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Switch Between El Nino and La 
Nina is Caused by Subsurface Ocean 
Waves Likely Driven by Lunar Tidal 
Forcing
Jialin Lin & Taotao Qian

The El Nino-Southern Oscillation (ENSO) is the dominant interannual variability of Earth’s climate 
system, and strongly modulates global temperature, precipitation, atmospheric circulation, tropical 
cyclones and other extreme events. However, forecasting ENSO is one of the most difficult problems 
in climate sciences affecting both interannual climate prediction and decadal prediction of near-
term global climate change. The key question is what cause the switch between El Nino and La Nina. 
For the past 30 years, ENSO forecasts have been limited to short lead times after ENSO sea surface 
temperature (SST) anomaly has already developed, but unable to predict the switch between El 
Nino and La Nina. Here, we demonstrate that the switch between El Nino and La Nina is caused by 
a subsurface ocean wave propagating from western Pacific to central and eastern Pacific and then 
triggering development of SST anomaly. This is based on analysis of all ENSO events in the past 136 
years using multiple long-term observational datasets. The wave’s slow phase speed and decoupling 
from atmosphere indicate that it is a forced wave. Further analysis of Earth’s angular momentum 
budget and NASA’s Apollo Landing Mirror Experiment suggests that the subsurface wave is likely driven 
by lunar tidal gravitational force.

The 1876–1877 eastern hemisphere drought and resultant Great Famine caused a death toll of 17 million people 
in China, India, Indonesia, Australia and South Africa, and prompted the discovery of ENSO1–3. ENSO is a 3–6 
year oscillation of Earth’s climate system, which is the first principle component of global monthly sea surface 
temperature anomaly, and contributes 18% of the total variance4–8. ENSO strongly modulates global temper-
ature9, precipitation10, droughts11, tropical cyclones12, tornadoes13, extratropical cyclones14 and other extreme 
events15, and also plays an important role in global warming projections16–18.

However, forecasting ENSO is one of the most difficult problems in atmospheric sciences19–22. The long-lasting 
unanswered question is what cause the switch between El Nino and La Nina. For the past 30 years, ENSO fore-
casts have been limited to short lead time of 6–9 months after ENSO sea surface temperature anomaly has already 
developed (Supplementary Fig. 1). Most of the ENSO forecast models cannot predict the switch between El Nino 
and La Nina19–22 which requires a lead time of 12 months or longer (Supplementary Fig. 2). This is the case not 
only for statistical models, but also for most of the dynamical coupled general circulation models (CGCMs). 
State-of-the-art CGCMs have substantial difficulty in simulating the correct oscillation period and amplitude 
of ENSO16,23, which is connected to their biases in simulating tropical mean state and ocean-atmosphere feed-
backs24,25. This affects not only their ENSO predictions, but also their decadal to multi-decadal predictions of 
near-term global climate change26–30.

The existing ENSO theories can be categorized into six groups31–33 (Supplementary Fig. 3) including (1) 
slow coupled mode theories3,34–36, (2) stochastic forcing theories37,38, (3) recharge oscillator theory39, (4) delayed 
oscillator theory40–42, (5) advective-reflective oscillator theory43, and (6) western Pacific oscillator theory44. 
Ocean-atmosphere feedback mechanisms are emphasized by the first three theories, but coupled climate models 
with ocean-atmosphere feedbacks still have difficulty in simulating ENSO and are quite sensitive to different 
physical parameterizations. Free ocean waves, including equatorial Kelvin and Rossby waves, are emphasized by 
the other three theories, and have been found in both observations45–49 and models41,50–54. The phase speeds of the 
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free Kelvin waves are generally 2–3 m/s, while those of the free Rossby waves are 0.5–1 m/s. These waves are driven 
by anomalous westerly or easterly winds55, which are often associated with the intraseasonal Madden-Julian 
Oscillation (MJO)56–59, and show clear horizontal and vertical propagations associated with different types of El 
Nino60. However, the propagation speeds of free ocean waves are too fast to explain the 3–6 year time-scale of 
ENSO.

