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Abstract

This review is intended to discuss the newly discovered role of preconditioning which should make it an attractive
therapeutic stimulus for repairing the injured myocardium. We recently found that apart from rendering the
myocardium tolerant to ischemic reperfusion injury, preconditioning also potentiates angiogenesis. Our study
demonstrated for the first time that both ischemic and hypoxic preconditioning triggered myocardial angiogenesis at
the capillary and arteriolar levels which nicely corroborated with the improved myocardial contractile function.
Hypoxic preconditioning resulted in the stimulation of VEGF, the most potent angiogenic factor known to date. In
concert, endothelial cell specific tyrosine kinase receptors, Tie 1, Tie 2 and Flt-1 and Flk-1 were also significantly
enhanced in the preconditioned myocardium. The redox-regulated transcription factor NFkB was found to play an
essential role in the preconditioning regulation of angiogenesis. 
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Introduction

Coronary heart disease is the primary cause of
cardiovascular death. After myocardial infarction
(MI), there is a progressive myocardial remodeling
characterized by left ventricular (LV) dilation,
contractile dysfunction, myocyte hypertrophy and
increased matrix protein formation. Ischemic
preconditioning provides the most powerful form of
endogenous protection against lethal ischemic
injury. The classical preconditioning can be induced
by a variety of stimuli other than ischemia. Hypoxia
[1-3], calcium [4], adenosine agonists [5] α1-
adrenergic agents [6], muscarinic agonists [7], and
stretch [8] have been used as preconditioning
stimulus to induce tolerance of heart to the
subsequent ischemic episode. Hypoxia , an element
of ischemia, plays an important role in the
cardiovascular system. First described by Neely
and Grotyohann in 1984 [9], hypoxic
preconditioning, like ischemic preconditioning, can
attenuate stunning caused by repeated coronary
artery occlusions [1], and enhance postischemic
recovery of myocardial function [2]. We have
recently shown that hypoxic preconditioning can
exert potent cardioprotective effect by upregulating
antioxidant reserve of the heart [10]. During the last
several years, our laboratory has studied
extensively the molecular mechanisms of
preconditioning-mediated signal transduction. Our
laboratory was the first to demonstrate a
preconditioning-mediated signal transduction
cascade triggered by tyrosine-kinase and coupled to
phospholipase D leading to the activation of MAP
kinases [11]. We were also among the first to
demonstrate the involvement of p38 MAP kinase in
preconditioning resulting in the activation of
MAPKAP kinase 2 [12]. Additionally, we
documented that translocation and activation of the
nuclear transcription factor NFκB plays an essential
role in preconditioning [13]. 

Angiogenic therapy for the human heart is
currently being vigorously pursued. In the past ten
years, alternative revascularization/angiogenesis
strategies have progressed from bench to bed side,
focussing on the capillary sprouting and/or growth
of new vessels to replace the old. However most of
the strategies involves the delivery of growth
factors. Very little success with these strategies has

been demonstrated so far for various reasons. Very
recently, we have demonstrated that both hypoxic
as well as ischemic preconditioning, can stimulate
myocardial angiogenesis, to an extent sufficient to
exert significant cardioprotection in a rat model of
myocardial infarction progressing to heart failure as
evidenced by increased capillary/arteriolar density
and enhanced ventricular contractile functional
reserve. The intention of this report is to review
how preconditioning potentiates angiogenic
response and to clarify the role of redox signaling in
the regulation of preconditioning-mediated
angiogenesis.

Angiogenesis by ischemic preconditioning

Tissue such as myocardium can be adapted to
ischemic stress by repeatedly subjecting it to short-
term reversible ischemia each followed by another
short duration of reperfusion [12, 13]. This
phenomenon, known as ischemic preconditioning
or ischemic adaptation, causes the production of
oxidative stress leading to the induction of gene
expression which is subsequently translated into the
development of beneficial proteins responsible for
the heart’s defence [14, 15].

