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Purpose: The purpose of this study is to develop an accurate and reliable dose volume histogram
(DVH) prediction method for external beam radiation therapy plans with multiple planning target vol-
umes (PTVs).
Materials and methods: We present a novel DVH prediction workflow, including new features and
a modeling methodology, that makes better use of multiple PTVs: (a) We propose a generalized fea-
ture to characterize the geometric relationship of organ-at-risk (OARs) with respect to two or more
PTVs with different prescribed dose levels; (b) We incorporate a novel data augmentation method to
improve the data distribution in the feature space; (c) A similarity metric that leverages such informa-
tion is subsequently used to select a subset of similar cases from the training dataset for model build-
ing; (d) Finally, a DVH prediction model is trained with these selected cases. To evaluate this new
modeling workflow, we used 120 head and neck (HN) cases to tune the model, and used a separate
dataset consisting of 148 cases for validation. The proposed model has been compared with the con-
ventional knowledge-based model in terms of model prediction accuracy, which was measured by
the root mean squared error (RMSE) between the predicted DVHs and the actual clinical plan DVHs.
Furthermore, 25 randomly selected plans were replanned guided by the proposed model and evalu-
ated against clinical plans using clinical evaluation criteria.
Results: The proposed modeling workflow significantly improved DVH prediction accuracy for
brainstem (P < 0.001), cord (P < 0.001), larynx (P = 0.004), mandible (P < 0.001), oral cavity
(P = 0.011), parotid (P < 0.001) and pharynx (P = 0.001). Cases replanned with the guidance of the
proposed model spared OARs significantly better by clinical evaluation criteria. The replanned cases
showed a 15% increase in the number of satisfied criteria, compared with clinical plans.
Conclusions: The proposed modeling workflow generates DVH predictions with improved accuracy
and robustness when multiple PTVs exist in a plan. It has demonstrated that the improvement in
the DVH prediction model translates into better plan quality in knowledge-based planning. © 2019
American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13679]
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1. INTRODUCTION

During clinical treatment planning, planners seek to
achieve optimal dose distributions by interacting with treat-
ment planning systems iteratively. This process heavily
relies on planners’ prior experience and is often time con-
suming.1–4 Knowledge-based planning (KBP) utilizes avail-
able information in previous cases, and predicts best
achievable dose volume histograms (DVHs) based on
anatomical information of the current patient. Numerous
KBP methods have been proposed in the last few years,
including library approaches,5–9 neural network-based voxel
prediction approaches,10 DVH regression-based methods,3,11

and other parametric approaches.12 Of all the previously
proposed approaches, the DVH regression-based method is

the most widely used due to its simplicity and robustness,
and one version of this approach has been commercialized
as RapidPlanTM (Varian Medical Systems, Palo Alto, CA,
USA).3,13 In some validation studies, RapidPlanTM has
shown to be an effective treatment planning tool as well as
an excellent quantitative plan quality evaluation tool.4,14–25

However, most of the existing KBP methods assume that
only a single planning target volumes (PTV) exists in a
plan. The models3,7,9,24 can be applied to cases with multi-
ple PTVs with the assumption that the features extracted
for each PTV separately are sufficient in representing the
dose distribution. This assumption does not hold true for
complicated treatment sites such as head and neck, for
which the relative shape distribution of multiple PTVs have
to be accounted for during the modeling process. Modeling
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the differences in location, shape, and prescribed dose
levels of multiple PTVs in the simultaneous integrated
boost (SIB) plans has the potential to improve the perfor-
mance of predictive models for these cases.

In this study, we propose a novel multidimensional feature
map — a generalized distance-to-target histogram (gDTH) —
that captures the geometric relationship of an organ-at-risk
(OAR) with multiple PTVs and we implement a two-dimen-
sional (2D) version of this concept to model SIB plans that
typically involve two PTVs. We improve upon the state-of-
the-art model for DVH predictions3 by coupling a localized
regression methodology with this new feature representation.
We also propose a data augmentation method to make effec-
tive use of available data and improve the feature space distri-
bution of the available dataset. For comparison, we include
the original DVH regression method, which models two PTV
plans by utilizing two separate sets of features corresponding
to respective PTVs. The two competing models are evaluated
in terms of DVH prediction accuracy for anonymized HN
treatment plans.

2. MATERIALS AND METHODS

2.A. DVH prediction model

One approach to knowledge-based treatment planning is a
regression-based DVH prediction model,3,11 which uses fea-
tures that represent the geometrical and dosimetrical relation-
ships of PTVs and OARs and model the variation of OAR
DVHs as a function of these features. The features include
principal component scores (PCS) of the distance-to-target
histograms (DTH), the fractions of OAR volumes overlap-
ping with PTVs, the fractions of OAR volumes outside of the
irradiated volume, and the absolute volumes of OARs, etc.
Note that the DTH is different from the overlap volume his-
togram previously proposed by Kazhdan el al.8 in that non-
Euclidean distance is used to better correlate the distance
with the dose falloff, as explained in Zhu et al.11 The model
is formulized as

Ŵ ¼ argminW Y � XWk k2Fþk Wk k1;1
n o

; (1)

where X denotes anatomy feature vectors, Y denotes the PCS
of DVHs in the training set, and W denotes regression coeffi-
cients.

