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Abstract

Adenosine is a powerful modulator of neuronal function in the mammalian central nervous system. During a variety
of insults to the brain, adenosine is released in large quantities and exerts a neuroprotective influence largely via the
A1 receptor, which inhibits glutamate release and neuronal activity. Using novel enzyme-based adenosine sensors,
which allow high spatial and temporal resolution recordings of adenosine release in real time, we have investigated
the release of adenosine during hypoxia/ischemia in the in vitro hippocampus. Our data reveal that during the early
stages of hypoxia adenosine is likely released per se and not as a precursor such as cAMP or an adenine nucleotide.
In addition, repeated hypoxia results in reduced production of extracellular adenosine and this may underlie the
increased vulnerability of the mammalian brain to repetitive or secondary hypoxia/ischemia.
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Adenosine as an ubiquitous
modulator of neuronal function

The purine nucleoside adenosine plays an important
modulatory role in a wide variety of physiological
processes such as the regulation of sleep [1] and
pain [2], control of transmitter release [3], cardiac
function [4] and spinal motor patterns [5]. 

Adenosine exerts its actions via four G-protein-
coupled receptors (A1, A2A, A2B, A3) all of which
have been cloned from a variety of mammalian
species [6, 7]. The A1 receptor has the widest tissue
distribution and via Gi/Go exerts the profound
inhibitory influence of adenosine on neuronal activ-
ity. A2A receptors have their highest expression in
striatum with lower levels of expression elsewhere
in the brain. A2A and A2B receptors (the mRNA of
the latter are found at low levels in brain) are cou-
pled to Gs (Golf in striatum) and results in stimula-
tion of cAMP production in a variety of tissues
although stimulation of IP3 production has also
been reported [7]. The distribution of A3 receptor
mRNA is described as intermediate in brain, being
found in the hippocampus and cerebellum, and the
receptor can couple to both Gi and Gq [6, 7].

Adenosine is the primary full agonist at all four
adenosine receptor subtypes. In CHO cells transfect-
ed with human adenosine receptors, the rank order of
potency (EC50 value) for the effects of adenosine
against each of the receptors was 54 nM (A1), 56 nM
(A3), 960 nM (A2A) and 11.3 µM (A2B) [8], although
the situation at native receptors in vivo may differ
from that in recombinant systems. However, inosine,
the metabolite of adenosine formed by the action of
adenosine deaminase (EC 3.5.4.4; Fig. 1), is an ago-
nist at A3 receptors with an EC50 for rat mast cell
degranulation of around 2 µM [9]. At recombinant
human adenosine receptors, inosine was a much
more potent agonist at A3 receptors (EC50 = 81 nM)
versus A1 receptors (EC50 = 6.7 µM), whilst being
ineffective against A2 receptors [8]. That inosine is a
potent agonist at A3 receptors has implications for
pathological conditions and will be discussed later.

Adenosine in CNS disease and injury

In addition to a housekeeping role for adenosine,
adenosine and adenosine receptors have also been

implicated in several chronic neurodegenerative dis-
orders [10]. In Alzheimer’s Disease, the consumption
of caffeine (a broad spectrum adenosine receptor
antagonist) may lessen the occurrence of Alzheimer’s
Disease [11]. In Parkinson’s Disease, adenosine A2A
receptor antagonists such as KW-6002 (Istradefylline)
reduce Parkinsonian symptoms in humans [12, 13]
and adenosine A1 receptor agonists and A2A receptor
antagonists produce beneficial effects in animal mod-
els of Huntington’s disease [14]. 

Over and above this role for adenosine and
adenosine receptors in chronic conditions, adeno-
sine is released in large quantities during many
acute insults to the mammalian, but more perti-
nently human, central nervous system (CNS) such
as ischemia [15, 16], trauma [17, 18] and seizure
activity [19]. Under these conditions adenosine is
believed to exert an important protective influ-
ence. During pathologies which involve reduced
cerebral blood flow, the release of adenosine is
initiated by smaller reductions in blood flow than
that required for the release of the potentially
excitotoxic glutamate [20]. Thus adenosine initi-
ates its retaliatory action ahead of the release of
glutamate.

