., 2015; Schubert et al., 2008). This time course is also associated with a 

refinement of Ca2+ channel localization; Ca2+ imaging studies indicate that Ca2+ influx is 

more diffuse in early postnatal AII’s, but is refined by adulthood and localized exclusively to 

the lobular dendrites (Balakrishnan et al., 2015; Habermann et al., 2003).

Despite being narrow-field ACs, AII’s are known to possess voltage-gated Na+ channels and 

fire small and relatively slow action potentials that are blocked by TTX (Bloomfield and 

Xin, 2000; Boos et al., 1993; Cembrowski et al., 2012; Mørkve et al., 2002; Tamalu and 

Watanabe, 2007; Tian et al., 2010; Veruki and Hartveit, 2002). These are likely mediated 

largely by NaV1.1 channels, which have been identified in AII’s by in situ hybridization in 

rats (Kaneko and Watanabe, 2007). The sluggish action potential kinetics in somatic 

recordings suggest that the action potentials are generated in a distal compartment of the AII 

(Cembrowski et al., 2012; Tamalu and Watanabe, 2007). Consistent with this, labeling with 

anti-NaV1.1 and anti-pan NaV antibodies has been shown to localize to a short AII process 

that branches off of dendrites near the AII somata in mice (Cembrowski et al., 2012; Wu et 

al., 2011). This region also appears enriched for ankyrin-G and neurofascin, which localize 

Na+ channels to the axon initial segment in many neurons (Cembrowski et al., 2012; Wu et 

al., 2011). Extracellular stimulation near these processes triggers a spike and excision or 

localized application of TTX will block AII spiking behavior and Na+ currents (Cembrowski 

et al., 2012; Tamalu and Watanabe, 2007). AII’s also possess K+ currents that support 

spiking behavior including a delayed-rectifier and A-type current (Boos et al., 1993; Tian et 

al., 2010). Much of the K+ current in AII’s is sensitive to TEA, while a smaller portion is 

blocked by 4-AP (Boos et al., 1993; Tian et al., 2010).

The consequences of AII sodium currents and spiking are still largely unclear. AII spike 

frequency encodes the strength of excitatory input (Tamalu and Watanabe, 2007) and AII Na
+ currents also appear to play a major role in the oscillatory activity detected in RGCs and 

other inner retinal neurons (Margolis et al., 2008; Stasheff, 2008) following photoreceptor 

degeneration (Trenholm et al., 2012).

Work by Tian and colleagues (Tian et al., 2010) examined the influence of AII Na+ channels 

on the inputs from rod bipolar cells and how that process affects propagation of scotopic 

signals from AII’s to cone BCs and RGCs in mouse retinas. In paired recordings from AII’s 

and RBCs, they found that TTX blockade of Na+ channels had the dual effect of attenuating 

and slowing post-synaptic potentials. Thus, Na+ channels accelerate and amplify synaptic 

responses in AIIs, which, along with the kinetics of RBC exocytosis (Singer and Diamond, 

2003), might contribute to the phenomenon that AII light responses are faster than those of 

presynaptic RBCs (Nelson, 1982). Additionally, this effect depended on the AII membrane 

potential; the EPSP was not enhanced at either depolarized potentials (>−45mV), where 

most Na+ channels would be unavailable due to inactivation, or at hyperpolarized potentials 

(<−80 mV), below the Na channel activation threshold (Tian et al., 2010). Recordings of 

light responses from RGCs showed that inhibition of Na+ channels slowed inhibitory and 
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excitatory synaptic inputs to RGCs without affecting amplitude. Thus, while potentially 

serving to threshold synaptic inputs to AII’s, Na+ currents appear only to accelerate AII 

output to downstream RGCs (Tian et al., 2010). The implications of this for RGC output are 

still unclear. Because the AII resting membrane potential appears to vary with background 

lighting (Dunn, 2006; Tian et al., 2010), this might slightly shift the strength of AII-

mediated synaptic acceleration as a result of changing Na+ channel availability.

5.2 A17 amacrine cells

The A17 AC (which likely corresponds to S2 ACs in rabbit) receives input from, and sends 

its output to, the same RBC, regulating synaptic transmission from RBC to AII ACs 

(Menger and Wassle, 2000; Nelson and Kolb, 1985; Raviola and Dacheux, 1987; Vaney, 

1986; Volgyi et al., 2002; Zhang et al., 2002). A17 ACs extend individual thin processes to 

the innermost layer of the IPL, contacting only RBCs and no other cell type. Each of these 

contacts has been likened to an electrically-isolated, individual microcircuit (Grimes et al., 

2010). Elegant support for this idea comes from 2-photon imaging of Ca2+ transients in 

synaptic boutons during electrical stimulation. These experiments revealed that stimulation 

of individual boutons generated ICa that could be detected in somatic patch clamp 

recordings, but did not activate neighboring synaptic boutons. Such electrical isolation 

would imply the absence of action potential generation in A17 cells. Indeed, although Na+ 

channels are expressed in A17 ACs, they do not appear capable of supporting robust 

regenerative currents (Bloomfield, 1996; Grimes et al., 2010; Menger and Wassle, 2000; 

Nelson and Kolb, 1985). Both A-type and outward rectifying K+ currents have been reported 

in A17 ACs as well (Grimes et al., 2010). What might be the function of Na+ and K+ 

channels if not to augment signal propagation? Modeling of signal spread through A17 

processes shows that the presence of these voltage-gated channels, expressed at low density, 

actually reduce spread of signals produced by opening of postsynaptic AMPA channels, 

compared to a purely passive membrane. Channel activation increases membrane 

conductance and reduces the length constant of the cell, effectively reducing signal 

conduction. This curious arrangement serves as a reminder that the presence of voltage-

gated channels does not always result in the enhancement of signal conduction.

A17 ACs express L-type Ca2+ channels (Grimes et al., 2009; Menger and Wassle, 2000), but 

it was initially thought that Ca2+ influx through Ca2+-permeable AMPA receptors (CP-

AMPARs), rather Ca2+ channels, triggers release of GABA onto RBC terminals (Chavez et 

al., 2006). These authors also showed that Ca2+-induced Ca2+ release from stores provided a 

second source of Ca2+ for triggering GABA release. NMDA receptors, which are highly 

Ca2+ permeable, situated close to GABA release sites, and activated by glutamate released 

from RBC terminals, may also contribute to GABA release in this feedback circuit (Zhou et 

al., 2016). However, an additional layer of complexity was revealed by experiments 

demonstrating a role for Ca2+ channels at some, but not all A17 release sites (Grimes et al., 

2009; Grimes et al., 2015). Specifically, they found that terminals using CP-AMPARs to 

couple Ca2+ to GABA release were presynaptic to rapidly activating GABAA receptors, 

while a second terminal, contacting the same RBC, used Ca2+ channels to gate GABA 

release. This second terminal was presynaptic to slower activating GABAC receptors.
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What mechanisms are used by A17 ACs to terminate transmitter release? Expression of BK 

channels at synaptic varicosities has been reported (Grimes et al., 2009). As discussed 

previously, BK channels are both voltage and Ca2+-sensitive, and their opening repolarizes 

the membrane and contributes to rapid closure of L-type Ca2+ channels. Close apposition of 

BK and L-type channels appears to be an important mechanism for presynaptic regulation of 

synapses (Roberts et al., 1990; Skinner et al., 2003; Xu and Slaughter, 2005). Conversely, 

closure of AMPA receptors is not voltage-dependent, but is dictated by the lifetime of 

glutamate in the synaptic cleft (Diamond and Jahr, 1995). Thus, association of CP-AMPARs 

with BK channels affords no obvious advantage to regulation of GABA release from 

terminals that express CP-AMPARs. In support of this, both immunogold labeling of BK 

channels and electrophysiological evidence suggest that BK channels colocalize with L-type 

channels, but are too far from CP-AMPARs to be activated by Ca2+ influx through these 

receptors (Grimes et al., 2015). The authors go on to speculate that in the dark, release rates 

of RBCs are sufficient to depolarize A17 boutons and activate BK channels, thus limiting 

GABA release from L-type Ca2+ channel-expressing boutons and allowing for high 

throughput from RBCs to AII’s. As ambient light increases, this concomitantly raises release 

rates of presynaptic RBCs, leading to further depolarization of A17 dendrites. This triggers a 

voltage-dependent switch within the BK channel to an inactive state, mediated by the 

auxiliary β2 subunit (Hicks and Marrion, 1998; Wallner et al., 1999; Xia et al., 2003). 

Inactivation of BK channels would allow for maintained L-type channel activation, allowing 

for strong feedback inhibition onto RBC terminals. In this way, BK channels expressed in 

A17 ACs are proposed to play a role in extending the operating range of the RBC-AII AC 

synapse by reducing RBC transmitter release at higher light intensities (Grimes et al., 2009; 

Grimes et al., 2015). A powerful tool to further explore this hypothesis would be cre-

mediated deletion of the β2 subunit gene kcnmb2, provided that a cre line specific for A17 

ACs becomes available.

