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Idiopathic pulmonary fibrosis (IPF) represents a
specific form of chronic fibrosing interstitial
pneumonia limited to the lung. The disease is
characterized by a fibroproliferative response with
only minor signs of inflammation, and rapid
fibrotic destruction of the organ. In early stages of
IPF, pulmonary function may be normal or only

slightly impaired [1]. The proliferation of
fibroblasts and the accumulation of interstitial
collagens are the causes of progressive lung
fibrosis [2].

It has been estimated that the prevalence of IPF
varies from 3 to 6 cases per 100.000 in the general
population, with male predominance [3, 4]. The
incidence of the disease increases with age and
cigarette smoking has been identified as a
potential risk factor [1, 4]. Numerous viruses have
been implicated in the pathogenesis of IPF, but
there is no clear evidence for a viral etiology [5,
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Abstract

Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic interstitial pneumonia limited to the lung and
characterized by a fibroproliferative response with only minor signs of inflammation, which almost always causes rapid
fibrotic destruction of the lung. In this study, we investigated genomic instability in IPF, using microsatellite DNA
analysis, aiming to detect any specific genetic alterations for this disease. We used 40 highly polymorphic microsatellite
DNA markers, in multiplex PCR assays, to examine 52 sputum specimens from IPF patients versus correspondent
venous blood. Loss of heterozygosity (LOH) was found in 20 (38.5%) patients in at least one locus. These alterations
were found on markers previously associated with lung cancer located on 1p34.3, 3p21.32-p21.1, 5q32-q33.1, 9p21 and
17p13.1 where MYCL1, FHIT, SPARC, p16Ink4 and TP53 genes have been mapped respectively. These data provide
new insights into IPF pathogenesis and a new perspective for its correlation with lung cancer.
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6]. The distribution of this disease does not reveal
any distinct geographical, racial or ethnic
variation [7]. However, approximately 3% of IPF
cases appear to cluster in families, suggesting a
genetic susceptibility in some patients [8-10].

A relationship between IPF and lung cancer has
been suspected since the late 1960 [11, 12], and
10.4% of IPF mortality was reported due to
bronchogenic carcinoma [13]. Whether this results
from the effects of scarring and chronic
inflammation or from an interaction between
cigarette smoking and occupational exposure
remains controversial [14]. On the molecular
level, previous studies have shown that p53,
p21waf1/cip1 and apoptosis machinery alterations
occurred in hyperplastic bronchial and alveolar
epithelial cells of IPF patients [15-18]. Another
feature of neoplastic cells, microsatellite DNA
alterations was also found in IPF sputum [19] and
microdissected lung tissues [20, 21].

In the present study we used multiplex PCR-
based microsatellite DNA analysis comparing
sputum and venous blood specimens from 52 IPF
patients. Forty highly polymorphic markers
located on 1p, 1q, 2p, 2q, 3p, 5q, 6p, 7p, 9p, 11q,
14q and 17p were studied in order to identify
chromosomal regions that may be altered in IPF
patients and thus could be part of the complex
genetic basis of the disease and implicated in its
etiopathogenesis.

Materials and methods

Specimens
Sputum and venous blood specimens were collected
from 52 patients with clinical, radiological (high-
resolution computed tomography, HRCT) and
histological features consistent with IPF, who were
followed at the Department of Pneumology, University
Hospital of Heraklion Crete, Greece. The diagnosis of
IPF was made by surgical lung biopsy (open lung
biopsy or video-assisted thoracoscopic surgery)
showing usual interstitial pneumonia (UIP), the
presence of persistent bilateral crackles on auscultation,
a restrictive ventilatory defect or isolated depression of
gas transfer on pulmonary function testing, the
presence of bilateral abnormalities with a peripheral
distribution and the absence of bilateral patchy
infiltrates on HRCT. Patients with environmental
exposure to a fibrinogen were excluded. Other

exclusion criteria were coexistent chronic disease, lung
infection, or malignancy. The median age of the
patients was 72 years (range 57 to 82 years); 40 of the
patients were male and 12 were female. Thirty-six of
the patients were smokers. The smoking history of the
patients was 29 ± 21 (mean ± SD) pack-years. The
duration of the disease was 3.3 ± 1.4 years. Extra care
was taken to ensure that the cell content of IPF patients
and normal control subjects remained similar in the
morning spontaneously expectorated sputum of the two
groups. To ensure that sputum samples were from the
lower respiratory tract, they were microscopically
examined and considered adequate if squamous
epithelial cells were less than 10 per low-power field
[22]. Viability measurements were performed as
previously described [23]. Mean cell viability was
estimated as 48%. Informed consent was obtained from
all patients participating in the study, and the study was
approved by the medical research ethics committee of
University Hospital of Heraklion.

DNA extraction
DNA was isolated from peripheral white blood cells
and sputum cells using the IsoQuick Nucleic Acid
Extraction kit (ORCA; Research, Inc., Bothell, WA),
according to the manufacturer’s instructions.