Interactions between the adenosine
receptors

Adenosine exerts its protective actions largely via
A1 receptors through a combination of pre and
postsynaptic effects on neuronal function. These
actions, reduction of glutamate release (Fig. 2) via
inhibition of presynaptic calcium channels, direct
interference with the vesicle release machinery and
potentially activation of presynaptic K+ channels
[3] coupled with activation of postsynaptic hyper-
polarizing currents [21] and perhaps direct inhibi-
tion of the NMDA receptor [22] effectively shuts
down neuronal activity, preventing spread of exci-
tation throughout the brain and reducing metabolic
demands. Manipulations which increase adenosine
A1 receptor activation (agonists, uptake or
metabolism inhibitors) generally reduce injury to
brain tissue whereas reduction in the activation of
A1 receptors (antagonists, promotion of
metabolism, A1 knockouts) worsen neuronal dam-
age [23–25].
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However, despite the beneficial effects of
adenosine release, there can be deleterious conse-
quences through activation of A2A and A3 recep-
tors. This complex issue revolves around whether
agonists or antagonists of these receptors (includ-
ing those for A1 receptors; [26]) are given acutely
or chronically. Generally, antagonists of A2A and
A3 receptors are protective when given acutely,
whereas agonists are harmful, but the situation
reverses with chronic pre-treatment of animals
[27, 28]. Indeed, A3 receptor knockout mice
showed enhanced neurodegeneration and cognitive
dysfunction in response to chronic intermittent

CO-induced hypoxia, and both of these outcomes
could be mimicked in wild type mice by repeated
application of MRS 1523, an A3 receptor antago-
nist [29]. Generation of A2A knockout mice has
added another level of complexity to this story: in
adult A2A knockouts, focal cerebral ischemia
results in reduced cerebral infarction and improved
behavioural outcome [30], whereas in neonatal
mice subjected to hypoxia/ischemia, A2A knockout
resulted in increased brain injury and subsequent
impaired locomotor activity in adulthood [31]. 

At least part of the complex interactions
between the various adenosine receptors can be
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Fig. 1 Schematic representation of the production, release and metabolism of adenosine. Molecules circled can be
released directly and, in the case of ATP and cAMP, converted via ectonucleotidases to adenosine [39]. Notice that
the formation of xanthine, as well as transport of adenosine across the blood brain barrier into the systemic circula-
tion, represent sources of adenosine loss from the central nervous system, whilst S-adenosyl-L-homocysteine repre-
sents an intracellular “sink” for adenosine. AD, adenosine deaminase (EC 3.5.4.4); PNP, purine nucleoside phos-
phorylase (EC 2.4.2.1); HGPRT, hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8); XO, xanthine oxi-
dase (EC 1.1.3.22); SAHase, S-adenosyl-L-homocysteine hydrolase (EC 3.3.1.1); AdK, adenosine kinase (EC
2.7.1.20) 5’N, 5’-nucleotidase (EC 3.1.3.5); AK, adenylate kinase (EC 2.7.4.3); AC, adenylate cyclase (EC 4.6.1.1);
PDE cAMP phosphodiesterases (EC 3.1.4.17); AMPD, AMP deaminase (EC 3.5.4.6); AS, adenylosuccinate synthase
(EC 6.3.4.4); AL, adenylosuccinate lyase (EC 4.3.2.2); IMP, inosine monophosphate.



explained by findings that both A2A and A3 recep-
tors can reduce the inhibitory actions of A1 recep-
tors [32, 33], and at least for the A2A receptor, an
inhibitory influence which increases with develop-
ment and with increased density of A2A receptors
[34]. Furthermore, the potential for A3 receptor
activation by inosine, which also rises dramatically
during hypoxia/ischemia, strengthens the likelihood
that some form of desensitisation of A1 receptors
might occur during or after hypoxia/ischemia. Such
desensitisation would promote increased glutamate
release and neuronal activity, factors that would
predispose to greater neuropathology. We have pro-
posed [35] that this could potentially explain the
dramatic recovery of excitatory synaptic transmis-

sion observed in the face of large post-hypoxic con-
centrations of extracellular adenosine (and inosine)
(Fig. 3). The interactions between the adenosine
receptors contributes, at least in part, to the “fine-
tuning” role of adenosine in the mammalian CNS
[6, 36].