5.3 Starburst amacrine cells (SACs)

SACs provide GABAergic inhibition to DSGCs. Glutamatergic excitation from bipolar cells 

to DSGCs lacks direction selectivity. Rather it is the direction-selective inhibitory output of 

SACs onto DSGCs that generates preferred and null directions. Mechanisms responsible for 

generation of direction selectivity of SACs have been studied extensively and there are a 

number of recent reviews summarizing this progress (Franke and Baden, 2017; Mauss et al., 

2017; Wei, 2018). A key feature of information processing in the SAC is the preference of 

motion away from (centrifugal) rather than toward (centripetal) the soma (Euler et al., 2002; 

Hausselt et al., 2007; Lee and Zhou, 2006). As an object moves through the receptive field 

of a SAC, it stimulates bipolar cells that subsequently release glutamate along the entire 

length of the radially extending dendrites of the SAC in a sequential manner. Objects 

moving centrifugally generate a wave of depolarization that ultimately results in Ca2+ 

dependent release of GABA from distal processes, while the depolarizing wave generated 

from centripetal movement, presumably activating the same presynaptic bipolar cells as an 

object moving in the centrifugal direction, is much more modest. The reason for this 

differential effect of direction is still unclear, but a recent model suggesting that it is due to 

differences in the response kinetics of bipolar cell types providing input is particularly 

intriguing (Greene et al., 2016; Kim et al., 2014). However, this so-called “space time 
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wiring” hypothesis is controversial (Fransen and Borghuis, 2017; Morrie and Feller, 2018; 

Stincic et al., 2016) and probably cannot account for the directional effect entirely.

Although no single mechanism has been shown to be necessary or sufficient to generate 

direction selectivity of SAC processes, voltage-gated channels appear to enhance this 

selectivity (Hausselt et al., 2007; Jensen, 1995a; Oesch and Taylor, 2010; Tukker et al., 

2004). Studies of the contribution of Na+ channels to the physiological properties of SACs 

have provided conflicting results, with some reporting robust spiking (Bloomfield, 1992; 

Cohen, 2001; Jensen, 1995b) and others suggesting that they lack Na+ currents completely 

(Kaneda et al., 2007; Ozaita et al., 2004; Taylor and Wassle, 1995; Zhou and Fain, 1996). 

The resolution may be provided by more recent studies showing that SACs express TTX-

resistant NaV1.8 channels (O'Brien et al., 2008; Oesch and Taylor, 2010), and thus studies 

using TTX to block inward or regenerative currents would have attributed them to another 

type of channel. Using a blocker of TTX-insensitive Na+ channels, Oesch and Taylor (2010) 

demonstrated a significant reduction in centrifugal, compared to centripetal light stimulation. 

However, even in the absence of TTX-resistant Na+ channels the difference in the response 

to centrifugal and centripetal stimulation was still quite robust, suggesting only a modest 

effect on direction selectivity. There is evidence for expression of N, P and Q (but not L) 

type ICa (Cohen, 2001; Kaneda et al., 2007; Lee et al., 2010). Interestingly, SACs release 

both acetylcholine and GABA, and it has been suggested that release of each transmitter is 

gated by a different subset of Ca2+ channels: agatoxin, a P/Q channel antagonist blocked 

release of predominantly GABA, while the N type channel blocker ω-conotoxin almost 

completely prevented release of acetylcholine, but not GABA (Lee et al., 2010).

Models of SAC direction selectivity require significant compartmentalization of processing 

(Miller and Bloomfield, 1983; Poznanski, 1996; Tukker et al., 2004; Velte and Miller, 1997). 

Specifically, the soma must have a low input resistance to prevent rapid spread of signals 

across to neighboring proximal dendrites. It has been proposed that delayed rectifier KV3 

channels fulfill this role (Ozaita et al., 2004). Immunolabeling of KV3.1 and KV3.2 channels 

showed a high to low gradient of expression from soma to distal dendrites, consistent with a 

role for somatic shunting of signals. Furthermore, outward rectification was nearly absent in 

SACs from KV3.1- KV3.2 double knockout mice, suggesting that these are the predominant 

isoforms expressed by this cell (Ozaita et al., 2004). It remains to be determined if direction 

selectivity is reduced in DSGCs in these knockout mice as a result of the loss of somatic 

shunting. Alternatively, or perhaps in addition, mGluR2 mediated regulation of Ca2+ 

channels may also participate in dynamically regulating somatic resistance (Koren et al., 

2017). These authors showed that inhibition of mGluR2 increased spread of Ca2+ signals 

across the soma to dendrites on the opposite side of the SAC. Recordings from DSGCs 

revealed an increase in inhibition in response to movement in the preferred direction when 

mGluR2 receptors were blocked, thus reducing the selectivity for movement in the preferred 

direction. Inhibition of mGluR2 receptors also decreased the amplitude of N, P and Q Ca2+ 

channels, but not KV3 channels (Koren et al., 2017). Thus, voltage-gated channels in SACs 

may play a greater role in preventing spread of signals across compartments than they do in 

generating the signals themselves.
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5.4 Dopaminergic Amacrine Cells (DACs)

DAC somas reside on the very inner border of the INL (Dacey, 1990). These neurons 

possess a fairly sparse localized dendritic arbor with a diameter of ~500 microns and a much 

wider-reaching arbor of thin axons (Dacey, 1988; Dacey, 1990; Keeley and Reese, 2009; 

Witkovsky et al., 2005). Both the dendrites and axons stratify in the very outer sublamina of 

the IPL adjacent to the INL, although a few processes occasionally reach into other layers of 

the retina. DACs are excited by light (On cells) due to excitatory en passant or ectopic 

synaptic inputs from On bipolar cells and M1-type melanopsin-expressing ganglion cells, as 

revealed in studies of both mouse and rabbit retinas (Dumitrescu et al., 2009; Hoshi et al., 

2009; Prigge et al., 2016; Zhang et al., 2008; Zhang et al., 2007). This triggers action 

potential firing and release of dopamine (Puopolo et al., 2001), which functions as a 

neuromodulatory signal for light adaptation in the retina (Witkovsky, 2004). Dopamine 

appears to act in a paracrine fashion (Puopolo et al., 2001; Witkovsky, 2004), diffusing to 

DA receptors expressed by all classes of neurons in all layers of the retina without requiring 

direct synaptic contacts. Additionally, DACs are also GABAergic and co-release GABA 

with dopamine (Hirasawa et al., 2012, 2009). DACs appear to play a major role in regulating 

the function of AII ACs, as DAC processes encircle and synapse onto the thick proximal 

dendrites of AII ACs (Contini and Raviola, 2003; Voigt and Wässle, 1987).

Several classes of voltage-gated current have been identified in recordings from DACs in 

multiple species. In keeping with their axons and relatively wide dendritic fields, DACs in 

mice fire action potentials (Gustincich et al., 1997) and can exhibit several distinct patterns 

of spiking, including silent, sustained, irregular, and bursting (Newkirk et al., 2013; Zhang et 

al., 2007). Bursting behavior appears to be a key trigger for dopamine release by DACs 

(Puopolo et al., 2001). In voltage-clamp recordings, both a transient, TTX-sensitive and 

persistent, TTX-insensitive Na+ current have been characterized (Feigenspan et al., 1998; 

Steffen et al., 2003; Xiao et al., 2004). While TTX blocks regenerative spiking activity and 

transient Na+ currents in DACs (Feigenspan et al., 1998), modeling indicates that the 

persistent INa is required for sustained spiking (Steffen et al., 2003).

DACs also have delayed rectifier and A-type K+ currents (IKDR and IKA, respectively). A 

Kv4.3 channel (which generates an IKA) has been found localized to the somatodendritic 

compartment of DACs, while Kv3.1 is not present in DACs (Tian et al., 2003). Other K+ 

channel subunits including IKDR channels Kv1.1, 1.3, and 2.1 are present in DACs, as is the 

IKA channel Kv4.3 (Tian et al., 2003). Inhibiting IKDR with a low concentration of TEA 

slightly broadened action potentials and blocked the action potential after-hyperpolarization 

(AHP) in mice (Feigenspan et al., 1998). A high concentration of TEA, on the other hand 

(40 mM), depolarized DACs and dramatically slowed the falling phase of the action 

potential (Feigenspan et al., 1998). 4-AP application, which is often used to inhibit IKA, 

depolarized the DAC and increased spike rate (Feigenspan et al., 1998). This is consistent 

with modeling indicating that IKA plays a major role in regulating DAC firing rate (Xiao et 

al., 2004).

HVA ICa are detectable in voltage-clamp recordings of DACs and several CaV isoforms 

including the L-type channel CaV1.2, P/Q channel CaV2.1, and R-type channel CaV2.3 have 

been localized to DAC somata and processed by immunofluorescence (Xu et al., 2002). The 
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N-type channel CaV2.2 is found only in DAC processes (Xu et al., 2002). It is likely that 

some combination of these channels is responsible for dopamine and/or GABA release by 

DACs, which is known to be Ca2+-dependent (Hirasawa et al., 2012, 2009). Ca2+ influx 

through Ca2+ channels is also likely responsible for gating Ca2+-activated K+ channels 

(Feigenspan et al., 1998; Xiao et al., 2004). SK2 channels have been identified in DACs 

(Klöcker et al., 2001). However, application of the SK channel blocker apamin had minimal 

effect on DAC action potential waveforms or spiking frequency while the BK channel 

blocker charybdotoxin slightly accelerated spiking and blocked the action potential after-

hyperpolarization (Feigenspan et al., 1998). Co2+ application, which blocks Ca2+ influx 

through voltage-gated Ca2+ channels, caused a small reduction in action potential amplitude 

without affecting frequency (Feigenspan et al., 1998).