Substantial evidence exists to support the notion
that oxygen-derived free radicals are generated
during the reperfusion of ischemic myocardium
resulting in the development of oxidative stress.
Ischemia was found to induce angiopoietin /Tie
receptor system in a focal cerebral ischemia model
[16]. Myocardial adaptation to ischemic stress in
stunned pig myocardium demonstrated the
induction of c-jun, c-fos, Egr-1 and jun-B that may
be involved in repair process of angiogenesis [17].
Adenosine is known to limit the degree of vascular
injury during ischemia and reperfusion by
inhibition of oxygen free radical release which
prevents endothelial cell damage and that might
help to preserve endothelial cell function and
microvascular perfusion [18]. In our ischemic
preconditioned rat myocardial infarction model, we
were able to induce angiogenesis after
preconditioning. Recently our study demonstrated
that in vivo brief repetitive cycles of coronary artery
occlusion (5 min) followed by short duration of
reperfusion (10 min) triggered myocardial
angiogenesis at the capillary and arteriolar (Fig. 1
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and 2) levels which nicely corroborated with the
improved myocardial contractile function [19].

Angiogenesis by hypoxic preconditioning

There are numerous reports on the effects of
environmental hypoxic exposure on cardiac

pathophysiology. Hypoxia is characterized by
inadequate oxygen delivery to the tissue such as
myocardium with a resulting imbalance between
oxygen demand and energy supply. The possibility
that such hyoxic exposure can potentially act as a
preconditioning stimulus, however, has not been
adequately considered. A strong resemblance exists
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Fig. 2 Immunohistochemical analysis (after one week) of smooth muscle actin labelling of vascular smooth muscle
cells. CMI: Control MI group; IPMI= Ischemic preconditioned, MI group.

CMI IPMI

Fig 1   Immunohistochemical analysis of CD 31 labelling of endothelial cells. CMI = Control, MI group; IPMI=
Ischemic preconditioned, MI group.

CMI IPMI



between the patterns of acute stress response
induced by hypoxia/ reoxygenation, ischemia/
reperfusion or any means of generating ROS. 

Hypoxia has been found to be the strongest
inducer both in vitro and in vivo, of vascular
endothelial growth factor (VEGF) which serves as
a major angiogen in normal cardiac development
[20,21]. Tissue hypoxia exerts a proangiogenic
action through various angiogenic factors, the most
notable being vascular endothelial growth factor
(VEGF). VEGF is mainly associated with initiating
the process of angiogenesis through the recruitment
and proliferation of endothelial cells.VEGF, a
protein coded by a 7-exon gene localized on
chromosome 6, serves as a major angiogen in
normal cardiac development [22]. We found that
non-lethal moderate hypoxic challenge is capable
of increasing protein levels of important angiogenic
factors and their receptors in the adult rat
myocardium. Immunohistochemical analysis of
VEGF revealed a diffuse pattern of distribution
throughout the ventricular myocardium with strong
localization around the coronary arterial wall where
both coronary endothelium as well as vascular
smooth muscle appeared to stain positive for VEGF
(Fig. 3). Hearts obtained from rats which had been
subjected to hypoxia followed by a 24 hour period
of reoxygenation displayed a progressive increase
in intensity of staining for VEGF with increasing
durations of hypoxia. Although higher in intensity
as compared to control, the distribution pattern
remained diffuse and there were no observable
areas of localization around capillaries. However,
VEGF remained strongly localized around the
coronary arteries. VEGF migrated in SDS-PAGE as
a dimer of approximately 40 KDa and a monomer
of 20 kDa only (Fig. 4). The expression patterns of
the two VEGF forms seem similar although the
level of the expression pattern seems significantly
higher in the case of VEGF dimer. In three different
experiments performed in triplicate, significantly
increased VEGF expression (about 50% compared
to the control) was observed within 30 min of
hypoxic challenge which remained upregulated at
the same level even after 4 hrs of hypoxia. VEGF
receptors, Flk-1 and Flt-1 were also found to be
upregulated by hypoxic preconditioning (Fig. 4). A
modern experimental strategy for treating
myocardial ischemia is to induce neovascu-
larization of the heart by use of “angiogens”,

mediators that induce the formation of blood
vessels, or angiogenesis [19, 20].