A simplistic extension to multiple PTVs is by expanding
the feature vector X in Eq. (1) to include additional sets of
features corresponding to additional PTVs. In two PTV
cases, the first set of features represents the effect of the pri-
mary PTV on OAR DVHs, and the second set represents the
effect of the boost PTV. Formally, the regression coefficient
Ŵ2PTV can be formulized as follows:

Ŵ2PTV ¼ argminW2PTV Y � X2PTVW2PTVk k2Fþk W2PTVk k1;1
n o

;

(2)

where

X2PTV ¼ Dpri

D
Xpri;

Dbst

D
Xbst

� �
; and W2PTV ¼ Wpri

Wbst

� �
:

In Eq. (2), Dpri, Dbst, and D denote prescription dose to
the primary PTV, to the boost PTV, and the total prescription
dose, respectively. One of the drawbacks of such extension is
that the regression coefficients do not scale well with primary
and boost PTV prescription dose ratio changes. Also, the
model implicitly assumes geometric relations of primary and
boost PTVs remain consistent from one case to another,
which is often not the case for treatment sites like the head
and neck. This scaling scheme is particularly problematic for
HN cases when primary and boost PTVs vary in shape/vol-
ume as well as in prescription dose ratio. For instance, if the
boost PTV is more than 5 cm from an OAR then in principle
it should not affect the predicted OAR DVH, but since we fit
the whole training set with a linear model, some features
corresponding to boost PTVs will still contribute to the pre-
diction.

2.B. Generalized distance-to-target histogram

We propose a multidimensional map, referred in this paper
as a gDTH, to represent the geometric variations of an OAR
to multiple PTVs. In this paper, we apply this concept to HN
cases with primary and boost PTVs and thus will focus on
the 2D version of this concept. Higher dimensional gDTHs
can be developed similarly for cases with more than two
PTVs. We use the same distance metric as defined in the
original KBP work.3 This metric quantifies the distance of
OAR voxels to PTV surfaces based on dosimetric effects.
Therefore, distances from OAR voxels outside of the trans-
verse slices that encompass the PTV are assigned larger val-
ues. We shall refer to this distance metric as effective target
distance (ETD) in the remainder of the paper. We define an
element of a gDTH matrix as

Gij ¼ Number of voxels withd1\d ið Þ; d2 � d1\d jð Þ
Number of voxels n heOAR

;

where d1 and d2 denote distances from a voxel to primary and
boost PTVs, respectively. Gij is the fraction of the OAR vol-
ume with ETD to the surface of the primary PTV smaller
than d(i), and effective target distance to boost PTV surface
smaller than d1 + d(j). To generate a full gDTH for an OAR,
we first calculate d1 and d2 for all voxels inside the OAR and
then sort d1 and d2 - d1 into discrete bins on a 2D map.

The rightmost column and bottom row of the matrix Gij

are capped at infinity to account for all OAR voxels more
than a certain distance away from the PTV surface. The right-
most column of a gDTH is equivalent to the DTH associated
with the primary PTV. In this study, the size of distance bins
d(i) and d(j) is set to 1 mm. The dimensions of gDTHs are
set to 100 9 20. Figure 1 shows example gDTHs with phan-
toms cases. Contours of PTVs and OARs are generated using
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Varian Eclipse Scripting API.26 In the figure, red segments
denote boost PTVs; red contours denote primary PTVs; and
brown and blue segments denote OARs. The colored maps
are gDTHs. In Figs. 1(a)–1(c) and Figs. 1(g)–1(i), the color
maps only vary in the vertical direction, which represents the
distance distribution of OAR relative to both PTVs. Figures
1(d)–1(f) illustrates the variance of gDTHs with respect to
primary PTVs, with the relative spatial relationship between
the boost PTV and the OAR stay unchanged. Example
gDTHs of clinical HN cases are shown in Fig. 2, in which the
rows represent three cases with different geometrical relations
between OARs (larynx in this figure) and primary and boost
PTVs. As shown, the shape variation cannot be effectively
captured by any single-PTV features. The gDTH feature
clearly demonstrates its ability to differentiate such geometric
variances.

Note that the assumption made in the feature extraction
process is that boost PTV voxels are a subset of primary PTV
voxels. For a case with separate PTVs with different prescrip-
tion doses, the union of the PTV voxels is equivalent to the
primary PTV in terms of planning, and the PTV with higher
prescription dose is treated as the boost PTV.