Finally, DACs in current clamp display a modest depolarizing voltage “sag” in response to 

hyperpolarization and a small Cs+-sensitive inwardly-rectifying hyperpolarization-activated 

current, consistent with the presence of the hyperpolarization activated cation current Ih. Cs+ 

blockade of Ih, however, had minimal effect on DAC spiking behavior (Feigenspan et al., 

1998), although modeling of DAC membrane currents indicated that Ih can function to 

subtly increase DAC firing rate (Xiao et al., 2004).

Thus, DACs respond to excitatory synaptic input by firing action potentials and releasing 

dopamine and GABA. The various classes of voltage-gated and Ca2+-activated ion channels 

in DACs support this behavior, although only a handful have been shown to substantially 

alter DAC spike frequency when blocked. It remains to be determined what combinations of 

ion channel properties and synaptic inputs lead to the different spiking behaviors of DACs 

(Newkirk et al., 2013; Zhang et al., 2007) and whether or how these are dynamically 

regulated by patterns of synaptic input to favor dopamine and/or GABA release by DACs.

5.5 Wide-field CRH amacrine cells

The use of genetic lines has enabled identification of specific types of ACs not easily 

identified otherwise. An example is the CRH family of ACs, identified by screening of a 

corticotropin releasing hormone (CRH)-cre mouse line (Jacoby et al., 2015; Zhu et al., 

2014). In the initial screen, two types of CRH ACs were described: a medium field cell with 

dendrites that extend approximately 200-300 μm in diameter and terminate deep in the IPL, 

and an axon-bearing bistratified wide field cell with dendrites that extend >1 mm (Zhu et al., 

2014). The CRH-1 cell was later shown to provide feedforward inhibition to the “suppressed 

by contrast” RGC, a bistratified RGC that is inhibited by both positive and negative contrast 

(Jacoby et al., 2015). A subsequent study demonstrated a third type of axon-bearing wide 

field CRH AC (Park et al., 2018). This study went on to show that two of three classes of 

CRH cells, type 1 (medium field) and type 3 (axon-bearing wide field) provide inhibitory 

input to On alpha RGCs. Thus CRH-1 ACs provide input to both alpha ON and suppressed 

by contrast RGCs.

Comparison of CRH-1 and CRH-3 ACs illustrates a basic principle of Na+ channel 

expression in ACs. CRH-1, a medium field cell, lacks Na+ channels and communicates to 

postsynaptic RGCs using passive electronic spread (Jacoby et al., 2015; Park et al., 2018). 

Conversely, CRH-3 and CRH-2 are axonbearing wide field cells that contact postsynaptic 
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RGCs over a distance of 1 mm or more, express Na+ channels and fire at high frequency in 

response to light (Park et al., 2018). They appear similar to a group of wide field axon-

bearing ACs, including polyaxonal ACs, that are capable of generating Na+ spikes (Cook 

and McReynolds, 1998; Flores-Herr et al., 2001; Freed et al., 1996; Greschner et al., 2014; 

Murphy-Baum and Taylor, 2015; Stafford and Dacey, 2009; Taylor, 1999; Volgyi et al., 

2001). In primate A1 ACs, which are morphologically similar to the mouse CRH-2 (Zhu et 

al., 2014), action potentials recorded at the soma are initiated within the dendritic arbor 

(Freed et al., 1996; Stafford and Dacey, 2009). This is presumably in addition to axonal Na+ 

channels required for propagation of signals to distant locations within the retina. Although 

the site of Na+ channel expression on CRH-2/3 cells has not been determined, they appear 

necessary for propagation of signals to downstream α RGCs. Park et al (2018) drove IPSCs 

in ON α RGCs by expressing channelrhodopsin in CRH-1 and CRH-3 ACs. Blocking Na+ 

channels with TTX reduced the inhibitory post-synaptic current by approximately 50%. 

Since both types of ACs drive ON α RGCs, but only CRH-3 ACs spike, this result implies 

that input from CRH-3 cells was severely reduced or perhaps eliminated following Na+ 

channel blockade. Ca2+ and K+ channels have not yet been characterized in CRH ACs.

Convergence of narrow and wide-field ACs onto a single RGC implies that postsynaptic 

inhibition is shaped by both global and local patterns of illumination. In addition, CRH-1 

and CRH-3 ACs appear to differentially temporally filter input, as CRH-1 but not CRH-3 

cells low pass filters flickering stimuli (Park et al., 2018). Differences in filtering between 

the two cell types are most apparent in current, rather than voltage clamp, highlighting the 

role of voltage-gated channels in temporal filtering. However, an analysis of other voltage-

gated channels that may contribute to this temporal filtering has yet to be carried out.

6. Interplexiform cells

Interplexiform cells were first identified in teleost retina by Ehinger et al. (1969). Gallego 

(1971) found the same class of cells in cat retina and named them interplexiform cells 

because they have processes that terminate in both the inner and outer plexiform layers. Like 

amacrine cells, their cell bodies reside in the proximal INL and they have dendrites in the 

IPL, so some investigators have classified interplexiform cells as a subtype of amacrine cells 

(Witkovsky, 1980). However, unlike other amacrine cells, they extend processes into the 

OPL to terminate adjacent to bipolar, horizontal and cone photoreceptor cells (Dowling and 

Ehinger, 1975; Boycott et al., 1975; Kolb and West, 1977; Linberg and Fisher, 1986; Jiang 

and Shen, 2010). There are at least three neurochemically distinct subtypes in mouse retina: 

one that contains dopamine, one with GABA, and one with glycine (Dedek et al; Witkovsky 

et al 2008; Haverkamp and Wassle, 2000). At least three anatomically distinct types of 

interplexiform cells have also been identified in salamander retina (Maguire et al. 1990). 

There were no obvious differences in the types of ion channels in these three types (Maguire 

et al. 1990).

There are relatively few interplexiform cells in the retina and their ion currents have received 

little study. The few studies on these cells show currents similar to those of amacrine cells. 

In both salamander and mouse, interplexiform cells possess fast voltage-dependent INa, HVA 

L-type ICa, and IKDR that can be blocked by extracellular TEA and intracellular Cs+ 
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(Feigenspan et al., 1998; Gustincich et al., 1997; Maguire et al., 1990). T-type ICa appear to 

be absent from interplexiform cells. Some interplexiform cells in mouse and salamander 

exhibit modest A-type K+ currents that can be inhibited by 4-AP (Feigenspan et al., 1998; 

Maguire et al., 1990). In mouse retina, charybdotoxin-sensitive BK channels and weak Ih 

have also been found (Feigenspan et al., 1998). The ion channels that have been identified in 

interplexiform cells are summarized in the last column of Table 2.

7. Retinal Ganglion cells (RGCs)

RGCs are the output neurons of the retina and responsible for relaying information to visual 

areas of the brain. The combination of distance along which RGCs must carry visual 

information – several millimeters in mice to several centimeters in humans – and the speed 

necessary to support visually-guided behaviors requires that RGCs relay vision information 

as trains of regenerative action potentials. They accomplish this task by integrating 

excitatory synaptic inputs from bipolar cells and inhibitory inputs from ACs into a train of 

action potentials that propagate along RGC axons.

To date, anatomical and functional studies indicate that there are >30 classes of RGCs in 

mice (Baden et al., 2016; Bae et al., 2018) while a single-cell transcriptomics approach has 

clustered RGCs into 40 distinct subtypes (Rheaume et al., 2018). As with bipolar cells, the 

most fundamental classification scheme for RGCs segregates them by the sign of their 

response – whether they are excited by light onset (On cells) or light offset (Off cells) or 

respond to both light and dark (On-Off cells). Other classifying response properties include 

whether RGC responses are sustained or transient, whether RGCs are sensitive to directional 

motion, or whether they have chromatic preference. RGCs of the same class also share 

anatomical features including dendritic co-stratification in the IPL, similar soma sizes, 

similar dendritic branching patterns, and regular spacing across the retinal surface.

7.1 Voltage-gated Na+ channels

Like most neurons that fire regenerative action potentials, RGCs do so using a combination 

of voltage-gated Na+ and K+ channels in a manner that follows Hodgkin and Huxley’s 

experiments on the squid giant axon. RGCs in rodents have a resting potential of approx. 

−60 to −75 mV (O'Brien et al., 2002; Qu and Myhr, 2008; Wong et al., 2012), which appears 

to vary systematically by RGC type (Hu et al., 2013; O'Brien et al., 2002; Qu and Myhr, 

2008; Wong et al., 2012). Upon depolarization, voltage-gated Na+ channels open, allowing 

Na+ ion entry that rapidly pulls the membrane potential toward the Na+ equilibrium potential 

(approx. +50 mV) before inactivating. This is balanced by the slower gating of voltage-gated 

K+ channels that act to pull Vm toward EK (approx. −90 mV) to repolarize the membrane.