Sea surface state variables, including sea surface temperature (SST), sea level pressure (SLP), surface winds 
and sea surface height (SSH), are the predictors generally used by statistical ENSO models, and also serve as 
initial fields for dynamical ENSO models. However, during the transition phase between El Nino and La Nina, 
which is often called “neutral phase”, the SST, SLP, SSH and surface wind anomalies are very weak, and cannot 
provide good predictors for long-lead ENSO prediction.

Here, we demonstrate that the switch between El Nino and La Nina is caused by a subsurface ocean wave 
propagating from western Pacific to central/eastern Pacific, and then trigger the development of sea surface 
temperature anomaly there. This is based on analysis of all ENSO events in the past 136 years using multiple 
long-term observational datasets. See Methods section for detailed information about the datasets and methods.

The Subsurface Ocean Wave Associated with ENSO Lifecycle
Supplementary Fig. 4 shows vertical cross-section of climatological mean ocean subsurface temperature along the 
equator averaged between 5N-5S for three observational datasets: (a) TAO buoy array for 23 years (1993–2015), 
(b) UKMO ocean analysis for 61 years (1955–2015), and (c) SODA ocean reanalysis for 133 years (1880–2012). 
All datasets show the well-defined temperature contrast between western Pacific warm pool and eastern Pacific 
cold tongue. The white line is the climatological 23.5 °C line, which is a good representation of thermocline. 
Supplementary Fig. 5 shows the climatological mean vertical velocity along the equator. Because the equatorial 
upwelling is driven by the trade winds, there is strong upwelling to the east of dateline from the thermocline to 
10 m. The upwelling to the west of dateline is much weaker.

Figure 1 illustrates the lag-correlation of UKMO ocean analysis subsurface temperature with Nino3.4 SST 
from (a) −24 months (La Nina) to (h) −3 months (3 months before El Nino) for all ENSO events in 61 years 
from 1955–2015. Figure 1 demonstrates three key points. First, there is a clear subsurface ocean wave propagat-
ing eastward along the thermocline from western Pacific to central and eastern Pacific (Fig. 1A–F). The warm 
temperature anomaly already starts off from western Pacific at the peak of La Nina (Fig. 1A), and quickly passes 
the dateline within 3 months when the surface temperature in central and eastern Pacific still shows significant 
cold anomaly of La Nina (Fig. 1B). Secondly, as soon as the ocean wave passes the dateline and enters the eastern 
Pacific (Fig. 1B), the strong mean-state upwelling in eastern Pacific starts to advect the warm temperature anom-
aly from the thermocline (at 30–120 meters depth in the eastern Pacific) towards the surface, with a vertical speed 
of 2–10 meters per month (Supplementary Fig. 5). The warm advection starts earlier in central Pacific (Fig. 1B), 
but the thermocline is deeper there and it takes more time for the warm anomaly to reach the surface. The warm 
advection starts much later in far east Pacific close to the coast of South America (Fig. 1F), but the thermocline 
is much shallower there and the warm anomaly can quickly reach the surface. This warm advection likely con-
tributes to the decay of La Nina from −21 months to −12 months (Fig. 1B–E), and then initiates the warm SST 
anomalies and triggers the Bjerknes feedback, leading to development of El Nino at −6 months to −3 months 
(Fig. 1G,H). The corresponding amplitude of temperature variations is above 1 °C (not shown), which is similar 
to the amplitude in the delayed oscillator model41, and thus sufficient to cause the switch. Thirdly, during the 
neutral transition phase at −12 months and −9 months (Fig. 1E,F), there is no significant surface temperature 
anomaly, but the subsurface ocean wave anomaly is highly significant and provides an excellent predictor for 
ENSO forecast.

The switch from El Nino to La Nina is shown in Fig. 2. Again, at the peak of El Nino when the entire central 
and eastern Pacific are occupied by significant warm surface temperature anomalies (Fig. 2A), cold subsurface 
ocean wave has already started off from western Pacific. When the surface temperature anomalies have disap-
peared during the neutral transition phase from +9 months (Fig. 2D) to +15 months (Fig. 2F), cold subsurface 
ocean wave anomaly is highly significant, providing important predictors for the forthcoming La Nina.