Source of extracellular adenosine

In order for adenosine to exert its modulatory/pro-
tective role and for these various interactions to
occur requires the release of adenosine into the
extracellular space. It will come as a surprise that
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Fig. 2 Dominant role played by an accumulation of extracellular adenosine and activation of adenosine A1 recep-
tors in the hypoxic depression of excitatory synaptic transmission in area CA1 of the rat hippocampus. Under con-
trol conditions (squares; n = 3), excitatory synaptic transmission is rapidly depressed by hypoxia (black bar). In the
presence of the A1 antagonist DPCPX (circles, n = 3 additional slices; 100 nM) the hypoxic depression of the field
excitatory postsynaptic potential (fEPSP) is greatly attenuated. Inset field excitatory postsynaptic potentials (fEPSPs)
are taken at the times indicated before (a, d), during (b, e) and after (c, f) the period of hypoxia in the absence (a,b,c)
or presence of DPCPX (d,e,f).



the mechanism by which extracellular adenosine
levels are increased during pathologies is still
unclear. The scheme in Fig. 1 alludes to the com-
plexity of adenosine production, metabolism and
release, but belies the fact that adenosine can be
released by a whole host of brain cells including
neurones, interneurones, glial and endothelial cells.
Dunwiddie and Masino [37] explain that the release
of adenosine reflects the brain’s inability to synthe-
sise enough ATP to meet demands imposed upon it,
either because the substrates are absent (eg during

hypoxia/ischemia) or because energy requirements
have increased (eg during seizures). Thus, the
potential cellular sources of adenosine and the ways
in which ATP can be depleted imply that the mech-
anism by which adenosine is released may depend
upon the nature of the stimulus. 

Given that ATP can be released directly as a neu-
rotransmitter [38], extracellular adenosine can also
be formed via the actions of ectonucletotidases
[39]. Indeed activity-dependent changes in synaptic
responses attributable to adenosine A1 receptor
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Fig. 3 The relationship between extracellular adenosine and the depression of excitatory synaptic transmission is not
symmetrical. Experiment in which inhibition of synaptic transmission (squares) during hypoxia (grey box) and post-
hypoxic recovery is compared with adenosine production measured from within area CA1 of the hippocampal slice
using the MK-II adenosine sensor inserted into stratum radiatum (circles). Note full depression of fEPSP (inset fEPSP,
b) at low concentrations of extracellular adenosine (e.g. 10 µM), whereas full recovery (inset fEPSP, c) is observed in
the face of higher adenosine concentrations (e.g. 20 - 30 µM). The top inset plots inhibition of fEPSP versus adeno-
sine concentration. Arrows depict direction of time during the experiment. Note shift in IC50 (dotted lines) from 7 µM
during the depression phase to 38 µM during recovery. The lower inset shows the average of four consecutive fEPSPs
taken at the three times indicated (a, b, c), at different levels of extracellular adenosine before, during and after the
period of hypoxia, respectively. Arrowhead indicates the occurrence of the post-hypoxic purine efflux during which
time the fEPSP paradoxically recovers. Taken from [35] with permission from Blackwell Publishing.