7.1.1. Functional compartmentalization of Na+ channels in RGCs.—Several 

distinct compartments of RGCs each express different complements of ion channels and 

play unique roles in synaptic integration, spike generation, and spike propagation. 

Unmyelinated RGC axons fasciculate and course across the retina surface toward the optic 

nerve head, where they converge and form the optic nerve. An elegant study of amphibian 

RGCs demonstrated the existence of a short region of axonal thinning (~40-140 microns in 

length) located just after the axon initial segment (Carras et al., 1992). Detailed studies of 
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RGC axons in rat revealed that NaV1.1 channels occupy a microdomain corresponding to the 

first ~10 microns of the axon immediately adjacent to the soma, while a region slightly more 

distal from the soma (10-40 microns) is occupied by NaV1.6 channels (Boiko et al., 2003; 

Van Wart et al., 2005; Van Wart et al., 2007; Wollner and Catterall, 1986; Wollner et al., 

1988). This might correspond to the thin region seen in amphibian RGCs (Carras et al., 

1992; Fohlmeister and Miller, 1997b) and might therefore be the site of action potential 

generation in RGCs. Indeed, NaV1.6 channels are localized to the axon initial segment of 

many neurons and appear to be ideally suited for action potential initiation. These channels 

typically have a more hyperpolarized activation curve and recover from inactivation at fairly 

hyperpolarized potentials (Qiao et al., 2014; Rush et al., 2005). Additionally, NaV1.6 

channel currents potentiate during repetitive depolarization (Zhou and Goldin, 2004), which 

can support higher-frequency firing. In healthy RGCs, the properties of NaV1.6 and its 

localization to the axon initial segment would likely enhance excitability to promote efficient 

spike initiation. During early stages of glaucoma, an increase in NaV1.6 expression appears 

to contribute to increased RGC excitability in mice (Risner et al., 2018). The opposite seems 

to be the case in a rodent model of multiple sclerosis in which NaV1.6 expression and node 

localization is reduced and replaced by NaV1.2 (Craner et al., 2003; Craner et al., 2004).

NaV1.2 channels are present in unmyelinated RGC axons and likely underlie propagation of 

the action potential to the optic nerve head (Boiko et al., 2001; Boiko et al., 2003). Once the 

axon leaves the eye and becomes myelinated, Na+ channels are localized principally at 

nodes of Ranvier. These are largely NaV1.6 channels, although Boiko and colleagues have 

shown that some nodes have NaV1.2 (Boiko et al., 2001). It is unclear whether those nodes 

contain a combination of NaV1.2/NaV1.6 or whether NaV1.2 is present instead of NaV1.6. In 

a NaV1.6 null mouse, NaV1.2 and NaV1.1 localize to nodes in the optic nerve (Van Wart and 

Matthews, 2006b; Vega et al., 2008), suggesting that the presence of NaV1.6 might play a 

role in excluding them from that location. A tetrodotoxin-resistant Na+ channel (NaV1.8) has 

also been shown to be present at nodes of very large RGC axons in the optic nerve and 

somata of very large RGCs in mouse retina (O'Brien et al., 2008). NaV1.8 currents are 

relatively slow and sustained, showing little inactivation (Renganathan et al., 2000; 

Sangameswaran et al., 1996). This appears to aid in sustained high-frequency spiking, as 

blockade using a specific NaV1.8 inhibitor A803467 attenuates light-driven spiking of 

sustained On αRGCs (Smith et al., 2017).

RGC dendrites and cell bodies also participate in spike generation that appears to play 

important roles in visual processing. In a “textbook” model of neuronal structure and 

function, excitatory neurotransmitter release onto dendrites alters the gating of ion channels, 

leading to excitatory post-synaptic potentials (EPSPs) that passively propagate to the soma. 

If sufficient numbers of EPSPs of sufficiently large amplitude occur in a sufficiently narrow 

time window, they depolarize the membrane at the axon initial segment past the action 

potential threshold and initiate a spike. It is now clear, however, that dendrites of many 

neurons, including amacrine cells as discussed earlier, possess numerous active 

conductances that allow them to amplify EPSPs, participate in antidromic spiking, and 

generate their own regenerative action potentials (Holthoff et al., 2006; Johnston et al., 

1996). The same is true for RGCs as well. For instance, Na+ channel α and β subunits are 

expressed in the IPL of rats (Van Wart et al., 2005; Wollner et al., 1988). While these might 

Van Hook et al. Page 41

Prog Retin Eye Res. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in part be the result of Na+ channel expression in spiking ACs (Kaneko and Watanabe, 2007; 

Wu et al., 2011), faint NaV1.1 expression has been observed in proximal dendrites and 

somata of rat RGCs (Van Wart et al., 2007) and slowly-inactivating, TTX-resistant NaV1.8 

channels are present in somata and dendrites of mouse RGCs (O'Brien et al., 2008).

A particularly elegant study by Velte and Masland used simultaneous paired whole-cell 

recordings of RGC somata and dendrites to show that dendrites are capable of generating 

action potentials (Velte and Masland, 1999). Using current steps to depolarize the soma 

evoked a train of spikes measured at both somatic and dendritic electrodes. Stimulation of 

dendrites likewise evoked a train of spikes recorded with the dendritic electrode. These 

could be measured as spikelets with the somatic electrode and, in some cases, dendritic 

spikes initiated full-amplitude somatic spikes. Additionally, while introducing the Na+-

channel blocker and lidocaine derivative QX-314 through the somatic patch pipette blocked 

somatic spikes, the spikes recorded with the dendritic electrode persisted. This indicates that 

RGC dendrites are able to generate action potentials.

Modeling studies based on empirically-recorded current properties indicate that voltage-

gated Na+ and K+ channels present in dendrites are essential for regulating RGC spike rate 

(Fohlmeister et al., 1990; Fohlmeister and Miller, 1997a, b). Interestingly, these dendritic 

channels function to slow repetitive spiking by providing a shunt to discharge the membrane 

capacitance that would otherwise keep the membrane potential above spike threshold. This 

is similar to the shunting effect of Na+ and K+ channels in the dendrites of A17 ACs 

described in section 5.2.

For DSGCs, which preferentially respond to motion in one direction, active dendritic 

conductances amplify responses to motion in the preferred-direction by triggering dendritic 

action potentials that propagate and initiate somatic spiking (Oesch et al., 2005; Trenholm et 

al., 2011). Using simultaneous patch-clamp recordings of DSGC somata and dendrites, 

Sivyer and Williams showed that dendrites in the region of the dendritic field that is first 

activated by motion in the preferred direction fire spikes that precede spikes generated in the 

soma (Sivyer and Williams, 2013). This is consistent with work in amacrine cells and other 

RGC types showing that dendritic Na+ channels amplify synaptic potentials and that 

blockade of voltage-gated Na+ channels reduces the signal-to-noise ratio of RGC responses 

to stimuli of varying contrast (Dhingra, 2005). Dendritic spikes also allow for temporally-

precise correlated spiking in a subpopulation of gap junction-coupled DSGCs, a process that 

likely favors strong temporal summation of their synaptic output to the dorsal lateral 

geniculate nucleus (Trenholm et al., 2013).

7.1.2 Na+ channels during development—RGC spiking behavior, as with all CNS 

neurons, matures over the course of development, with RGCs becoming more excitable with 

maturity. Rat RGCs, for instance, appear to reach full maturity by ~25-27 days postnatal 

(P25-P27), firing trains of repetitive spikes in response to sustained current injection. Earlier 

postnatal stages (P7-P9) are characterized predominantly by single-spike behavior with 

increasing numbers of RGCs being able to fire a rapidly adapting series of spikes by P13. A 

similar progression, albeit with slightly different timing relative to birth, is seen for other 

species (Chalupa et al., 1993; Guenther et al., 1999; Qu et al., 2009; Robinson and Wang, 
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1998; Schmid and Guenther, 1996; Skaliora et al., 1995; Skaliora et al., 1993; Wang et al., 

1997; Wollner et al., 1988).

This development of RGC excitability corresponds with the developmental progression of 

membrane currents and might be explained as well by shifts in both the density of channels 

in the membrane and the specific channel isoforms expressed by RGCs during development. 

Voltage-gated Na+ current amplitudes and current density (current amplitude normalized to 

membrane capacitance) increase dramatically from embryonic RGCs and plateau around eye 

opening in both rodents and cats (Chalupa et al., 1993; Robinson and Wang, 1998; Rothe et 

al., 1999; Schmid and Guenther, 1996, 1998; Skaliora et al., 1993). This is accompanied by 

a hyperpolarizing shift in the INa activation curves progressing through development 

meaning that the population of Na+ channels requires a weaker depolarization in order to 

open (Robinson and Wang, 1998; Rothe et al., 1999; Skaliora et al., 1993). Similarly, INa 

steady-state inactivation curves show a depolarizing (rightward) shift, meaning that 

relatively more channels are available in the range of RGC resting potentials (Robinson and 

Wang, 1998; Skaliora et al., 1993).