Angiogenic factors

VEGF-System

The process of angiogenesis is regulated by the
signals obtained from the transmembrane receptor
tyrosine kinases (RTKs) and non-receptor tyrosine
kinases (Src family) of endothelial cells. Flk-1 and
Flt-1 are two such RTKs , which together with their
ligand VEGF, have been shown to control blood
vessel development during embryogenesis [21,22].
This receptor/ligand system has been shown to
augment neovascularization [23-26]. VEGF is not
only an endothelial cell-specific angiogenic factor
but also a critical regulator of angiogenesis that
stimulates proliferation, migration, and proteolytic
activity of endothelial cells [27]. Yet the signaling
pathways that modulate the mitogenic effects of
VEGF in vascular endothelial cells are still ill
defined [28]. A recent study demonstrated VEGF
localization and expression in the embryonic/fetal
heart and remained high during the early postnatal
period when capillary proliferation is high [29].

ANG-Tie system

The Tie receptors, Tie-1 and Tie-2, are among many
receptor tyrosine kinases expressed on endothelial
cells [30]. These unique RTKs have received great
attention for their possible function in angiogenesis
[31-35]. The multiple gene family motifs that
comprise the Tie RTKs has led to the notion that
Tie-1 and Tie-2 may play a role in hematopoietic
cell differentiation and/or in blood endothelial cell
interactions [36,37]. Recently, the ligands of the
Tie-2 receptor have been identified as Ang-1 and
Ang-2, also known as angiopoietins. The name
angiopoietin reflects the role of this protein in
angiogenesis [38] and its potential role in
hematopoiesis. Ang-1 is the major physiological
ligand for Tie-2 which is responsible for recruiting
and sustaining periendothelial support cells [39].
Ang-2 is found to be responsible in disrupting
vessel formation in the developing embryo by
antagonizing the effects of Ang-1 and Tie-2.
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Fig. 3   Immunohistochemistry for VEGF Representative sections of rat ventricular myocardium immunostained for
VEGF.

Control 3 hr. hypoxia + 24 hr. reoxy.

Fig. 4   Representative
western blots showing time
course of the early effects of
systemic hypoxia on
expression of VEGF, Flk-1
and Flt-1 in rat
myocardium in vivo. VEGF
monomer proteins were
expressed as 40 kDa and 20
kDa bands whereas Flk-1
and Flt-1 proteins were
expressed as 150 kDa and
200 kDa respectively.
Similar results were
obtained in six independent
experiments performed in
triplicate. Densitometric
scanning of blots were used
to determine levels of
proteins relative to baseline
control (Lane 1). Lane 1:
Baseline; Lane 2: 60 min of
hypoxia; Lane 3: 2 hrs of
hypoxia; Lane 4: 4 hrs of
hypoxia. All the animals
after hypoxia were exposed
to 24 hrs of reoxygenation. 
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Therefore Ang-2 represents a natural Ang-1/Tie-2
inhibitor. Several reports have already established
the involvement of Ang-1 in the maturation and
stabilization of developing neovasculature [38]
whereas Ang-2 may cause destabilization required
for additional sprout formation [40]. Tie-1 and Tie-
2 are homologous to each other, but unlike the
VEGF receptors, they contain matrix association
motifs in their extracellular domains. Both are
expressed very early in development [41]. Tie-2 is
expressed in the blood islands and in
intraembryonic angioblasts, where it appears earlier
than von Willebrand factor. 

Capillary growth is known to be a rapid process
and is promoted by the synergestic effect of βFGF
and VEGF. Most recently it was demonstrated that
in a rat model of myocardial regional ischemia-
reperfusion, LPS pretreatment reduced infarct size
and this protection against myocardial infarction
was preceded by cardiac expression of βFGF and
VEGF, and accompanied by an increase in
myocardial capillary density. It was also shown by
double immunofluorescent examination of
myocardial microvascular density that myocardial
capillary density was significantly increased after 3
days of LPS treatment [42]. It is known that
inflammation , like ischemia and hypoxia, induces
the expression of angiogenic growth factors,
specifically bFGF and VEGF, leading to
microvasculature growth [43-45]. It is
demonstrated that LPS administration increases
both circulating and myocardial levels of the
proinflammatory cytokine TNF-α [46]. There are
several reports which suggests TNF-α as a pro-
angiogenic agent [47-49]. 