2.C. Modeling with a gDTH-based similarity metric

To take full advantage of the proposed gDTH feature, we
have incorporated a similarity metric that measures the geo-
metrical similarities of OARs with respect to multiple PTVs.
The first term is the Frobenius norm of the differences
between the gDTHs of two cases. The same distance distribu-
tion alone does not guarantee the same dose distribution, con-
sidering the prescription doses to primary PTVs and boost
PTVs may vary from patient to patient. In our institution, for
instance, there are several commonly used primary/ boost
dose prescriptions for HN treatment, such as 44 Gy/70 Gy,
50 Gy/60 Gy. To account for such a variation, we introduced
a second term to represent the dose ratio similarity and
defined the similarity metric as:

gDTHtarget � gDTHref

�� ��2
F
þk

dtarget pri
dtarget bst

� dref pri

dref bst

� �2

; (3)

where gDTHtarget and gDTHref denote the gDTH of the
target plan and that of the plan being referenced from
the database, and k is a balancing factor empirically
tuned to match the mean values of the first term and the

FIG. 1. Illustrations of the proposed gDTH feature with phantom data. (a)–(i): Nine phantom set up scenarios, with PTVs and OARs designated as coplanar
spheres (see text for details). Red contours represent primary PTVs; red solid segments represent boost PTVs; and brown and blue segments represent OARs.
Corresponding gDTHs are shown for each phantom case as two-dimensional color maps. [Color figure can be viewed at wileyonlinelibrary.com]
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second term in the training dataset, and d denotes pre-
scription dose. In our experiments, k was selected as

dtarget pri
dtarget bst

� dref pri
dref bst

� �2.
gDTHtarget � gDTHref

�� ��2
F
, which is the

ratio of the two square differences averaged over the
training set.

With this similarity metric, the k-nearest neighbors (kNN)
search then selects a subset of training cases that resemble
the validation case. We choose to reference k nearest neigh-
bors because (a) kNN is a known robust nonparametric
regression method when k is properly selected and (b) kNN
referencing yields similar plans we can model with reduced
model complexity. The selected subset is subsequently used
to build a DVH prediction model. T-distributed statistical
neighboring embedding (t-SNE)27 is used to visualize this
high-dimensional feature space and to justify similarity met-
ric measurements on the feature space distribution. T-SNE
converts high dimensional Euclidean distances to conditional
probabilities and maps high dimension data to low dimension
while preserving local structures of the datasets. A visualiza-
tion of the proposed feature map of a dataset is shown in
Fig. 3. Figure 3(a) shows a 2D t-SNE map of the left parotid
gDTHs of the 120-case training dataset in this study (the red
and blue dots). Figure 3(b) is a validation case randomly

picked to demonstrate the effectiveness of the proposed fea-
ture at differentiating cases with different OAR-PTV shape
distributions. The blue dots on the map [Fig. 3(a)] are the
cases selected by the similarity metrics to build the model to
predict the parotid DVH of Fig. 3(b) (the validation case),
while the red dots are the cases excluded from the modeling.
Figures 3(c)–3(f) further show the PTVs and left parotid ana-
tomies of the selected (3f) and unselected (3c–e) cases, and
their respective locations on the 2D t-SNE map are indicated
by the arrows. As shown, 3(b) and 3(f) are determined by Eq.
(3) as similar in features, even though their PTVs (especially
boost PTV) vary significantly in size and location. Previ-
ously, the modeling of head and neck treatment plans require
manual data stratifications. For instance, ipsilateral and con-
tralateral parotids have to be modeled separately,28 and treat-
ment plans should be categorized by subsites before model
training. The proposed gDTH feature effectively separates
cases with different geometries in a nonlinear fashion, and it
is no longer necessary to stratify data.

2.D. Data selection and augmentation

With IRB approval, we retrospectively retrieved and anon-
ymized 268 HN cases for model training and validation. We
selected optimal features (the first two PCS of DTH relative
to the primary PTV, the fraction of OAR volume overlaps
with PTV, the fraction of OAR volume not located in the
same slices of the primary PTV) and the number of nearest
number cases (30) based on the 120 cases reserved for model
tuning to avoid positively biasing our validation results. The
model performance was tested with the remaining 148 cases.

Head and neck treatment plans have high interpatient spa-
tial variability, especially considering the fact that the boost
PTVs (i.e., GTVs) from various subsites are located in differ-
ent regions and that the OARs also vary significantly from
patient to patient. Therefore, to successfully train a reliable
KBP model for head and neck treatments, a large number of
treatment plans is required. However, the treatment plans
available for training purposes is limited. To make efficient
use of the training cases and effectively increase the training
dataset, we here present two data augmentation methods for
our modeling process. Both methods utilize single-PTV cases
and the primary plans of multiple PTV cases as the means to
synthesize gDTHs. Figure 4 shows the overall workflow of
the model training and validation process with data augmenta-
tion. First, we anonymized and exported both sequential boost
treatment plans and single-PTV plans for head and neck treat-
ments from our clinical database. We then utilized the primary
PTV plans and the single-PTV plans to create additional SIB
data via data augmentation. Subsequently, a KBP model was
trained with the augmented data and a fraction of the plan
sum data. At last, we validated the model with the remaining
plan sum data. We used fivefold cross-validation with the
dataset containing 148 cases. Therefore, the workflow shown
in Fig. 4 was effectively repeated five times with different par-
titions of the dataset. As a result, every case in the dataset is
used in validation dataset once, and used in the training

FIG. 2. Larynx gDTHs of three example HN cases. Transverse and coronal
views of the structures are shown. Yellow contours, red segments, and orange
segments are larynxes, primary PTVs, and boost PTVs, respectively. Corre-
sponding gDTHs are shown for each phantom setup case as two-dimensional
color maps. [Color figure can be viewed at wileyonlinelibrary.com]
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dataset four times. Note that no model adjustment was made
after the model-tuning step, and the cross validation solely
served the purpose of final model quality evaluation. The
results of the cross validation are reported in Section 3.