These functional shifts generally correspond with changes in the expression and localization 

of Na+ channel isoforms (Miguel-Hidalgo et al., 1995). mRNA levels for both NaV1.2 and 

NaV1.6 increase during development along a similar time course (Van Wart and Matthews, 

2006a). At both nodes and the axon initial segment, NaV1.2 is expressed earlier in 

development and later replaced by NaV1.6 (Boiko et al., 2001; Boiko et al., 2003; Van Wart 

and Matthews, 2006b; Vega et al., 2008). The increase in NaV1.6 is likely important in the 

development of repetitive spiking behavior; RGC spiking in NaV1.6 knockout is similar to 

wild-type at P12 (largely rapidly adapting spike behavior), but whereas WT RGCs develop 

repetitive spiking behavior by P14, NaV1.6 knockout RGCs do not. Interestingly, 

myelination appears to have an instructive and/or regulatory effect on channel localization; 

in the shiverer mouse which is deficient in myelin, NaV1.6 does not replace NaV1.2 at 

nodes. Additionally, in mice heterozygous for a NaV1.6 knockout (Scn8a+/−), the gene 

dose-dependent reduction in NaV1.6 protein leads to an increase in NaV1.2 at nodes in the 

optic nerve (Vega et al., 2008). The alterations in optic nerve Nav1.6 and NaV1.2 expression 

and localization in a rodent multiple sclerosis model appear to represent a recapitulation of 

some of these developmental stages (Craner et al., 2003; Craner et al., 2004).

RGCs have D1-type dopamine receptors (Chen and Yang, 2007; Hayashida and Ishida, 

2004; Hayashida et al., 2009; Ogata et al., 2012; Van Hook et al., 2012; Vaquero et al., 2001) 

and dopamine is known to alter RGC spiking behavior in multiple species including rodents 

and fish (Hayashida et al., 2009; Ogata et al., 2012; Van Hook et al., 2012; Vaquero et al., 

2001). Regulation of Na+ channel inactivation parameters appears to underlie some of this 

effect (Hayashida and Ishida, 2004; Hayashida et al., 2009), although HCN channels and K+ 

channels have also been implicated (see below) (Chen and Yang, 2007; Prigge et al., 2016).

7.2 Ca2+ channels

As discussed below, several classes of voltage-gated Ca2+ channels can be distinguished by 

current kinetics, voltage-dependence, and pharmacology in RGCs.
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7.2.1 Low-voltage activated (LVA) Ca2+ currents—LVA ICa activates at fairly 

hyperpolarized potentials (positive to −70 mV) and in whole-cell recordings in which ICa is 

isolated by blocking Na+ and K+ currents, the remaining macroscopic membrane current I-V 

relationship will show a discernable hump at more hyperpolarized voltages that corresponds 

to the LVA component. Voltage-clamp studies from isolated postnatal rat RGCs (P10) have 

identified these LVA (or T-type) currents in approximately 1/3 of recorded RCGs (Guenther 

et al., 1994; Karschin and Lipton, 1989; Sargoy et al., 2014; Schmid and Guenther, 1996). In 

intact retinas or retinal slices, LVA currents are present in 100% of early embryonic RGCs 

and the percentage of LVA current-possessing RGCs declines to 13% by eye opening (~P12) 

and to 0% by adulthood (Schmid and Guenther, 1996). Recordings of RGCs cultured from 

P13-17 or adult rats show that the proportion of RGCs with LVA current fell from ~33% at 

P13-17 to ~15% at adulthood. In intact retinas, LVA current amplitudes decreased from 

embryonic through postnatal stages (Rothe et al., 1999). Interestingly, isolated cat RGCs 

appeared to lack any discernable T-type current, having an I-V plot without the LVA hump 

and a pharmacological signature consistent with a predominant L-type current (Kaneda and 

Kaneko, 1991a). It is unclear how the presence in a subpopulation of RGCs in adult mice is 

reconciled with the apparent loss of LVA currents detected in adult rat RGCs.

In recordings from isolated salamander RGCs, Henderson and Miller found that LVA current 

was detectable in RGC somata. However, in cells that had dendritic processes remaining, the 

LVA current was larger and estimates of membrane surface area from whole-cell capacitance 

suggested that LVA current density was ~5-fold greater in dendritic compartment than in the 

soma. LVA currents appear to be constrained to Off RGCs in mouse (Margolis and Detwiler, 

2007; Margolis et al., 2010) and additional evidence suggests that it is Off-transient RGCs, 

but not Off-sustained RGCs, that have LVA currents (Murphy and Rieke, 2011; Van Wyk et 

al., 2009).

The resting membrane potential for RGCs is typically between −65 and −80 mV (Coleman 

and Miller, 1989; Lee et al., 2003; O'Brien et al., 2002), a point at which the LVA current is 

largely inactivated in physiological conditions. However, at this point on the inactivation 

curve, even a small hyperpolarization, such as that mediated by GABA or glycine-gated 

chloride channels or K+ channels gated by GABAB receptor activation, will be sufficient to 

relieve the LVA channel inactivation so that depolarization into LVA channels’ activation 

range is able to trigger a low-threshold Ca2+ spike (LTS). Studies in amphibian retina 

suggest that this process is a major contributor to the rebound spiking of RGCs (along with 

contributions from HCN channels, below) (Mitra and Miller, 2007a, b), where Na+ spikes 

ride atop the LTS following cessation of a hyperpolarizing stimulus. Indeed, in RGCs 

recorded in adult mouse flat-mount retinas (4-8 week postnatal), Ca2+ imaging combined 

with patch-clamp recordings showed that Ca2+ influx was associated with rebound spiking 

(depolarization and spiking at the termination of a hyperpolarization) only in Off RGCs, but 

not On RGCs (Margolis and Detwiler, 2007; Margolis et al., 2010). This was highly 

sensitive to Ni2+, which is a strong blocker of LVA Ca2+ channels, but less effective at 

blocking HVA channels. Such rebound depolarization and spiking may serve as a 

thresholding mechanism to enhance post-synaptic responses and promote temporally precise 
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detection of changing light intensity (Mitra and Miller, 2007b) in a manner analogous to the 

phasic synaptic vesicle release at photoreceptor synapses (Jackman et al., 2009).

7.2.2 High voltage-activated (HVA) Ca2+ currents—HVA ICa have also been 

recorded from RGCs in multiple species and preparations and identified as L, P/Q, N, or R-

type (Guenther et al., 1994; Henderson and Miller, 2003, 2007; Kaneda and Kaneko, 1991a; 

Karschin and Lipton, 1989; Lipton and Tauck, 1987; Schmid and Guenther, 1996). L-type 

currents have been identified in RGCs based on their sensitivity to dihydropyridines and 

large single channel conductance (Guenther et al., 1994; Kaneda and Kaneko, 1991a; 

Karschin and Lipton, 1989; Schmid and Guenther, 1996). Other HVA currents in RGCs are 

sensitive to ω-conotoxin-GVIA, which is a strong blocker of N-type CaV2.2 channels 

(Guenther et al., 1994; Karschin and Lipton, 1989; Schmid and Guenther, 1996). There is 

also a component of the HVA current in RGCs that is insensitive to dihydropyridines, ω-

conotoxin, and ω-agatoxin-IVA (Guenther et al., 1994; Karschin and Lipton, 1989; Schmid 

and Guenther, 1996), possibly suggesting the presence of R-type currents (CaV2.3)

Immunofluorescence staining for L-type (CaV1.2 and CaV1.3), P/Q-type (CaV2.1) and N-

type (CaV2.2) channel α subunits has demonstrated their localization to distinct 

compartments of RGCs (Ahlijanian et al., 1990; Sargoy et al., 2014; Xu et al., 2002). L-type 

channels are found in RGC somata (identified by RBPMS staining, which is a selective 

marker for RGCs) (Rodriguez et al., 2014) and strongly expressed in unmyelinated RGC 

axons within the retina, while P/Q and N-type channels appear largely constrained to RGC 

somata (Sargoy et al., 2014). HVA channels α subunits typically complex with α2δ and β 
subunits that affect membrane localization and gating. While photoreceptor L-type channels 

(CaV1.4) associate with α2δ4 and β2 accessory subunits, α2δ3 and α2δ1 subunits have 

been localized to RGC somata in rodents (Farrell et al., 2014).