Recent studies have demonstrated that
administration of βFGF or VEGF to the heart can
protect ischemic myocardium by the induction of
angiogenesis [50-52]. In another study it was shown
that addition of a high concentration of VEGF to
hyperkalemic cardioplegia solution improved
functional recovery after 120 min of hypothermic
global ischemia in the isolated rat heart model. This
finding establishes that growth factor, VEGF has a
direct cardioprotective effect [53]. Among various
triggers of angiogenesis, tissue hypoxia has been
identified as being a particularly important stimulus
for the induction of new vessel growth [54]. Tissue
hypoxia exerts pro-angiogenic action through
various angiogenic factors, the most notable being

vascular endothelial growth factor which has been
chiefly associated with initiating the process of
angiogenesis through the recruitment and
proliferation of endothelial cells. Flt-1 (VEGFR-1)
and Flk-1/KDR (VEGFR-2) are endothelial specific
tyrosine kinase receptors of VEGF through which
its effects are primarily mediated [55,56]. The fact
that VEGF, Flk-1 and Flt-1 expressions are
upregulated in response to hypoxia in vitro and in
vivo [57-60] and to ischemia in vivo [61-63] is well
established, although there are conflicting reports
with regard to Flk-1 in vitro, suggesting the
involvement of adenosine acting as a paracrine
mediator through the A2 receptor [64,65]. The
biological functions of VEGF, triggered by external
stimuli, are initiated through the activation of
intracellular signal transduction cascades involving
specific kinases. It is reported that a rapid increase
in VEGF expression under hypoxic challenge is due
to the presence of hypoxia–inducible factor (HIF)
sensitive elements located in the VEGF promoter
which upregulated the transcription factor of VEGF
[66]. Furthermore, endothelial cells detect external
angiogenic stimuli via oncogenes [67]. 

Regulation of angiogenic factors 
by MAP kinases

Mitogen activated protein kinase (MAPK)
activation is found in cells exposed to mitogens,
including bFGF (basic fibroblast growth factor)
[68]. In an another study it was shown that the
reduced activation of MAPK by antisense
expression blocks the proliferative action of bFGF
in fibroblasts [69]. Recently, it was reported that
VEGF stimulated phosphorylation of MAPK in rat
liver sinusoidal endothelial cells [70]. Another
study demonstrated the ability of VEGF to
upregulate Ang-2 through its Flk-1 receptor via the
PKC and MAPkinase pathway [71]. There are
several members of the PKC protein family.
However, PKC -a and -b are not observed in adult
myocytes, but PKC-e, -d, -z are present in
detectable amounts [72]. Whether PKC-e, -d, -z
have any role in angiogenesis is a relevant
unanswered question. Inhibitors of PKC are
available [73], and this may allow such an analysis.
Most of the studies are done in vitro to show the
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molecular regulation of angiogenic factors by
MAPkinases. The role of PKC and MAPkinases in
the myocardial angiogenesis in vivo is yet to be
established. 

Involvement of transcription factors 
in the process of angiogenesis

Several transcription factors, including HIF-1 [74],
AP-1 [75], and NFκB [76], are known to be
regulated by hypoxia. The activated form of NFkB
is a heterodimer which consists of two proteins, a
p65 subunit and a p50 subunit. In normal cells
NFκB is maintained in the cytoplasm by protein-
protein interaction with inhibitor IκB. Recently it
was demonstrated in mice model that NFκB
activation is obligatory for retinal angiogenesis and
it was also documented that the administration of
pyrrolidine dithiocarbamate (PDTC) suppressed
retinal neovascularization [77]. In another study, it
was documented that hypoxia/reoxygenation, and
not hypoxia alone, can cause formation of reactive
oxygen species (ROS) and the activation of the
NFκB both of which were inhibited by ROS-
scavengers, and was accompanied by inhibition of
tube formation in angiogenesis. Therefore, in

clinical setting of hypoxia/reoxygenation during
ischemic pre-conditioning, the activation of ROS-
dependent intracellular signaling may accelerate the
rate of neovascularization also in vivo [78].
Hypoxia has been shown to induce NFkB activation
and increased IL-8 as well as VEGF gene
expression in glial cells in vitro. Furthermore,
PDTC, a very specific inhibitor of NFkB activation,
prevented the induction of IL-8 gene expression,
but had no effect on the VEGF gene in in vitro
study. This finding suggested that IL-8 gene is
induced by hypoxia and mediated by NFkB may
contribute to the pathogenesis of intraoccular
neovascularization [79]. 