2.D.1. Data augmentation type A

The first data augmentation method originates from an
intrinsic property of gDTH. By definition, the rightmost col-
umn of gDTH is equivalent to the DTH associated with

primary PTV. In some cases, certain OARs are only affected
by primary PTVs because the ETDs to the boost PTVs are
more than 5 cm larger than the ETDs to primary PTV. One
such example is shown in the top row of Fig. 5. Such a shape
distribution is most common for brainstems and parotids. To
simulate such cases, we scale OAR DVHs to the various com-
mon clinical dose ratios — for example, 44 Gy/70 Gy,
50 Gy/60 Gy, and generate zero filled gDTHs with only the
rightmost columns remain unchanged from the original cases.
We replicate the whole dataset in this fashion. By generating

FIG. 3. A t-SNE visualization example: (a) A two-dimensional t-SNE map of the left parotid gDTHs; (b) The randomly selected validation case; (c)–(f) four
example cases located in different regions of the feature map. In (a), blue dots mark the cases selected by the similarity metric for modeling the validation case in
3b, and red dots denote the rest of the dataset. (c)–(e) show three unselected cases and the arrows indicate their locations on the t-SNE map, while (f) is one of
the selected cases even though its PTVs (especially boost PTV) are significantly different to 3b in size and location. Both the x- and the y-axis of the t-SNE map
are dimensionless and are of arbitrary units. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. The workflow of the proposed modeling method with data augmentation. [Color figure can be viewed at wileyonlinelibrary.com]
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these additional cases, we effectively increase the number of
training cases in which OAR DVHs are only affected by pri-
mary PTVs.

2.D.2. Data augmentation type B

The treatment plans without boost PTVs can be utilized to
simulate cases in which two PTVs have the same volume. For
some cases, boost PTV surfaces overlap with primary PTV
surfaces in the regions that are close to the particular OAR,
as shown in the bottom row of Fig. 5. We make the approxi-
mation that primary PTV plans can be scaled up to boost
PTV dose level and can be treated as a plan with primary and
boost PTVs of the same shape. For this type of augmented
cases, gDTH can be generated by treating original primary
PTV as both primary PTV and boost PTV.

3. RESULTS

3.A. DVH prediction accuracy

To evaluate the effectiveness of the proposed data aug-
mentation methods, we first map the training set to a 2D PCA
space. The first two PCS of the training set gDTHs are set as
the x and y axes, respectively [Fig. 6(a)]. As shown in the

figure, the data augmentation procedure populates two oppo-
site sides of the gDTH distribution, where data points are
sparse. Therefore, when predicting a validation case’s DVH
with gDTHs near the edge of the map, augmented cases will
be selected to build the model and help improve prediction
accuracy and robustness.

To quantitatively measure the improvements of the pro-
posed modelling workflow over the previous process, we
evaluated DVH prediction accuracy measured by the root-
mean-squared error (RMSE). Clinical plan DVHs are set as a
baseline for comparison. The model previously tuned with
120 HN cases was evaluated using a separate validation data-
set consisting of 148 cases (all with two PTVs). Compared
with the previous model,3 the proposed model resulted in sig-
nificantly reduced prediction RMSE for brainstem
(P < 0.001), mandible (P = 0.004), pharynx (P = 0.034),
oral cavity (P = 0.022), parotids (P < 0.001), but the
improvements were not significant for cord (P = 0.051) lar-
ynx (P = 0.099). When augmented cases were included in
the training dataset, statistically significant improvements
were observed for predicted DVHs of all OARs, including
brainstem (P < 0.001), cord (P < 0.001), larynx
(P = 0.004), mandible (P < 0.001), pharynx (P = 0.001),
oral cavity (P = 0.011) and parotid (P < 0.001), as shown in
Table I and Fig. 7. In particular, the DVH prediction

FIG. 5. Examples of clinical cases that can be synthesized by data augmentation. Top row: type A augmentation — since boost PTV (yellow) if far away from
the OAR (cyan), the plan can be synthesized for various primary/boost dose prescription ratios, such as 44 Gy/ 70 Gy, 50 Gy/ 60 Gy. Bottom row: type B aug-
mentation— since the boost PTV is at the same distance to the OAR as the primary PTV, a synthesized plan can be generated using the primary PTV as both pri-
mary and boost PTV. Columns from left to right: (a) gDTHs, (b) OARs (left parotids) shown with primary PTVs, (c) same OARs shown with boost PTVs. [Color
figure can be viewed at wileyonlinelibrary.com]
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accuracies are moderately improved when data augmentation
is implemented, compared to the proposed model without
data augmentation. For some OARs with high DVH vari-
ances (e.g., larynx), the improvement is significant.