activation have been observed in hippocampus
[40–42], nucleus accumbens [43] and dorsal horn
neurones that release ATP as a co-transmitter with
GABA [44]. This might be especially pronounced
during seizure activity, which in many models is
exaggerated by adenosine A1 receptor antagonism
[45] (Fig. 4). However, we, as others, have little
evidence that the extracellular release and
metabolism of ATP contributes appreciably to the
accumulation of extracellular adenosine, at least in
the early stages of hypoxia in vitro (Fig. 5) or in
vivo [46]. Indeed the release of adenosine during
hypoxia is distinctly not Ca2+-dependent as
removal of extracellular Ca2+ actually increases
ischemic [47] or hypoxic [48] adenosine release,
obviating a need for Ca2+-dependent transmitter
release as a trigger for adenosine release.
Furthermore, hypoxic/ischemic adenosine release is

not affected by ionotropic glutamate receptor antag-
onism [35, 47] arguing against glutamate receptor
activation as being a necessary stimulus for adeno-
sine release. Similarly, blockers of volume-regulat-
ed anion channels do not affect the adenosine-
dependent depression of excitatory synaptic trans-
mission [49], suggesting that they too are not
recruited during the early stages of
hypoxia/ischemia, if at all, whereas they clearly act
as a conduit for glutamate and aspartate release dur-
ing metabolic stress [50–54].

More likely the breakdown of intracellular ATP
will give rise initially to the release of adenosine
per se via equilibrative nucleoside transporters.
Nonetheless, under more severe conditions, ATP
release and adenosine derived from ATP release has
been observed in vitro [55, 56] and in vivo [57].
Indeed, an increase in the expression and activity of
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Fig. 4 Endogenous adenosine exerts a profound inhibitory influence on seizure activity in area CA1. Experiments
performed in nominally Mg2+-free aCSF in which the top panels represent basal electrical activity and the lower pan-
els depict stimulus-evoked epileptiform activity (2 s, 60 Hz stimulation denoted by black bar). Periodic deflections,
most clearly observed in the top left panel, reflect fEPSPs evoked at 15 s intervals to monitor basal synaptic trans-
mission. Spontaneous seizure activity was seldom observed (20 % of slices) in Mg2+-free aCSF (top left), but was
greatly increased in frequency (> 70 % of slices) and intensity in slices perfused with the adenosine A1 antagonist
CPT (top right). Similarly, in a different slice, CPT caused a dramatic enhancement in the duration and intensity of
evoked seizure (bottom right) compared to in the absence of CPT (bottom left).
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Fig. 5 Extracellular metabolism of adenine nucleotides does not appreciably contribute to the hypoxic depression
of excitatory synaptic transmission in area CA1 of the rat hippocampus. In contrast to adenosine deaminase (A; cir-
cles; 2 U/ml; n = 6), which metabolises extracellular adenosine, slows the rate at which hypoxia depresses the fEPSP
and allows faster recovery of the fEPSP compared to separate interleaved control experiments (squares; n = 6), nei-
ther the cAMP transport inhibitor probenecid (B; circles; 1 mM; n = 5) nor the ecto-5’-nucleotidase inhibitors α,β-
methyleneadenosine 5’-diphosphate (C; AOPCP; circles; 300 µM; n = 11) or GMP (D; circles; 2 mM; n = 8) had any
appreciable effect on the depression of the fEPSP induced by hypoxia when compared to interleaved controls
(squares; n = 6, 7 and 11 for probenecid, AOPCP and GMP, respectively). Although probenecid had no effect on the
post-hypoxic recovery of the fEPSP, GMP, and to a lesser extent AOPCP, did seem to retard recovery. At present we
have no explanation for this observation although it is unlikely to be related to their ability to block ecto-5’-nucleoti-
dase. GMP, AOPCP and probenecid depressed the basal fEPSP (25, 15 and 20 %, respectively). For GMP this may
be related to the antagonism of glutamate receptors (eg [91]). A depression caused by AOPCP has been observed pre-
viously [92] and may be related to inhibition of A2A receptor-mediated excitation [93]. The depression caused by
probenecid, although not observed in another study in CA1 [94], could potentially be due to probenecid-stimulated
increase in kynurenic acid, an endogenous glutamate receptor antagonist [95, 96]. A caveat to the use of ecto-
nucleotidase inhibitors should be added: they may be less effective against very high concentrations of released
nucleotides [97]. Small differences between A,B and C,D in the rate of depression of the fEPSP by hypoxia are due
to different set ups being used for the experiments.



several ectonucleotidases after cerebral ischemia in
vivo [58] suggest that ATP may be released directly
during severe ischemia and that its conversion to
adenosine is an attempt to ameliorate the potential-
ly damaging consequences of ATP (P2) receptor
activation [59, 60]. 