The AP-1 binding complex consists of either
Jun-Fos heterodimers or Jun-Jun homodimers [80].
Several studies have shown that AP-1 and NFkB
are differentially activated by oxygen tension.
Several potential binding sites for the transcription
factors AP-1, AP-2, and SP-1 are localized in the
VEGF gene promoter [81]. TNFα or bFGF appears
to stimulate expression of the VEGF gene through
SP-1 on its promoter [82]. Among eight human
glioma cell lines, cellular mRNA levels of
transcription factors SP-1 and AP-1 were found to
be closely correlated with those of VEGF [83]. 
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Fig. 5  TUNEL assay for apoptotic cardiomyocytes (brown in colour) were performed (after 2 days of LAD
occlusion on confocal laser microscopy. Representative photomicrographs showing immunohistochemical staining
of extended DNA (shown by arrows). Where CMI= Control, myocardial infarction (MI), HMI= Hypoxic
preconditioned group followed by LAD occlusion. Magnification x1200.

CMI HMI



VEGF mediated angiogenesis 
is associated with enhanced cell survival

Recent report suggested VEGF-induced expression
of Bcl-2 which eventually functions to enhance the
survival of endothelial cells in the toxic, oxygen-
deficient environment [84]. This report points out
that enhanced level of VEGF may have some role in
the inhibition of endothelial cell apoptosis. In our
hypoxic preconditioned rat myocardial model, we
have found cardiomyocyte apoptosis to be inversely
proportional to VEGF expression [85] (Fig. 5).
Another very recent investigation was that VEGF a
potent promoter of angiogenesis, upregulates the
expression of the intracellular adhesion molecule-1
(ICAM-1) through a novel pathway that includes
phosphatidylinositol 3 OH-Kinase (PI3K) and AKT
resulting in the migration of brain microvascular
endothelial cells. It was found that in vitro VEGF
treatment phosphorylates AKT in a PI3K-
dependent manner [86]. The PI3K/AKT pathway
appears to be a general mediator of cytokine
induced survival and anti-apoptotic signals.
Recently, pro-apoptotic factor, BAD, was reported
to be phosphorylated by activated AKT on a serine
residue causing BAD to dissociate from BCL-XL.
No in vivo study have been done so far to
investigate the involvement of PI3K/AKT pathway
and endothelial cell survival. Another recent study
reported inhibition of endothelial cell apoptosis by
Ang-1 via the Akt/survivin pathway which
contributed Ang-1 mediated stabilization of
vascular structures during angiogenesis [87]. It is
also reported that activation of the MAPK pathway
together with inhibition of SAPK/JNK activity by
VEGF appears to be a key event in determining
whether an endothelial cell is going to survive or
will undergo programmed cell death. It is clear
from the above discussion that inhibition of
apoptosis may represent a major aspect of the
regulatory activity of VEGF on the vascular
endothelium for angiogenesis. 

Summary & conclusion

In summary, the above discussion should make it
clear that apart from rendering the myocardium
tolerant to ischemic reperfusion injury, precon-

ditioning also potentiates angiogenic response.
Recently, our study demonstrated for the first time
that both ischemic and hypoxic preconditioning
triggered myocardial angiogenesis at the capillary
and arteriolar levels which nicely corroborated with
the improved myocardial contractile function.
Hypoxic preconditioning resulted in the stimulation
of VEGF, the most potent angiogenic factor known
to date. In concert, endothelial cell specific tyrosine
kinase receptors, Tie 1, Tie 2 an Flt-1 and Flk-1
were also significantly enhanced in the
preconditioned myocardium. The redox-regulated
transcription factor NFkB was found to play an
essential role in the preconditioning regulation of
angiogenesis.
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