PCR parameters
Forty microsatellite DNA markers were amplified in 11
panels of 3 and 4-plex reactions (Table 1). We
introduced 100ng of genomic DNA in a PCR reaction
mixture containing 1X PCR buffer, 400 µM dNTPs,
2.66 mM MgCl2 and 0.35U Taq DNA polymerase (Life
Technologies Ltd., Gaithersburg, Scotland, United
Kingdom). To optimize the reactions, different
concentrations of each marker primer set were used
(Table 1). Amplification parameters were: initial
denaturation for 3 min; 30 cycles at 94ºC for 30 sec,
55ºC for 30 sec and 72ºC for 30 sec; final extension
step at 72ºC for 10 min. The PCR assays were done in
a PTC-100 programmable thermal controller (MJ
Research, Inc., Watertown, MA, USA).

Microsatellite alteration analysis
The PCR products were analyzed by using 10%
polyacrylamide gel electrophoresis (29:1 ratio of
acrylamide to bisacrylamide) and silver staining. Gels
were sealed in a plastic transparent bag and scanned on
an Agfa SnapScan 1212u (Agfa-Gevaert N.V., Mortsel,
Belgium). Integrated density (ID) was calculated as
(Mean OD - Background OD)*pixels, where OD stands
for optical density. OD of each band was used as
quantitative parameter and was calculated by digital
imaging using the Adobe Photoshop 6.0 software
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Marker Cytogenetic location Heterozygosity Allele size range
Optimal multiplex
PCR primer con-
centration (nM)

Panel*

D1S416 1q24 0.82 146-162 130 I
D1S186 1p34.3 0.84 82-106 100 G
D1S116 1p31-p21 0.65 89-101 100 F
APOA2 1q21-q23 0.70 131-145 150 E
D1S104 1q2-q23 0.76 152-168 150 G
D1S180 1q42 0.90 163-189 150 H
ACTN2 1q42-q43 0.50 105 120 H
D2S119 2p22.3-p16.1 0.80 221 175 A
D2S123 2p22.3-p16.1 0.76 196 140 A
D2S177 2p22.3-p16.1 0.85 276 225 A
D2S147 2p22.3-p16.1 0.73 111 80 A
D2S2182 2p22.3-p16.1 0.78 234 180 C
D2S288 2p22.3-p16.1 0.62 276-284 250 C
D2S2291 2p22.3-p16.1 0.76 245 320 D
D2S138 2q24.1-q32.1 0.67 115 100 B
D2S164 2q24.1-q32.1 0.83 195 175 B
D2S103 2q24.1-q32.1 0.82 109-125 120 D
D2S311 2q24.1-q32.1 0.81 185-207 150 D
D2S105 2q24.1-q32.1 0.69 107-125 130 E
D3S1611 3p21.32-p21.1 0.66 258 260 B
D3S1612 3p21.32-p21.1 0.69 100 80 C
D3S1478 3p21.32-p21.1 0.98 109-152 130 C
D3S647 3p21.32-p21.1 0.73 100 90 D
D3S1260 3p21.32-p21.1 0.66 268 230 E
D3S1561 3p21.32-p21.1 0.65 226 180 E
D5S207 5q31.3-q33.3 0.68 135-143 130 K
D5S376 5q32-q33.1 0.72 117-129 100 I
D6S2225 6p21.3 0.38 152 140 J
D6S1002 6p21.3-p22.1 0.32 240-244 200 K
D6S429 6p23-p25 0.74 222-238 200 I
D6S259 6p23-p25 0.73 267-285 260 K
D6S263 6pter, 6p23-p25 0.82 90-114 80 J
D7S519 7p15-q22 0.81 256-268 230 F
D9S161 9p21 0.78 119-135 120 F
D9S270 9p21 0.71 87-101 100 H

D11S1876 11q21-q22.3 1.00 123-135 100 J
D14S72 14pter, 14q11.1-q11.2 0.83 257-271 200 J
D14S258 14q23-q24.3 0.80 170-182 160 I
D14S292 14qter, 14q32.1-q32.3 0.74 110-118 100 G

TP53 17p13.1 0.90 103-135 130 K

* Panel of multiplex reaction.

Table 1. Microsatellite DNA markers studied.



(Adobe Systems Inc., U.S.A.). Loss of heterozygosity
(LOH) was scored in a heterozygous case when the ratio 

was calculated >1.49 or <0.58, with a 99.5%
confidence interval, as determined from independent
reproducibility experiments. Microsatellite instability
(MIN) was scored when a novel generated
microsatellite allele was observed in sputum-extracted
DNA compared to the correspondent venous blood-
extracted DNA. The analysis in LOH or MIN positive
cases was repeated three times and the results were
reproducible. Representative examples of LOH are
shown in Fig. 1 and MIN in Fig. 2.

Statistical analysis
Data analysis was done with SPSS statistical software
(SPSS Inc., Chicago, IL, USA). Results are expressed
as mean ± SD or median (range). Differences in the
mean values of quantitative measurements were tested
with the Student’s t or the Mann–Whitney U test. The
chi-square test was used for comparison of percentages.
Analysis of covariance (logistic regression) was used
when appropriate. A p value of 0.05 was considered
statistically significant.