Similar results are obtained from 33 years (1993–2015) of raw TAO buoy data (Supplementary Figs 6 and 7). 
Extending our analysis to all ENSO events in 133 years (1880–2012) using SODA ocean reanalysis, which assimi-
lates all available ocean subsurface temperature observations, also reveals the same results (Supplementary Figs 8 
and 9). Therefore, the eastward propagation of subsurface ocean wave associated with ENSO lifecycle is a highly 
robust physical phenomena.

What Drives the Subsurface Ocean Wave?
There are three types of ocean waves: free ocean wave, free ocean-atmosphere coupled wave, and forced ocean 
wave. First, we determine if the observed wave is a free ocean wave by calculating the phase speed of propagation. 
Figure 3 provides a summary of wave propagation along the thermocline for all three observational datasets. 
All three datasets consistently demonstrate an eastward propagation with a phase speed of 0.2–0.3 m/s, which is 
much slower than the phase speeds of free ocean waves40. The free Kelvin waves driven by westerly wind bursts 
associated with the MJO generally have a phase speed of 2–3 m/s56–59, which is an order of magnitude larger than 
the phase speed of the wave found here. Therefore, the observed wave is not a free ocean wave.

The subsurface ocean wave is not likely a free ocean-atmosphere coupled slow mode because during the neu-
tral transition phases (Figs 1E–F and 2D–F), there is no significant SST anomaly and the strong subsurface ocean 
wave is totally decoupled from the atmosphere. During these periods, the wave still keeps the slow phase speed of 
0.2–0.3 m/s (Fig. 3) and thus is not a free wave emanating from the source region.

The third possibility is forced ocean wave. The major external forcing for ocean is the tidal gravitational force. 
The thermocline is associated with the strongest vertical temperature gradient and thus tend to show the largest 
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temperature anomaly when driven by tidal vertical motion, which is consistent with the depth of the subsurface 
ocean wave. The moon’s revolution around the Earth is from the west to the east in the same direction as the 
Earth’s rotation, which is consistent with the eastward propagation of the subsurface ocean wave. Connection 
between the observed subsurface wave with tide is also supported by the evolution of zonal mean ocean tem-
perature associated with ENSO lifecycle (Supplementary Fig. 10), which can be compared with subsurface wave 
propagation along the equator (Fig. 1). When the warm subsurface wave propagates from western Pacific to 
central Pacific (Fig. 1A–D), zonal mean temperature shows clear warm anomaly at the 100–300 m depth of the 

Figure 1.  Eastward propagation of ocean subsurface wave leading to switch from La Nina to El Nino. Shadings 
show lag-correlation of UKMO ocean analysis subsurface temperature along the equator (5N-5S) with Nino3.4 
SST from (A) −24 months to (H) −3 months for all ENSO events in 61 years from 1955–2015. Black stars 
denote the grids with lag-correlation above 95% confidence level. The white dashed line is the climatological 
23.5 °C line from Supplementary Fig. 4b.

https://doi.org/10.1038/s41598-019-49678-w


4Scientific Reports |         (2019) 9:13106  | https://doi.org/10.1038/s41598-019-49678-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

wave (Supplementary Fig. 10a–d). When the subsurface wave rises up in eastern Pacific and triggers the El Nino 
(Fig. 1E–H), zonal mean temperature shows clear process that the wave breaks through the cold temperature 
anomaly of La Nina, and pushes it away from the equator in both hemispheres (Supplementary Fig. 10e–h). 
SODA ocean reanalysis shows similar results for all ENSO events in 133 years (Supplementary Fig. 11). The zonal 
mean structure is similar to the lunar semidiurnal tides in the ocean61 and atmosphere62. Because the tidal force 
at the equator doubles that at the pole, the largest amplitude occurs in the tropics. For a vertically propagating 
gravity wave, upward (downward) phase propagation implies downward (upward) energy dispersion. For the 
lunar atmospheric tide, the forcing is strongest at the Earth’s surface where rising sea level forces the atmosphere, 
so tidal energy disperses upward and phase propagates downward62. In contrast, for the lunar oceanic tide, the 
forcing is strongest at the ocean surface because tidal force increases with the distance to the center of the Earth 

Figure 2.  Same as Fig. 1 but for switch from El Nino to La Nina for (A) 0 month (El Nino) to (H) +21 months 
after El Nino.
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and vertical displacement is largest at the top of tidal bulge63, so tidal energy disperses downward and phase 
propagates upward.