3.B. Evaluation of KBP plans

To analyze if accurately predicted DVHs could be incor-
porated into the treatment planning workflow and improve
plan quality, we randomly selected 25 clinical HN plans
from the validation dataset and replanned with the guidance
of predicted DVHs generated by our proposed prediction
model. All KBP plans have been normalized to match the
PTV coverage of the clinical plans (prescription dose covers

the same percent volume). Plans were evaluated with physi-
cian prescribed constraints and were compared against orig-
inal clinical plans. Table II summarizes numbers of
evaluation criteria met by the original clinical plans and the
KBP plans. The replanning process substantially increased
the pass rate of clinical evaluation. The mean values and
standard deviations of the aforementioned evaluation criteria
are shown in Table III. The improvement of OAR sparing
in terms of clinical evaluation criteria are significant for
most criteria evaluated, including brainstem Dmax,
cord + 5 mm Dmax, larynx Dmedian, mandible Dmax, oral
cavity Dmedian, parotid Dmedian. The difference in body Dmax

between both planning methods is not statistically signifi-
cant (P = 0.10, paired t-test).

FIG. 6. The distribution of the first two principal component scores of gDTHs in the training dataset. Blue crosses represent augmented cases, and red dots repre-
sent the original training data. Also shown in the figure are three example pairs of structure sets that demonstrate the resemblances of the original and the synthe-
sized cases. Left parotids, primary, and boost PTV structures are marked with cyan contours, red segments, and orange segments, respectively. [Color figure can
be viewed at wileyonlinelibrary.com]
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An example case benefiting from the new DVH prediction
model is shown in Fig. 8. In Fig. 8(a), the DVHs referenced
by the proposed model are shown as grey lines. These cases
are automatically selected from the augmented dataset con-
taining real cases and synthetic cases based on the similarity
metric utilizing the proposed gDTH feature. Interestingly, the
majority of reference plans are type-A–augmented plans,
which indicates that the boost PTV in this case has very lim-
ited influence on the left parotid DVH. Therefore, these refer-
ence DVH curves (grey) have very little volumes go beyond
primary dose of 44–50 Gy. As a comparison, the green line
represents the DVH predicted by the previous model, which

lacks of effectively differentiating the impact of the boost
PTV. Instead, it infers the average impact of boost PTV and
overestimates in the 50–70 Gy region of the DVH, where
boost PTV dose contributes. The blue line, which marks the
clinical plan DVH, shows that the planner, without the guid-
ance of the knowledge model, also did not realize that the
high-dose regions for the parotid can be further spared. The
magenta line is the prediction by our proposed model, and it
predicts significantly better sparing of the 50–70 Gy region,
compared with previous model (green) and the clinical plan
(blue). The DVH of the replanned with the guidance of the
proposed model is shown as the red line, which confirms the
extra sparing in 50–70 Gy dose range. This is also reflected
in the dose distribution shown in Fig. 8(b) (original clinical
plan) and Fig. 8(c) (KBP plan).

TABLE I. Model prediction accuracy comparison between the previous mod-
eling process3 and the proposed modeling process with and without data aug-
mentation.

DVH RMSE (Vol %)

Previous model Proposed model
Proposed model with
data augmentation

Parotid 7.99 (0.36) 6.92 (0.30) 6.83 (0.28)

Brainstem 5.11 (0.39) 3.73 (0.23) 3.77 (0.26)

Cord 5.53 (0.27) 5.19 (0.25)a 4.92 (0.25)

Mandible 6.31 (0.23) 5.70 (0.21) 5.59 (0.22)

Larynx 9.32 (0.74) 8.46 (0.80)a 7.19 (0.35)

Oral cavity 8.23 (0.43) 7.58 (0.40) 7.33 (0.41)

Pharynx 7.63 (0.28) 7.04 (0.32) 6.65 (0.27)

DVH, dose volume histogram; RMSE, root mean squared error.
aThe improvement over the previous method is not statistically significant (paired-
sample t-test, P> 0.05).

FIG. 7. Prediction error comparison between the previous model, the proposed model and proposed model with data augmentation. The proposed models are sig-
nificantly better at predicting all OARs, including brainstem (P < 0.001), cord (P < 0.001), larynx (P = 0.004), mandible (P < 0.001), pharynx (P = 0.001),
oral cavity (P = 0.011), and parotid (P < 0.001). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Summary of constraints satisfaction for clinical plans and KBP
plans.