Availability of adenosine during
repeated or prolonged
hypoxia/ischemia

Given the importance of the release of adenosine
during hypoxia/ischemia, evidence is accumulating
that the release of adenosine in response to physio-
logical and pathological stimuli is not fixed, but
labile and depends upon prior release of adenosine.
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Fig. 6 Adenosine depletion caused by repeated hypoxia. Experiment in which the Mk-1 adenosine sensor [48, 98],
placed on the surface of the slice, was used to measure extracellular adenosine during two sequential 10 min periods
of hypoxia from the CA1 region of the hippocampal slice. Top panel shows the adenosine signal associated with the
first (solid line) and second (broken line) periods of hypoxia. Notice the rapid release of adenosine and consequent
depression of the fEPSP (bottom panel; squares) during the first period of hypoxia. During the second period of
hypoxia, adenosine release is reduced (top panel, broken line) and the fEPSP takes longer to depress and recovers
quicker (bottom panel, circles). Inset fEPSPs are taken at the times indicated and show the reduced depressant effects
of hypoxia during the second (d, e) compared to the first (a, b,) periods of hypoxia. See also [35, 69].



This is most apparent during pathological condi-
tions where levels of adenosine rise dramatically.
For example, in gerbil striatum and hippocampus,
reduced adenosine release was observed during the
second of two 5 min in vivo global ischemic
episodes given 30 min apart [61]. This led to the
perceptive comment that “…these findings suggest

that the release of adenosine by an ischemia stimu-
lus is reduced by a prior major release of purines”
[61]. More recently, reduced adenosine release was
observed in rat cerebral cortex during the second of
two 10 min periods of global ischemia delivered 2
hours apart [62] and less adenosine-mediated
hypoxic cerebral vasodilatation was observed fol-

370

Fig. 7 Ischemic preconditioning or adenosine depletion? Sequential periods of ischemia (aCSF devoid of glucose
and oxygen; [99]) result in dramatically faster post-ischemic recovery of the fEPSP in area CA1. The top panel shows
the entire time-course of an experiment in which 3 ischemic episodes (black bars) of identical duration were deliv-
ered to the hippocampal slice. The first resulted in a protracted recovery period (compare inset fEPSPs a and b),
whereas the second and third ischemic episodes resulted in very rapid recoveries of the fEPSP (compare inset fEPSPs
b & c and c & d). The lower panel shows only the 50 minutes of the experiment around each of the three ischemic
episodes shown above. Notice how the initial depressions become slower and the recoveries accelerated between the
first (squares) second (circles) and third (triangles) ischemic episodes. Such accelerated recoveries of the fEPSP after
repeated in vitro ischemia has been interpreted as the in vitro equivalent of the ischemic preconditioning phe-
nomenon. However an alternative interpretation is a reduction in the release of extracellular adenosine.



lowing a period of seizure activity in neonatal
piglets [63]. Furthermore, in a murine model of
asphyxia, hippocampal adenosine production did
not scale with the number of hypoxic episodes [64].
In addition, it would seem that during prolonged
ischemia extracellular adenosine levels are not
maintained, but decline over time [20, 65–67].
Adenosine depletion has also been observed during
physiological activity, as opposed to being exclu-
sively associated with insults to the mammalian
brain. In the rat nucleus tractus solitarus in vivo,
two stimulations of the hypothalamic defense area
given 5 minutes apart resulted in reduced adenosine
release during the second stimulation, which was
associated with a shorter period of apnoea [68].
Thus, the labile nature of adenosine availability has
important implications for many physiological and
pathological processes in the mammalian brain.