Is there lunar tidal forcing at ENSO’s time-scale? The three commonly used ENSO indices consistently 
demonstrate that the generally-thought wide spectral peak of ENSO between 3–7 years in fact consists of two 
main spectral peaks at 3 years and 6 years, respectively (Supplementary Fig. 12). Lunar tidal gravitational force 
calculated from NASA Apollo Landing Mirror Experiment64,65 and Earth’s angular momentum budget consist-
ently show two sharp peaks at 6 years and 9 years, respectively (Supplementary Fig. 13). The western Pacific sub-
surface temperature at the thermocline depth also demonstrates sharp 6-year and 9-year peaks (Supplementary 
Fig. 14), suggesting a strong link between the lunar tidal force and the Earth’s ocean subsurface temperature. The 

Figure 3.  Eastward propagation of ocean subsurface wave along the thermocline associated with ENSO 
lifecycle in three observational datasets. (A) TAO buoy array for 23 years (1993–2015), (B) UKMO ocean 
analysis for 61 years (1955–2015), and (C) SODA ocean reanalysis for 133 years (1880–2012). Shadings show 
lag-correlation with Nino3.4 SST for ocean temperature averaged between 5N-5S along the thermocline 
(climatological 23.5 °C depth). Black stars denote the grids with lag-correlation above 95% confidence level. 
White dashed lines are the 0.26 m/s phase speed line.
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6-year peak of lunar tidal force matches very well with the 6-year component of ENSO. Lag-correlations between 
the 6-year component of lunar tidal forcing with equatorial ocean subsurface temperature demonstrate clearly 
the subsurface ocean wave propagating from western Pacific to central and eastern Pacific and triggering SST 
anomaly there, suggesting that the 6-year component of lunar tidal forcing drives the 6-year component of ENSO 
(Supplementary Figs 15 and 16).

The 6-year and 9-year peaks of lunar tidal forcing are key lunar tidal constituents at the interannual 
time-scale65–67, although the 6-year component did not draw much attention in research. The three different lunar 
months: draconic (nodal passage: 27.212208 days), sidereal (inertial space period: 27.321661 days), and anom-
alistic (perigee to perigee: 27.554551 days) combine to give periods of 6.00 years, 8.85 years and 18.6 years65–67. 
Global mean surface temperature demonstrates 6-year and 9-year oscillations, which have been proposed to be 
driven by lunar tidal forcing67,68. The 3-year component of ENSO may be generated by the sub-harmonics of the 
6-year tidal forcing, or the interactions of 6-year and 9-year forcings with seasonal cycle and other high-frequency 
oscillations.

The observed oscillation periods of ENSO are irregular, which are known to be affected by the background 
state associated with longer-period oscillations and ocean-atmosphere feedback23. The tidal forcing in real world 
is also “irregular” because it is contributed by many tidal constituents. For example, in order to predict the 
day-to-day sea level variations along the coast, at least 10 dominant tidal constituents in the diurnal, semidiurnal 
and quarter-diurnal bands are needed in the global tidal models69. Another example is that the interannual lunar 
tidal forcing is dominated by the 6-year component between the 1920s and 1940s, but dominated by the 9-year 
component during other time periods, which coincide well with similar oscillations in observed global mean sur-
face temperature67. Therefore, tidal forcing may also contribute to the observed irregularity of ENSO. In addition, 
after the El Nino has developed (Figs 1G,H and 2A), equatorial upwelling driven by tidal forcing may affect the 
amplitude of El Nino.