7.2.3 Ca2+ channels during development.—The density of ICa in RGCs increases 

throughout development, consistent with an increase in channel insertion into the plasma 

membrane. As discussed above, LVA channels appear to be downregulated throughout 

development suggesting that the increase in ICa density from birth to adulthood is the result 

of an increase in HVA channels. However, the relative proportion of ω-conotoxin and 

nifedipine-sensitive current is relatively stable once they appear around embryonic day 20 or 

21 in rats. The ω-conotoxin-sensitive current is ~50% of the total ICa at embryonic day 21, 

remains stable until eye opening, and declines to ~35% of the total ICa by adulthood. L-type 

currents make up ~10% of the whole-cell ICa around E21, ~20% throughout early postnatal 

period, and eventually settle at ~25% by adulthood. The residual ICa is toxin-resistant 

(Schmid and Guenther, 1996). T-type currents first appear around the same time as gap 

junction-mediated stage I retinal waves (Kerschensteiner, 2016; Schmid and Guenther, 

1996). Retinal waves are important for refinement of RGC projections to targets in the brain 

(Firth et al., 2005; Kerschensteiner, 2016). Stage II waves (P1-10 in mouse) are mediated by 

cholinergic synaptic transmission while stage III are glutamatergic (P10-14). The similar 

timing of retinal waves with the appearance and gradual reduction in LVA currents raises the 

possibility that they might play a role in supporting wave-associated bursting behavior in 

RGCs, although this has not been tested.
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7.2.4 Ca2+ channel function.—Action potential firing in myelinated axons triggers 

Ca2+ influx along the length of the axon (not just at the nodes of Ranvier). This does not 

appear to be the result of L-type channels, as Ca2+ influx along the axon is insensitive to 

nifedipine (Zhang et al., 2006). ω-conotoxin dramatically reduces action potential-triggered 

Ca2+ influx in neonatal rat optic nerves suggesting that N-type channels might instead play a 

major role (Sun and Chiu, 1999). In contrast, in unmyelinated RGC axons, L-type channels 

appear to contribute to depolarization-evoked calcium influx (Sargoy et al., 2014). The role 

for axonal Ca2+ influx is unclear, although it is may regulate axonal excitability by gating 

Ca2+-activated K+ or Cl− channels (Lev-Ram and Grinvald, 1986), which play important 

roles in spike frequency adaptation in neurons (Ha and Cheong, 2017). Additionally, 

autophosphorylation of CaM kinase II, a downstream effector enzyme for intracellular Ca2+ 

signals, alters spike propagation in the optic nerve (Partida et al., 2018).

While Na+ and K+ channels are key for changing membrane voltage and LVA Ca2+ channels 

contribute to the low-threshold spike and rebound spiking, HVA Ca2+ channels principally 

function to allow influx of Ca2+ so that it can act as a second messenger to mediate non-

electrogenic cellular behaviors such as contraction, secretion, enzyme activity, and gene 

expression. For example, Ca2+ influx through L-type Ca2+ channels is essential for 

triggering tonic glutamate release at photoreceptors, bipolar cells, and hair cell ribbon 

synapses, while P/Q-, N- and R-type channels allow Ca2+ influx for action-potential-

triggered release at most other CNS synapses. RGCs generally do not make intraretinal 

synapses. However, one exception is M1-type intrinsically photosensitive RGCs (ipRGCs), 

which have axon collaterals that are likely mediators of ipRGC glutamatergic synaptic 

output to DACs (Prigge et al., 2016; Zhang et al., 2008). ipRGC synaptic drive depends 

slightly on N-type channels as indicated by a modest inhibition (~30%) by ω-conotoxin. 

ipRGC-DAC synapses were insensitive to other L-, T-, R-, or P/Q-type blockers (Prigge et 

al., 2016). It is unclear what additional Ca2+ channel contributes at this synapse.

There is little firmly known about the Ca2+ channels that mediate synaptic release from RGC 

terminals at visual nuclei in the brain. In a RGC primary culture system in which RGCs 

form synapses with neighboring cultured neurons, Taschenberger and Grantyn used paired 

recordings and Ca2+ channel blockers to show that glutamate release from RGCs depends 

largely on N-type channels (~70% block of the post-synaptic current by ω-conotoxin) 

(Taschenberger and Grantyn, 1995). ω-agatoxin had no effect on glutamate release and 

release was slightly enhanced by an L-type blocker (nifedipine).

Glutamatergic output synapses of M1-type ipRGCs in the suprachiasmatic nucleus appear to 

depend on a combination of N-, P/Q-, T-, and R-type Ca2+ channels, without a contribution 

from L-type channels (Moldavan et al., 2006). RGC synaptic outputs to other visual brain 

nuclei presumably operate by a similar complement of presynaptic Ca2+ channel, although 

this has not yet been tested.

Modulation of presynaptic Ca2+ influx is a powerful means of regulating synaptic strength 

and this appears to occur by multiple mechanisms at RGC output synapses in both the SCN 

and dLGN. In the SCN, GABAB receptor activation reduces the amplitude of excitatory 

post-synaptic currents by inhibiting presynaptic Ca2+ channels (Moldavan et al., 2006). 
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GABAB receptors likewise inhibit synaptic transmission at retinogeniculate synapses in the 

dLGN as does activation of 5HT1 receptors (Chen and Regehr, 2003). Metabotropic 

glutamate receptors also alter retinogeniculate synaptic transmission, possibly by impinging 

on presynaptic Ca2+ influx (Govindaiah et al., 2012; Lam and Sherman, 2013).

Although HVA channels (especially non-L-type HVA channels) are important for RGC 

synaptic output, it is not clear what role HVA channels expressed in RGC somata and axons 

play in the retina. In M1 ipRGCs, L-type channels are responsible for most of the Ca2+ 

influx during melanopsin-mediated depolarization, a process which might contribute to 

adaptation of the melanopsin transduction cascade (Do and Yau, 2013). L-type channels are 

also important in coupling excitation to transcription via CaM/CaM kinase (Catterall, 2011; 

Simms and Zamponi, 2014). Such a process has not been explored in RGCs. Additionally, 

L-type channels play a role in Ca2+-dependent AMPA receptor trafficking associated with 

synaptic plasticity (Voglis and Tavernarakis, 2006). AMPA-type glutamate receptors in 

RGCs are subject to light-induced and intracellular Ca2+-dependent plasticity, although that 

process appears to rely on NMDA-type receptors (Jones et al., 2012). As described above, 

Ca2+ influx might be important in regulating spike generation and firing properties via 

activation of Ca2+-activated K+ channels in RGCs (Wang et al., 1998).

7.3 K+ channels

7.3.1 Voltage-gated K+ channels—Voltage-clamp recordings from isolated adult rat 

RGCs revealed several distinguishable type of voltage-gated K+ currents (Lipton and Tauck, 

1987; Lukasiewicz and Werblin, 1988; Reiff and Guenther, 1999; Rothe et al., 1999). These 

include a TEA-sensitive, sustained delayed rectifier current (IKDR), and a 4-AP-sensitive, 

transient A-type K+ current (IKA) (Lipton and Tauck, 1987; Reiff and Guenther, 1999). 

Several studies in rodent and amphibian RGCs have identified an additional TEA- and 4-

AP-insensitive K+ current with especially slow inactivation kinetics (Lukasiewicz and 

Werblin, 1988; Reiff and Guenther, 1999; Sucher and Lipton, 1992). Voltage-gated K+ 

channels are necessary for proper membrane repolarization during the action potential. This 

is most clearly the case for delayed-rectifier currents in the classical Hodgkin-Huxley action 

potential model. A-type currents, however, because of their voltage-dependent inactivation, 

play important roles in regulating inter-spike timing and spike initiation (Hille, 2001).

There are >15 different isoforms of K+ channels responsible for IKDR and IKA (Alexander et 

al., 2017c). Several different K+ channels have been localized to RGCs using 

immunofluorescence techniques. KV1.2, for instance, is present in the axon initial segment, 

in the same general region as NaV1.6, and absent from the slightly more proximal NaV1.1-

enriched region (Van Wart et al., 2007). It is also expressed strongly in unmyelinated RGC 

axons near the optic nerve head, where it co-localizes with NaV1.2 (Boiko et al., 2001). 

KV1.2 is also present in regions of optic nerve adjacent to the nodes of Ranvier (Boiko et al., 

2001; Rasband et al., 1999). KV1.1, KV1.2, and KV1.3 are also found in RGC somata 

(Koeberle and Schlichter, 2010; Koeberle et al., 2010). KV4.2 channels which carry IKA 

have been identified in a subpopulation of RGCs in adult and developing mouse retina (Qu 

et al., 2009).
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Whereas a developmental increase in Na+ current density is fairly consistent across species 

and corresponds to documented developmental increases in RGC excitability, developmental 

shifts in K+ currents are less well-defined (Sernagor et al., 2001). In mouse, for instance, 

both IKDR and IKA were largely unchanged from late embryonic through postnatal stages 

(Rothe et al., 1999). In rat, however, both K+ current types appear to increase (Reiff and 

Guenther, 1999) while in cats, IKA decrease and IKDR increase in amplitude (Skaliora et al., 

1995). In addition to the changes in current densities, these developmental changes also 

accompany shifts in current kinetics and voltage-dependence (Robinson and Wang, 1998; 

Rothe et al., 1999; Skaliora et al., 1995).

7.3.2 Other K+ channels—Beyond delayed rectifier and A-type K+ currents, several 

other K+ channels have been identified in RGCs. A qRT-PCR and immunofluorescence 

analysis has shown the presence of numerous two-pore K+ channels (K2P) in RGCs 

including TASK-1, TREK-1, TWIK-1, TWIK-2 and TWIK-3 (Hughes et al., 2017). As 

discussed in section 1.1.2, K2P channels are leak K+ channels and therefore play important 

roles in setting RGC membrane potential. There appears to be some differences in 

expression of these channel genes in different RGC populations, as identified by gene 

clustering analysis (Rheaume et al., 2018). Varying levels of each K2P channel might help 

set unique resting potentials for distinct populations of RGCs (Hu et al., 2013; O'Brien et al., 

2002; Schmidt and Kofuji, 2009).