Number of constraints

Evaluation criteria Total

Met by
clinical
plans

Met by
KBP
plans

Number of
plans improved
by replanning

Brainstem Dmax 25 24 25 22

Cord + 5mm Dmax 25 20 24 24

Larynx Dmedian 20 16 19 17

Mandible Dmax 25 9 23 25

Oral cavity Dmedian 24 18 20 19

Parotid Dmedian 40 33 37 36

KBP, Knowledge-based planning.
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4. DISCUSSION

The gDTH concept proposed in this study aims to improve
the characterization of DVH variances in multiple target
plans. It fully represents the distribution of distances from
OAR volumes to multiple PTV surfaces. Previously, we char-
acterize the geometrical relation of an OAR to multiple PTVs
separately, as shown in Eq. (2). However, the direct combina-
tion of individual PTV features does not fully reflect the syn-
ergetic effect or cancellation effect of multiple PTVs. In a
multi-PTV plan, the ideal dose distribution for an OAR is
heavily influenced by the relative location of all the PTVs,
and this information is not fully captured when we extract
separated sets of features corresponding to each PTV. This is
apparent in Fig. 5, where 5(a) shows the “cancellation effect”
of the boost PTV, as it is so far away from the OAR its dosi-
metric influence is almost negligible in a well-designed treat-
ment plan, and Fig. 5(b) shows the synergetic effect where
boost PTV’s dosimetric influence is almost the same as the
primary PTV. The gDTH is capable of capturing these shape
variations and thus significantly outperform the previous

KBP model in those scenarios. Also of note, the application
of gDTH is demonstrated with cases involving two PTVs in
this study. However, the concept itself applies to multiple
PTVs. Extending to three or more PTVs is straightforward
and should not involve redesigning any of the methods pre-
sented in this study.

Furthermore, we have enhanced the proposed modeling
workflow with a data-augmentation method that takes effec-
tive use of the limited clinical data available and generates
synthesized plans for model training. It reduces the number
of clinical cases needed to make a robust DVH model.
Specifically fitted to this study, we have incorporated two
unique data augmentation methods. One addresses the sce-
nario where boost PTV has minimal impact on an OAR’s
dose sparing, while the other addresses when the boost PTV
reduces in size but the dosimetric impact to an OAR does not
decrease with the size. With the addition of our proposed
KBP data augmentation method, prediction accuracy was fur-
ther improved.

Finally, replanning using predictions from the proposed
model shows substantial improvement in the number of

TABLE III. Mean values and standard deviations of clinical evaluation criteria for clinical plans and KBP plans.

Evaluation criteria Clinical constraints Clinical plans KBP plans P valuesa

Body Dmax 115% (0 %) 109.8% (2.0 %) 110.8% (2.7 %) 8.9 9 10�2

Brainstem Dmax 27.1 Gy (6.3 Gy) 20.7 Gy (9.0 Gy) 18.3 Gy (8.0 Gy) 1.2 9 10�4

Cord + 5mm Dmax 45.0 Gy (4.2 Gy) 39.4 Gy (8.6 Gy) 35.7 Gy (7.4 Gy) 1.5 9 10�7

Larynx Dmedian 25.0 Gy (5.1 Gy) 20.8 Gy (8.9 Gy) 18.3 Gy (7.8 Gy) 6.8 9 10�4

Mandible Dmax 68.2 Gy (9.1 Gy) 68.1 Gy (10.1 Gy) 62.6 Gy (11.5 Gy) 2.2 9 10�4

Oral cavity Dmedian 30.3 Gy (8.1 Gy) 27.1 Gy (11.9 Gy) 24.5 Gy (10.6 Gy) 1.7 9 10�3

Parotid Dmedian 18.0 Gy (7.1 Gy) 15.5 Gy (8.9 Gy) 12.1 Gy (6.3 Gy) 2.8 9 10�6

KBP, Knowledge-based planning.
aThe P-values between KBP plan results and clinical plan results, measured with a paired-sample t-test.

FIG. 8. An example case demonstrates plan quality improvement after replanning guided by the proposed model. (a) Left parotid DVH of the original plan (blue),
predicted by the previous model (green), the proposed model (magenta with upper and lower bounds), and the DVH of the KBP-guided plan (red). The DVHs of
referenced training cases (grey) are also plotted for reference. (b) Clinical plan dose distribution showing the sparing of the left parotid. (c) Dose distribution of
the new plan guided by the proposed model. In both (b) and (c), 73.5 Gy (pink), 70 Gy (yellow), 63 Gy (dark blue), 56 Gy (light blue), and 44 Gy (white) iso-
dose lines are shown. [Color figure can be viewed at wileyonlinelibrary.com]
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planning constraints satisfied, compared with original clinical
plans. Clinical implications of the improved OAR-DVH pre-
dictions are twofold. First, the improvement in prediction
accuracy results in enhanced plan quality, since the best
achievable DVH prediction guides planners to generate
proper optimization goals, and in turn, more consistently pro-
duces plans with optimal OAR sparing while not compromis-
ing PTV coverage. Improved plan quality results in less
normal-tissue complications and will have a positive impact
on the treatment outcomes. Second, accurate OAR DVH pre-
diction methods improve planning efficiency by enabling
efficient automatic treatment planning. The predictions can
be directly used to place optimization goals automatically
and generate high-quality plans consistently. Numerous other
studies have also demonstrated that KBP with accurate mod-
els helps improve clinical plan quality.15–23

While the gDTH is calculated analytically and accurately,
there are uncertainties involved in the statistical distribution
of the gDTHs in the population. The number of training cases
may be correlated with the uncertainty of the modeling pro-
cess. The likelihood of finding similar plans in a smaller
training dataset would be smaller. This could potentially
result in increased prediction uncertainty. However, the pro-
posed data augmentation method is expected to be more
effective in such scenarios.