Our key findings are summarized schematically in Fig. 4. We have demonstrated highly robust evidence that 
the switch between El Nino and La Nina is caused by an ocean subsurface wave propagating along thermocline 
from western Pacific to central and eastern Pacific, and then triggering the development of SST anomaly there. 
Our findings suggest two possible ways to improve the current ENSO forecasts: (1) Adding the subsurface ocean 
wave to statistical ENSO forecast models and improving its representation in CGCMs, which may lead to an 
improvement of the 12-month ENSO forecast. Right now, none of the statistical models considers the subsur-
face ocean wave. In fact, the only two ENSO forecast models that can make good 12-month forecast, the NASA 
GMAO model and GFDL FLOR model (Supplementary Fig. 2), are assimilating carefully subsurface temperature. 
(2) Adding lunar tidal forcing to statistical models and CGCMs may provide important long-range predictabil-
ity. Currently, the ocean-atmosphere coupled runs of climate models, such as the IPCC models historical runs 
and projection runs23,70, are called “free runs” and are not expected to capture the timing of ENSO events in the 
real world. Adding lunar tidal forcing may help to simulate the correct timing of ENSO events, in addition to 
improving the simulated oscillation period and amplitude of ENSO. Recently, the ocean modelling community 
show strong interest in lunar tidal forcing because there are more and more evidences that tidal mixing plays a 
key role in global ocean circulation71–73. Parameterizations of diurnal and semidiurnal tidal mixing have been 
implemented into several OGCMs such as the GFDL MOM74, HYCOM75, and MIROC76. However, for simu-
lating the interannual tidal components related to ENSO, explicit modelling of time-varying gravitational field 
is needed. An exciting new progress is that the MPI OM group has developed a tidal forcing option to include 
explicit time-varying gravitational forcing from the Sun and Moon including the seasonal, annual, interannual 
and inter-decadal tidal cycles77. For each time step of simulation, the actual positions of the Sun and Moon are 
calculated using the semi-analytic planetary theory Variations Seculaires des Orbites Planetaires (VSOP87)78, and 
the associated gravitational forcing is determined. This tidal forcing option has not been used in the MPI model’s 
climate predictions79 or IPCC runs80. Nevertheless, the MPI model has demonstrated that it is possible to add to 

Figure 4.  Schematic depiction of the physical mechanisms leading to the switch between El Nino and La Nina.
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GCMs explicit time-varying gravitational forcing from the Sun and Moon. The VSOP87 source code is available 
online (http://neoprogrammics.com/vsop87/), and we hope that the climate modelling community could install 
it to the climate models and conduct long-term coupled ocean-atmosphere experiments, which may provide 
insights on the relationship between tidal forcing and ENSO as suggested by the our observational study. If the 
model experiments confirm that lunar tidal forcing drives the observed subsurface ocean waves leading to the 
switch between El Nino and La Nina, this new physics will provide valuable long-range predictability, and help to 
improve the ENSO forecasts and decadal to multi-decadal predictions of global climate change26–30.

Methods
Datasets used in this study are listed in Table 1. The main ENSO index used in this study is Nino3.4 SST from 
ERSST dataset. Linear trend and composite seasonal cycle are first removed from all datasets. Maximum entropy 
spectrum is calculated following Press and Flannery81. The anomalies are then filtered with a 3–6 year butter-
worth filter (Murakami)82. Lag-correlation is calculated with the ENSO index. Statistical significance is evaluated 
following Oort and Yienger83.

The anomalies are also filtered with a 6-year butterworth filter and lag-correlation is calculated with the lunar 
tidal gravitational force. Lunar tidal gravitational force is calculated from two sources. The first is direct calcula-
tion from Moon-Earth distance measured by NASA’s Apollo Landing Mirror experiment from 5 mirrors on the 
Moon deployed by Apollo 11 and others. The second is by calculating the angular momentum of whole Earth 
system, which is anti-correlated with lunar tidal friction. We calculated the whole atmospheric angular momen-
tum using 6-hourly NCEP reanalysis upper air winds for all levels around the globe for 69 years (1948–2016) 
following Weickmann and Berry84, and solid Earth angular momentum from Earth’s rotation speed (length of the 
day measurement) following Rosen et al.85.

Data Availability
Datasets used in this study are from NOAA PMEL TAO Buoy Website, NOAA ESRL climate data archive and 
NCAR Research Data Archive.
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