Ca2+-activated K+ currents are important for coupling changes in intracellular Ca2+ to 

changes in neuronal spike patterns. Since Ca2+ entry and intracellular sequestration is 

relatively slow, the buildup of intracellular Ca2+ during a spike train can prolong the gating 

of Ca2+-activated K+ channels. This phenomenon regulates the both the fast after-

hyperpolarization that occurs after a spike and a slow after-hyperpolarization that follows a 

train of spikes. Ca2+- activated K+ currents have been recorded from RGCs in trout, ferret, 

rat, and salamander and pharmacology studies indicate that both BK and SK channels 

contribute to these currents (Henne and Jeserich, 2004; Henne et al., 2000; Lipton and 

Tauck, 1987; Lukasiewicz and Werblin, 1988; Wang et al., 1998). SK2 channels have been 

localized to RGCs (Klöcker et al., 2001). Inhibition of either channel type increases RGC 

excitability (Wang et al., 1998) and SK channels appear to mediate an adenosine-evoked 

RGC hyperpolarization (Clark et al., 2009).

7.4 HCN channels

Like those of other preparations, including photoreceptors, HCN channels in RGCs are 

gated by hyperpolarization and are permeable to cations with a ~2- to 4-fold preference for 

K+ over Na+ (Wahl-Schott and Biel, 2009). This ion selectivity gives the resulting Ih an 

equilibrium potential of ~−20 mV so that gating of HCN channels in their activation range 

has a depolarizing influence. As a result, HCN channels in neurons are thought to play a role 

in setting the resting membrane potential, underlie rebound depolarization, and regulate the 

temporal summation of synaptic inputs by altering membrane resistance at hyperpolarized 

potentials. In intracellular recordings, many RGCs show a pronounced depolarizing voltage 

“sag” in response to hyperpolarizing current injection (Hu et al., 2013; O'Brien et al., 2002; 

Van Hook et al., 2012). A similar sag is seen in intra-axonal recordings from the rat optic 
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nerve (Eng et al., 1990). Voltage-clamp recordings in mammalian RGCs have identified and 

characterized Ih, showing that it is activated at quite hyperpolarized potentials (approx. −80 

to −100 mV) (Lee and Ishida, 2007; Van Hook and Berson, 2010).

Contributions from Ih vary by RGC class. In recordings of cat RGCs, the depolarizing sag 

was more pronounced in some RGC classes than others and absent from alpha and possibly 

lambda RGCs (O'Brien et al., 2002). In melanopsin-expressing RGCs in mouse, all five 

classes of ipRGCs display a voltage sag, but it varies in amplitude (Hu et al., 2013). In 

voltage-clamp recordings, Ih has been identified in M1-type ipRGCs in rats identified by 

retrograde labeling from tracer injection into the suprachiasmatic nucleus (Van Hook and 

Berson, 2010). Ih has also been recorded from M2 and M4 (On sustained αRGC)-type 

ipRGCs from mouse (Jiang et al., 2018).

There are four known HCN channel isoforms (HCN1-4) that vary in their kinetics and 

voltage dependence (Ludwig et al., 1998; Moosmang et al., 2001; Santoro et al., 1998; 

Stieber et al., 2005). HCN1 and HCN4 have been identified by immunofluorescence in 

retrolabeled RGCs (to avoid accidentally counting ACs displaced in the RGC layer) 

(Stradleigh et al., 2011). Some RGCs are unlabeled by either HCN1 or HCN4 antibodies, 

while some express a mix of both channels in varying proportions. This labeling pattern is 

also consistent with physiology. The soma size and dendritic stratification (both measures 

used to differentiate RGC classes) of HCN1 and HCN4-immunopositive and immuno-

negative RGCs varies, indicating that many different RGC populations express HCN 

channels.

In cases where a single neuron expresses multiple Ih channel subtypes, the whole-cell Ih 

takes on properties of both expressed isoforms. In co-immunoprecipitation assays with 

retinal plasma membrane preparations, HCN1 and HCN4 appear to interact physically with 

each other, suggesting that they can function as HCN1/HCN4 heteromers (Stradleigh et al., 

2011). In M1-type ipRGCs, Ih activation voltage is especially hyperpolarized (threshold at ~

−75 mV) and the current is quite slow (activation time constant of ~900 ms at −120 mV) 

(Van Hook and Berson, 2010), consistent with the properties of HCN4. Other studies of Ih in 

RGCs have indicated that Ih is comprised of two kinetic components, with a fast activation 

time constant of ~100 ms and a slower component with a time constant of ~800-900 ms (Lee 

and Ishida, 2007; Stradleigh et al., 2011).

It is likely that a more extensive analysis of RGCs by subtype using traditional anatomical 

parameters (i.e., soma size, dendritic stratification, Sholl analysis, dendritic field diameter) 

will reveal subtype-specific patterns in HCN channel expression and Ih properties. Indeed, 

single-cell transcriptomics work shows that different HCN channel isoforms are enriched in 

different putative RGC populations (identified by clustering based on gene expression 

profiles) (Rheaume et al., 2018).

Immunostaining evidence shows that HCN channels are largely localized to RGC somata 

and axons, with some possible staining in proximal dendrites (Stradleigh et al., 2011). HCN 

channels might be expressed in more distal dendrites and simply escape detection due to low 

protein level, so this result does not necessarily indicate that they are absent from RGC 
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dendrites. HCN1 and HCN4 staining has also been detected in dendrites of RGC primary 

cell cultures (Abbas et al., 2013). Interestingly, HCN4 colocalizes and coimmunoprecipitates 

with Thy1, a glycophosphatidylinositol-anchored cell surface protein expressed in RGC 

somata (Partida et al., 2012). Thus, HCN channels appear to be most highly concentrated in 

RGC somata. Substantial staining of HCN channel isoforms in the IPL is likely to arise 

principally from labeling of bipolar cell axons and synaptic terminals (Ivanova and Müller, 

2006; Müller et al., 2003).

These results suggest that in RGCs, HCN channels principally act to shape firing patterns 

and integration of synaptic inputs in the soma rather than shaping individual synaptic 

potentials in the dendrites. Contrary to this, however, a study using sequential uncaging of 

glutamate along the length of an RGC dendrite has shown that Ih contributes to directional 

summing of inputs by enhancing sequential responses to stimuli as they move away from the 

RGC soma (Abbas et al., 2013). Such a mechanism might be a cell-autonomous process 

allowing for the detection of looming motion by RGCs.

More in keeping with a role in regulating spiking behavior, Ih in amphibian RGCs has been 

shown to contribute to rebound depolarization and spiking after the cessation of a 

hyperpolarizing stimulus (Mitra and Miller, 2007a). Some evidence from rat ipRGCs hints at 

a similar role in mammalian RGCs (Van Hook and Berson, 2010). HCN channels also play a 

role in regulating RGC membrane potential and excitability and apparently contribute to the 

effects of dopamine on excitability (but see (Hayashida et al., 2009)). Blockade of HCN 

channels in M1 ipRGCs does little to affect resting membrane potential and does not alter 

spiking evoked by melanopsin phototransduction, making it unclear what role Ih plays in 

that class of RGCs (Van Hook and Berson, 2010). Recall that HCN channels can also 

modulated by cyclic nucleotides such as cAMP. Activation of D1-type dopamine receptors 

in RGCs leads to an increase in intracellular cAMP production, which can in turn modulate 

RGC excitability and resting membrane potential by altering the voltage-dependence of Ih 

activation (Chen and Yang, 2007) (but see (Hayashida et al., 2009)).

An especially novel role for HCN channels as an endpoint for melanopsin-based 

phototransduction has recently been demonstrated for M2 and M4-type ipRGCs (Jiang et al., 

2018). While M1-type ipRGCs rely largely on a Gq/PLC cascade that gates TRPC6/7 

channels (Perez-Leighton et al., 2011), Jiang and colleagues have shown that melanopsin-

activated photocurrents that linger following TRPC6/7 knockout in M2 and M4 cells were 

almost entirely blocked by the HCN channel blocker ZD7288 and severely reduced in cells 

transfected to express a dominant-negative HCN channel (Jiang et al., 2018). This is difficult 

to reconcile, however, with another recent study showing that M4 transduction culminates in 

the closure of leak K+ channels, as evidenced by voltage-dependence (reversal at EK) and 

barium block (which will not substantially affect Ih) of melanopsin-mediated responses 

(Sonoda et al., 2018). A very small component of the M1 photocurrent also appears to result 

from HCN channel gating (Jiang et al., 2018).

7.5 Summary

In many respects, the ion channel complement in RGCs is typical of other spiking neurons. 

