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Abstract

Prostasomes are small vesicles of prostatic origin contained in human semen. Their composition is peculiar under

many aspects. Cholesterol is abundant and many proteins are endowed with enzymatic or other activities. The func-

tion of prostasomes has been amply debated and several hypotheses have been put forward. The liquefaction of semen,

spermatozoa motility, antibacterial activity and immunological functions have been related to prostasomes. Under cer-

tain aspects, prostasomes resemble synaptosomes. The fusion of prostasomes to spermatozoa enriches spermatozoa

with cholesterol and causes bursts of cytoplasmic sperm calcium. The interaction of spermatozoa and prostasomes

should be limited to vagina since prostasomes are immobile and do not follow spermatozoa in the superior female gen-

ital tract. Calcium bursts would increase spermatozoa motility, where cholesterol would decapacitate spermatozoa, so

preventing untimely activation. Since spermatozoa receive many different molecules from prostasomes, additional

effects are also possible. Prostasomes makes spermatozoa more apt to be activated by progesterone in the proximity

of the ovum. Therefore, the fusion between spermatozoa and prostasomes would influence spermatozoa behaviour

under many aspects and might be relevant for fecundation. The richness of molecular species in prostasomes is amaz-

ing and these small vesicles are expected to lead to many more discoveries in the field of human reproduction.
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Prostasomes

Prostasomes are membranous vesicles secreted by

the prostate gland. They were first discovered by

Ronquist et al., in Sweden [1, 2] who also proposed

for them the name of “prostasomes” because of

their prostatic origin [1-7]. Prostasome-like parti-

cles have been found in the semen of other mam-

mals [8-10]; however, their composition and

amounts differ from those of human material.

Moreover, different fecundation patterns (intravagi-

nal vs intrauterine) may make these particles func-

tionally dissimilar, depending on the species. The

uncertainty of the production site is a major con-

cern, when considering the prostasome-like parti-

cles contained in the semen of non-human mam-

mals.

Prostasome morphology

Electron microscopy examination [11, 12] shows

round particles surrounded by a membrane and con-

taining electron-dense material. The size of prosta-

somes has been measured with various methods.

Light scattering measurements [12, 13] confirmed

microscopy data and revealed a population of parti-

cles with an average diameter of 150-200 nm.

Prostasome components

The lipid composition of prostasomes is peculiar;

cholesterol is present in high amounts as is sphin-

gomyelin, whereas phosphatidylcholine is less

abundant [11, 12]. Therefore, these membranes dif-

fer amply from sperm plasma membranes [14, 15]

that contain less sphingomyelin and more phos-

phatidylcholine with a cholesterol:phospholipid

ratio of 0.83 [16]. The cholesterol to lipid phospho-

rus ratio in human prostasomes is about 2 [12]; this

may be interesting since cholesterol may have roles

in sperm capacitation [17]. Morever, prostasome

lipid are rich in saturated fatty acid.

Prostasomes contain many small molecules and

ions (Ca2+, Zn2+, GDP, ADP and ATP) and a num-

ber of enzymes among which phopholipase A,

ATPase and peptidases [18-23], to list only few.

Many prostasomal proteins have been recently

identified through the analysis of proteome by

Utleg et al. [24]. These authors found 139 proteins;

enzymes account for 33.8% of total, transport struc-

tural proteins for 19.4%, chaperone proteins for

5.8%, GTP proteins for 14.4% and signal transduc-

tion proteins for 17.3%. Non-identified proteins

were 9.4%.

Human semen is rich in prostasomes; ratio

prostasome protein/spermatozoa protein is about 2.

The presence of neuroendocrine markers such as

chromogranin B, neuropeptide Y and vasoactive

intestinal polypeptide [7] depicts prostasomes as

neuroendocrine-like vesicles.

Physiological roles of prostasomes

Although prostasomes are small particles, they con-

tain many different molecules. Moreover, several

prostasomal components are found in other tissues

and cell types where they exert known physiologi-

cal roles. It is, therefore, reasonable to raise the

question of their meaning in prostasomes.

The physiological significance of human prosta-

somes has been long debated and various possibili-

ties have been put forward: among them, the

enhancement of sperm motility [25], the liquefac-

tion of semen [26] and immunosuppression

[27-31]. The motility of spermatozoa is enhanced

by prostasomes [25, 32-37] and antibacterial prop-
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Cholesterol (a) 08 01

Total lipid phosphorus (a) 04 0.1

Cholesterol/Phospholipid ratio 2.0 0.8

Phosphatidylethanolamine (b) 15 4

Phosphatidylcholine (b) 12 3

Sphingomyelin (b) 53 12

Phosphatidylserine 14 3

Phosphatidylinositol 6 3

Table 1 Lipid content of human prostasomes.