5. CONCLUSIONS

The proposed modeling workflow generates accurate and
robust DVH predictions when multiple PTVs are involved in
a plan. The KBP plans guided by the proposed model demon-
strates that the improvement in the DVH prediction model
can translate into better plan quality in KBP. KBP with the
proposed modeling method can potentially help planners to
achieve higher and more consistent plan quality, compared
with the current clinical planning process.

ACKNOWLEDGMENTS

This work is partially supported by an NIH grant
(#R01CA201212) and a master research grant by Varian Med-
ical Systems.

CONFLICT OF INTEREST

The authors have no conflicts to disclose.

a)Author to whom correspondence should be addressed. Electronic mail:
jackie.wu@duke.edu.

REFERENCES

1. Nelms BE, Robinson G, Markham J, et al. Variation in external beam
treatment plan quality: an inter-institutional study of planners and plan-
ning systems. Pract Radiat Oncol. 2012;2:296–305.

2. Das IJ, Cheng CW, Chopra KL, Mitra RK, Srivastava SP, Glatstein E.
Intensity-modulated radiation therapy dose prescription, recording, and
delivery: patterns of variability among institutions and treatment plan-
ning systems. J Natl Cancer Inst. 2008;100:300–307.

3. Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantita-
tive analysis of the factors which affect the interpatient organ-at-risk
dose sparing variation in IMRT plans. Med Phys. 2012;39:6868–
6878.

4. Moore KL, Brame RS, Low DA, Mutic S. Experience-based quality con-
trol of clinical intensity-modulated radiotherapy planning. Int J Radiat
Oncol Biol Phys. 2011;81:545–551.

5. Simari P, Wu B, Jacques R, et al. A statistical approach for achievable
dose querying in IMRT planning. In: Jiang T, Navab N, Pluim JPW,
Viergever MA eds. Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2010: 13th International Conference, Beijing,
China, September 20–24, 2010, Proceedings, Part III. Berlin, Heidel-
berg: Springer; 2010:521-528.

6. Wu B, McNutt T, Zahurak M, et al. Automated simultaneous integrated
boosted-intensity modulated radiation therapy treatment planning is fea-
sible for head-and-neck cancer: A Prospective Clinical Study. Int J
Radiat Oncol Biol Phys. 2012;84:e647–e653.

7. Wu B, Ricchetti F, Sanguineti G, et al. Patient geometry-driven informa-
tion retrieval for IMRT treatment plan quality control. Med Phys.
2009;36:5497–5505.

8. Kazhdan M, Simari P, McNutt T, et al. A shape relationship descriptor
for radiation therapy planning. Med Image Comput Comput-Assist.
2009;12:100–108.

9. Wu B, Ricchetti F, Sanguineti G, et al. Data-driven approach to generat-
ing achievable dose-volume histogram objectives in intensity-modulated
radiotherapy planning. Int J Radiat Oncol Biol Phys. 2011;79:1241–
1247.

10. Shiraishi S, Moore KL. Knowledge-based prediction of three-dimen-
sional dose distributions for external beam radiotherapy. Med Phys.
2016;43:378–387.

11. Zhu X, Ge Y, Li T, Thongphiew D, Yin F-F, Wu QJ. A planning quality
evaluation tool for prostate adaptive IMRT based on machine learning.
Med Phys. 2011;38:719–726.

12. Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL. Pre-
dicting dose-volume histograms for organs-at-risk in IMRT planning.
Med Phys. 2012;39:7446–7461.

13. Varian Medical Systems. DVH Estimation Algorithm. In: Eclipse
Photon and Electron Algorithms Reference Guide. 2014:
220–229.

14. Good D, Lo J, Lee WR, Wu QJ, Yin FF, Das SK. A knowledge-based
approach to improving and homogenizing intensity modulated radiation
therapy planning quality among treatment centers: an example applica-
tion to prostate cancer planning. Int J Radiat Oncol Biol Phys.
2013;87:176–181.

15. Berry SL, Ma R, Boczkowski A, Jackson A, Zhang P, Hunt M. Evaluat-
ing inter-campus plan consistency using a knowledge based planning
model. Radiother Oncol. 2016;120:349–355.

16. Chang ATY, Hung AWM, Cheung FWK, et al. Comparison of plan-
ning quality and efficiency between conventional and knowledge-
based algorithms in nasopharyngeal cancer patients using intensity
modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2016;95:
981–990.