The distribution of ion channels in different compartments of RGCs is summarized in Table 
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3 and its associated diagram. RGCs possess voltage-gated Na+ channels (predominantly 

NaV1.6 in nodes of Ranvier, NaV1.2 in unmyelinated axon, and NaV1.1 and 1.8 in the soma 

and dendrites) as well as voltagegated K+ channels that give rise to delayed rectifier and A-

type K+ currents. INa and IKDR are responsible for the rising and falling phase of the action 

potential while IKA is important in shaping spike timing. Dendritic action potentials play 

important computational roles including motion detection and amplification of post-synaptic 

potentials. N-, P/Q- and R-type voltage-gated Ca2+ channels are important for synaptic 

output, either at intraretinal synapses made by M1 ipRGC axon collaterals or at output 

synapses in visual nuclei of the brain, although this has not been firmly established at 

outputs other than those made by ipRGCs in the SCN. T-type ICa in dendrites and somata 

shape spiking behavior. The role of L-type and N-, P/Q- and R-type ICa in RGC somata are 

unclear, although they likely shape spiking behavior by gating Ca2+-activated K+ currents.

RGC receptive field centers are comprised of the pooled excitatory inputs arising from the 

population of presynaptic bipolar cells and fine substructure can be revealed using 

spatiotemporal white noise or naturalistic scene stimuli (Brown et al., 2000; Freed and 

Sterling, 1988; Freeman et al., 2015; Wienbar and Schwartz, 2018). Postsynaptic processes 

such as spike generation in dendrites and influences of voltage-gated conductances on local 

membrane properties are likely to influence spatial and temporal summation of synaptic 

inputs at these individual sub-regions of RGC receptive fields (Ujfalussy et al., 2018). This 

would be a fruitful avenue for future research.

A major open question concerns how and whether differential expression of ion channels is 

responsible for shaping the unique response properties of different RGC classes. There are at 

least 30 functionally-distinct classes of RGC identified in mouse retina, which is currently 

the principal animal model used for probing RGC function. Evidence from a variety of 

species indicates that the spiking properties of RGCs are heterogeneous (Hu et al., 2013; 

Kaneda and Kaneko, 1991b; O'Brien et al., 2002; Schmidt and Kofuji, 2009; Tabata and 

Kano, 2002). For instance, M1-type ipRGCs in mice are unable to maintain a high firing 

frequency and instead rapidly enter depolarization block (where Na+ channel inactivation 

prevents further regenerative spiking). In contrast, other ipRGC types can sustain much 

higher firing frequencies (Hu et al., 2013; Schmidt and Kofuji, 2009). This implies that 

different RGC classes differ in their complement and/or densities of Na+ and K+ channels, 

which would be consistent with the documented diversity of expression patterns seen among 

RGCs for HCN, Ca2+, and other channel types. There can be considerable variability even 

within distinct RGC subpopulations. For instance, M1-type ipRGCs display a strikingly 

heterogeneous range of biophysical parameters and melanopsin-driven light responses, 

hinting at variable ion channel expression and/or regulation in these RGCs (Emanuel and 

Do, 2015; Emanuel et al., 2017; Milner and Do, 2017). Studies of gene expression patterns 

along with exploration of the unique channel properties in distinct RGC classes and, in some 

cases, within RGC classes are needed to clarify how the diversity of channel expression and 

properties contribute to the unique signaling roles of different RGC populations.
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8. Conclusions

Recent years have seen a dramatic expansion in the recognized number of individual cell 

types in the retina. In this review, we have outlined our current understanding of the 

numerous subtypes of voltage- and Ca2+-gated ion channels present in many of these 

different retinal neurons. In addition to differences in ion channel distributions between 

species, it is clear that there are notable differences between major cell types and even 

differences among subtypes of the same cell. A major remaining challenge is to understand 

how this diversity of ion channel complement across different populations of retinal neurons 

contributes to visual processing performed as information is relayed through the retinal 

network and conveyed to the brain. What is the role of the particular ion channel subunit 

combinations and their localization in each of these cells in shaping their unique response 

properties? Can we identify specific ion channel finger-prints for each type of cell? How 

does ion channel expression change in response to changes in illumination, metabolism, or 

disease? Answers to these questions will come to light as the field develops a more complete 

wiring diagram and probes the function of the retinal network using a combination of 

computational, molecular, and physiological approaches. Electrophysiological recordings 

remain the dominant approach for studying the membrane currents and voltage responses of 

neurons. However, these techniques are increasingly supplemented by molecular techniques, 

imaging with activity-dependent dyes, pharmacological tools, genetic elimination of target 

proteins, and genetic introduction of mutant proteins, sensor proteins, DREADDs, or 

optogenetic tools. This diverse and powerful array of experimental tools provides an 

opportunity to unravel the mysteries of signal transmission in the retina. Along with a 

detailed understanding of the basis for single cell properties in different cell types, these 

experiments are sure to reveal new principles concerning the strategies used by the nervous 

system to shape activity in response to a dynamically changing visual environment.
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Abbrevations:

(IKA) A-type K+ currents

(AC) Amacrine cell

(ICa) Ca2+ currents

(CaM) Calmodulin

(CBC) Cone bipolar cell

(CRH) Corticotropin releasing hormone

(IKDR) Delayed rectifier K+ currents

(DSGC) Direction-selective ganglion cells
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(DAC) Dopaminergic amacrine cell

(HVA) High-voltage activated

(Ih) Hyperpolarization-activated current

(IPL) Inner plexiform layer

(ipRGC) Intrinsically photosensitive retinal ganglion cell

(IKIR) Inwardly rectifying K+ current

(LVA) Low-voltage activated

(OPL) Outer plexiform layer

(PKA) Protein kinase A

(RGC) Retinal ganglion cell

(RBC) Rod bipolar cell

(SAC) Starburst amacrine cell

(TEA) Tetraethylammonium

(NaV) Voltage-gated Na+
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Highlights:

• There are many types of voltage- and calcium-gated ion channels.

• There are almost 100 subtypes of retinal neurons that differ in their ion 

channels.

• Ion channel type and distribution shape responses of retinal neurons.

• Ion channel dysfunction can contribute to retinal disease.
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Figure 1. 
Diagram of the ion channel distribution in a mammalian rod. HCN1, homomeric KV2.1 and 

heteromeric KV2.1/KV8.2 channels are distributed throughout the inner segment. CaV1.4 

channels in a complex with β2a and α2δ4 subunits are clustered beneath synaptic ribbons. 

Ano2 channels are distributed more diffusely in the synaptic terminal membrane. See text 

for details.
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Table 1.

Ion channels in bipolar cells. Summary of voltage-gated ion channel expression in specific classes of bipolar 

cells in mammalian and non-mammalian retina. Evidence for expression is based on immunohistochemical 

and electrophysiological findings (see text for details). Na+ channels are preferentially expressed in On and 

Off transient, cone-driven bipolar cells. The same appears true for HCN channels, although the differences in 

expression are not as dramatic. Kvx refers to unidentified K+ channel isoforms, as no studies to date have 

molecularly characterized K+ channels in cone bipolar cells.

Transient/
sustained sustained sustained transient transient sustained

Na+ channels – –
Type X: ++
Type 5-1: −
Type 5-2: +

Type 3a: ++
– Mb1: −

CBC: +

Ca2+ channels
L-Type
T-Type L-Type L-Type L-Type

T-Type L-Type Mb1: L-Type,

K+ channels
Kv1.2
Kv1.3 Kvx Kvx Kvx Kvx

BK,
Kv1.2, Kv1.3
A-type

HCN channels HCN2 HCN2

HCN1,3,4
Type X: ++
Type 5-1: +
Type 5-2: ++

HCN4 – ?
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Table 2.

Summary of ion channels in interplexiform cells and different types of amacrine cells.

Salamander
ACs

AII A17 Starburst Dopaminergic Widefield
CRH

Interplexiform
cells (IPCs)

Na+ 

channels
INa (most ACs) INa(NaV1.1) Weak 

INa

TTX-
insensitive 
NaV1.8

TTX-sensitive and 
insensitive

INa (CRH2, 3)
No INa 

(CRH1)

INa

Ca2+ 

channels
N- & L-type L-type 

(CaV1.3)
L-type N, P/Q L- (CaV1.2), N- 

(CaV2.2), P/Q 
(CaV2.1), & R- 
(CaV2.3) type

? L-type

K+ 

channels
IKDR

IKA

IKDR

IKA

IKDR

IKA

BK

IKDR (mostly 
Kv3.1-3.2)

IKDR (Kv1.1, 1.3, 2.1)
IKA (KV4.3)
BK, SK

? IKDR

IKA (some IPCs)
BK (mouse)

HCN 
channels

Ih ? Ih (mouse)
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Table 3.

Ion channels in retinal ganglion cells (RGCs). The distribution of multiple types and isoforms of voltage-gated 

ion channels in distinct RGC compartments is summarized in the table and illustrated in the diagram. See text 

for details.

Synaptic
terminal

Nodes of
Ranvier

Unmyelinated
axon

Axon initial
segment

Soma Dendrites

Na+ channels NaV1.6, also 
1.2, 1.8

NaV1.2 NaV1.6 (distal segment)
NaV1.1(proximal 
segment)

NaV1.1, 1.8 NaV1.1, 1.8

Ca2+ channels N, P/Q, R-type N-type L-type L, N, P/Q-type LVA (Off cells)

K+ channels Kv1.2 KV1.2 (distal segment) KV1.1., 1.2, 
1.3, 4.2, 4.3, 
SK2

Kv4.2, others?

HCN channels HCN1, 4
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