Implications of adenosine depletion
for neuronal function

On the basis of our observations of adenosine depletion
[35, 69] (and Fig. 6) in which sequential hypoxic
episodes result in reduced production of adenosine, we
have suggested that reduced availability of adenosine
may have deleterious consequences for the mam-
malian brain exposed to repeated or secondary insults.

Since adenosine exerts such a powerful inhibitory
influence of glutamate release during hypoxia
[49, 70, 71] (and Fig. 2), any diminution in adenosine
availability will result in increased glutamatergic exci-
tation. Certainly this can been seen in vitro where
repeated hypoxic episodes are associated with slower
depressions and more rapid post-hypoxic recoveries of
excitatory synaptic transmission [69]. Similarly, obser-
vations of more rapid recovery of glutamatergic trans-
mission on repeated ischemia (Fig. 7) can be interpret-
ed as being due to reduced adenosine availability. 

Depletion of adenosine release will thus predis-
pose to increased glutamate release, increased post-
synaptic depolarization via AMPA and NMDA
receptor activation, increased Ca2+-loading, in-
creased neuronal excitability and increased metabol-
ic demands, with potentially pathological conse-
quences. This hypothesis is a plausible explanation,
at least in part, for the 1 - 4 hour period of increased
vulnerability of the mammalian brain after an initial
injury observed in several in vivo models of ischemia
(e.g. [72, 73]) and trauma (e.g. [74]). 

Potential basis for adenosine
depletion

The mammalian brain uses purine salvage (Fig. 1)
as opposed to purine synthesis to restore nucleotide
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Fig. 8 Depletion of ATP during ischemia. Left panel, normalised ATP/ADP ratio for cerebrocortical brain slices
exposed to hypoxia (circles) or ischemia (squares). Note dramatic decline in ratio during ischemia. Right panel,
HPLC chromatograms from two separate sister slices treated in parallel in control and after 10 mins of ischemia.
Notice the dramatic decrease in ATP and consequent increase in AMP. Modified from [100].



levels [75, 76]. This reliance on salvage makes the
brain, as in heart [77] vulnerable to ATP-depleting
insults. Depletion of adenine nucleotides after
hypoxia/ischemia has been known for many years
[66, 78–82] (Fig. 8). The production of xanthine,
which is not a substrate for purine salvage (Fig. 1),
during cerebral metabolic stress in humans [83, 84]
and animals [62, 85–88] as well as loss of adeno-
sine per se from the brain [15, 16], likely contribute
to reduced post-insult levels of adenine nucleotides.
Indeed inhibition of xanthine oxidase has been
shown to improve post-ischemic levels of adenine
nucleotides [89] as has inhibition of adenosine
transport, perhaps by reducing the loss of adenosine
to the periphery [90]. Since adenine nucleotides are
a primary source of adenosine, hypoxia/ischemia-
or even activity-induced adenine nucleotide deple-
tion may underlie the subsequent reduced produc-
tion of adenosine. It might therefore be expected
that a reduction in cellular ATP would have down-
stream consequences for adenosine availability.

Conclusions

Adenosine is a powerful and ubiquitous modulator of
neuronal function in the mammalian CNS. The
release of adenosine during insults to the brain exerts
an important neuroprotective influence, which can be
disrupted by antagonism of adenosine A1 receptors
or by experimental manipulations designed to reduce
the availability of extracellular adenosine. Surpri-
singly, reduced extracellular adenosine is observed
during repeated hypoxic/ischemic episodes in vivo
and in vitro and it is possible that this period of
reduced adenosine availability may underlie the
increased vulnerability of the mammalian brain to
repetitive or secondary hypoxia/ischemia. Greater
understanding of adenosine availability with a view
to maintaining or improving post-ischemic adeno-
sine levels may thus be of benefit in a range of acute
human neurological conditions.
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