17. Delaney AR, Tol JP, Dahele M, Cuijpers J, Slotman BJ, Verbakel WF.
Effect of dosimetric outliers on the performance of a commercial knowl-
edge-based planning solution. Int J Radiat Oncol Biol Phys. 2016;
94:469–477.

18. Tol JP, Delaney AR, Dahele M, Slotman BJ, Verbakel WF. Evaluation of
a knowledge-based planning solution for head and neck cancer. Int J
Radiat Oncol Biol Phys. 2015;91:612–620.

19. Tol JP, Dahele M, Delaney AR, Slotman BJ, Verbakel WF. Can knowl-
edge-based DVH predictions be used for automated, individualized qual-
ity assurance of radiotherapy treatment plans? Radiat Oncol. 2015;
10:234.

20. Fogliata A, Nicolini G, Clivio A, et al. A broad scope knowledge based
model for optimization of VMAT in esophageal cancer: validation and
assessment of plan quality among different treatment centers. Radiat
Oncol. 2015;10:220.

21. Fogliata A, Belosi F, Clivio A, et al. On the pre-clinical validation of a
commercial model-based optimisation engine: application to volumetric
modulated arc therapy for patients with lung or prostate cancer. Radio-
ther Oncol. 2014;113:385–391.

Medical Physics, 46 (9), September 2019

3821 Zhang et al.: Improved KBP for multiple PTV plans 3821

mailto:


22. Wu H, Jiang F, Yue H, Zhang H, Wang K, Zhang Y. Applying a Rapid-
Plan model trained on a technique and orientation to another: a feasibil-
ity and dosimetric evaluation. Radiat Oncol. 2016;11:108.

23. Hussein M, South CP, Barry MA, et al. Clinical validation and bench-
marking of knowledge-based IMRT and VMAT treatment planning in
pelvic anatomy. Radiother Oncol. 2016;120:473–479.

24. Wu B, Kusters M, Kunze-Busch M, et al. Cross-institutional knowl-
edge-based planning (KBP) implementation and its performance com-
parison to Auto-Planning Engine (APE). Radiother Oncol. 2017;
123:57–62.

25. Lian J, Yuan L, Ge Y, et al. Modeling the dosimetry of organ-at-risk in
head and neck IMRT planning: an intertechnique and interinstitutional
study. Med Phys. 2013;40:121704.

26. Eclipse Scripting API Reference Guide for Research Users. Varian Med-
ical Systems. 2015.

27. Maaten LJPvd, Hinton GE. Visualizint high-dimensional data using t-
SNE. J Mach Learn Res. 2008;9:2579–2605.

28. Yuan L, Wu QJ, Yin F-F, Jiang Y, Yoo D, Ge Y. Incorporating single-
side sparing in models for predicting parotid dose sparing in head and
neck IMRT. Med Phys. 2014;41:021728.

Medical Physics, 46 (9), September 2019

3822 Zhang et al.: Improved KBP for multiple PTV plans 3822


	1. Intro�duc�tion
	2. Mate�ri�als and meth�ods
	2.A. DVH pre�dic�tion model
	2.B. Gen�er�al�ized dis�tance-to-tar�get his�togram
	2.C. Model�ing with a gDTH-based sim�i�lar�ity met�ric
	mp13679-fig-0001
	2.D. Data selec�tion and aug�men�ta�tion
	mp13679-fig-0002
	2.D.1. Data aug�men�ta�tion type A

	mp13679-fig-0003
	mp13679-fig-0004
	2.D.2. Data aug�men�ta�tion type B


	3. Results
	3.A. DVH pre�dic�tion accu�racy
	mp13679-fig-0005
	3.B. Eval�u�a�tion of KBP plans
	mp13679-fig-0006
	mp13679-tbl-0001
	mp13679-fig-0007
	mp13679-tbl-0002

	4. Dis�cus�sion
	mp13679-tbl-0003
	mp13679-fig-0008

	5. Con�clu�sions
	 Acknowl�edg�ments
	 Con�flict Of Inter�est
	$^var_corr1
	mp13679-bib-0001
	mp13679-bib-0002
	mp13679-bib-0003
	mp13679-bib-0004
	mp13679-bib-0005
	mp13679-bib-0006
	mp13679-bib-0007
	mp13679-bib-0008
	mp13679-bib-0009
	mp13679-bib-0010
	mp13679-bib-0011
	mp13679-bib-0012
	mp13679-bib-0013
	mp13679-bib-0014
	mp13679-bib-0015
	mp13679-bib-0016
	mp13679-bib-0017
	mp13679-bib-0018
	mp13679-bib-0019
	mp13679-bib-0020
	mp13679-bib-0021
	mp13679-bib-0022
	mp13679-bib-0023
	mp13679-bib-0024
	mp13679-bib-0025
	mp13679-bib-0026
	mp13679-bib-0027
	mp13679-bib-0028