Results

We assayed 52 sputum/venous blood DNA pairs
from idiopathic pulmonary fibrosis patients with a
total of 40 microsatellite markers. The incidence
of imbalance for each marker ranged from 0% to
10.0%, while the degree of heterozygosity was
from 0.32 to 1.00 (Table 1). Twenty specimens
from IPF patients exhibited LOH (38.5%) in at
least one of the examined loci. Although, MIN was
observed in 10 cases (19.2%), none of them
fulfilled the criterion of the co-finding of at least 5
markers to be characterized as replication error-
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Fig. 1 Characteristic examples of LOH positive cases.
ID, integrated density; N, normal DNA; IPF, idiopathic
pulmonary fibrosis DNA. Black arrows and numbers
indicate each allelic band. White arrows indicate the
affected allele.



positive (RER+) phenotype [24]. Analytical
presentation of the genotypes in microsatellite
alteration positive cases is provided in Table 2.

LOH was most frequently observed in
D3S1260 (10.5%) followed by D3S1612 (10.0%)

and TP53 (8.0%). Homozygote genotype of a
sample in a microsatellite DNA marker was
considered to be non-informative in LOH analysis.
The chromosomal arms exhibiting LOH were
1p34.3 (4.3%), 3p21.32-p21.1 (15.4%), 5q32-
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Table 2 Genotypes of LOH and MIN positive IPF cases.



q33.1 (5.3%), 9p21 (4.8%) and 17p13.1 (8.0%)
where MYCL1, FHIT, SPARC, p16Ink4 and TP53
genes have been mapped respectively
(http://www.ncbi.nlm.nih.gov/LocusLink/).

Subgroups of IPF patients, positive and
negative for LOH, were compared. No statistically
significant difference was found between
subgroups in relation to age, sex, stage, duration
of illness and smoking habit.

Discussion

We employed microsatellite DNA analysis, with
highly polymorphic markers, to identify
candidate genetic loci for IPF development. LOH
incidence was 38.5% in IPF patients, with at least
one locus affected. LOH positive cases were
observed in microsatellite DNA markers located
in MYCL1, FHIT, SPARC, p16Ink4 and TP53
genes at 4.3, 15.4, 5.3, 4.8 and 8.0% respectively.
Previous reports of LOH in IPF showed
incidences between 39 and 52% [19, 21]. Such
variations could be due to different kind of
specimens, sputum [19] where the contamination
of healthy cells is greater instead of
microdissected lung tissues [21] from patients and
to the exclusion versus inclusion of malignancies.

MYCL1 is a member of a family of genes
encoding short-lived nuclear regulatory proteins
that act as transcription factors and regulate cell
proliferation and differentiation [25].
Amplification and rearrangements of this locus
have been described in lung cancer [26] as well as
LOH of this chromosomal region [27].

Abnormalities of fragile histidine triad, FHIT
gene, at expression [28] or microsatellite level
have been reported to occur frequently in
multiple tumor types including non-small cell
lung cancer (NSCLC) [29] and IPF [21].
Uematsu et al. found a LOH incidence of 17% in
FHIT gene, which was confirmed by FISH
analysis, in IPF patients without cancer [21],
while we report 15.4% for the same locus.

Expressed during many stages of develop-
ment, the matricellular protein SPARC (secreted
protein acidic and rich in cysteine) gene is
restricted in adults primarily to tissues that
undergo consistent turnover or to sites of injury
and disease [30]. The capacity of SPARC to bind
to several resident proteins of the ECM, to
modulate growth factor efficacy, to affect the
expression of matrix metalloproteinases, and to
alter cell shape as a counter adhesive factor,
supports the idea that SPARC acts to regulate cell
interaction with the extracellular milieu during
development and in response to injury [30].
Recent studies suggest that idiopathic pulmonary
fibrosis (IPF) is associated more closely with
abnormal wound healing than with inflammation
[31]. Thus the connection between SPARC and
IPF may reflect this feature.

The association between IPF and cancer [11-
14] leads to the assumption that LOH on p16Ink4

and p53, as determined in this study, could be
implicated in disease pathogenesis by loss of a
functional allele. Alterations in p53 expression
profiles have been detected on protein level [15],
while mutations of the gene have also been found
[17]. Noteworthy, p53 alterations do not attribute
only to a carcinogenesis process but also to an
acute inflammatory one.

MIN was found in 19.2% of cases in our set of
samples. However, none of them had a
replication error-positive (RER+) phenotype,
probably because of minor alterations of DNA
mismatch repair system (MMR) activity [24].

In conclusion, our data suggest that IPF
exhibits alterations at the molecular level
towards tumor as well as wound healing
progression. Genes involved in distinct cellular
pathways such as cell cycle, apoptosis or
inflammation responses could account for the
pathogenesis of this disease.
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Fig. 2 Characteristic examples of MIN cases. N, normal
DNA; IPF, idiopathic pulmonary fibrosis DNA. Black
arrows and numbers indicate each allelic band. White
arrows indicate the novel generated allele.
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