(a) Results are expressed as mol.mg-1 protein SE
(b) Results are expressed as percentage of total lipid
phosphorus in each phospholipid class SE



erties of prostasomes have been described [38, 39],

including an antioxidant capacity [see ref. 40].

Prostasome to spermatozoa fusion

It has been reported that prostasomes interact [41]

or even fuse [42] with spermatozoa. Interaction

and/or fusion between spermatozoa and prosta-

somes may help throw some light on the role of

prostasomes.

A fusion between prostasomes and spermatozoa

has first been described by Arienti and coworkers

[42] who used a lipophilic fluorescent derivative of

rhodamine (octadecyl rhodamine G; R18) to detect

the movement of lipid from a membrane population

to another [43]. The extent of fusion can be

expressed as percentage, taking as 100% the theo-

retical maximal lipid mixing [44].

The fusion of prostasomes and spermatozoa is a

pH and protein-dependent phenomenon (Fig. 2, 3).

It increases with decreasing of the pH values of prosta-

some/spermatozoa mixtures and it is suppressed by

the simultaneous destruction of prostasome and sper-

matozoa proteins. Usually, the fusion is investigated at

pH 5.0, but it is still detectable at pH as high as 6 or 7.

Yet, it is absent at pH 8. Since the average pH value of

semen is around 7.6 [45] small variations of pH may

trigger the fusion process. Moreover, in the so-called

split ejaculation, spermatozoa appear to be emitted

with the first fractions, together with the prostatic

secretions, more acidic than the bulk of semen [46].

The fusion between prostasomes and sperma-

tozoa is never very large (10-20%), even in best

conditions, but it is a quick phenomenon with a

hyperbolic time course; it is practically finished

10 min after mixing prostasomes and spermato-
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Fig. 1 Transmission electron micrograph of human
semen prostasome vesicles.

Fig. 2 Fusion of spermatozoa and prostasomes. (A) The effect of pH; (B) Effect of prostasome to spermatozoa ratio.



zoa [42] (Fig. 4). On the other hand, its quickness

may have a physiological relevance, considering

that the time of contact of prostasomes and sper-

matozoa at pH values low enough (below 7.0-

7.5) to produce fusion is probably rather limited

in physiological conditions.

Lipid and membrane-bound protein are both

transferred through fusion [47-49] and some

characteristics of sperm membranes, such as flu-

idity, change upon fusion with prostasomes [15].

The fusion appears to be specific for spermato-

zoa because it does not occur with lymphocytes

[50], probably due to the necessary proteins, not

yet identified. Other cell types have not been

tested.

Spermatozoa cytosolic calcium

The fusion process may transfer all molecule types

and ions contained in prostasomes besides lipid

and protein. A particular attention has been given

to calcium because it is contained in prostasomes

[51] and is important for sperm motility and

capacitation [52-54]. During the fusion process,

calcium is released to spermatozoa as revealed by

the increase of sperm [Ca2+]i. The increase of

[Ca2+]i is a transient process since the ion

exchange readily and rapidly with extracellular

Na+. Upon omitting Na+ from the external milieu,

the increase of [Ca2+]i, parallels the extent of

fusion as measured with R18 [55]. The bursts of
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Table 2 Possible steps in spermatozoa activation.

Site Event Effect Physiological meaning

Vagina Spermatozoa/

prostasome fusion

[Ca2+]i

Cholesterol

Spermatozoa acquire a

number of lipid and of

protein

Increased motility

Decreased ability to capacitate

Long lasting effects

Uterus and tubae Migration of spermatozoa Cholesterol Spermatozoa acquire ability to capacitate

Near the ovum Presence of progesterone [Ca2+]i

Acrosome reaction

Spermatozoa fused with prostasomes

react better

Fig. 3 Appearance of sper-
matozoa after fusion with
R18-loaded prostasomes.
Spermatozoa were mixed
for 110 min at pH 5.0 with
R18-labelled prostasomes.
Magnification x 1000.



spermatozoa [Ca2+]i produced by the fusion with

prostasomes appear to be physiologically in con-

trast with the delivery of cholesterol, since this

lipid decreases the activation of sperm [17, 56-59],

where calcium increases it. The simultaneous

delivery of cholesterol and calcium, should acti-

vate the spermatozoa, increasing their motility

(effect of [Ca2+]i) [37], although not permitting the

occurrence of the acrosome reaction (effect of

cholesterol). This fact would be interesting

because the fusion with prostasomes must occur in

vagina, whereas the acrosome reaction is a phe-

nomenon taking place in the proximity of the

oocyte.

Spermatozoa capacitation and acrosome
reaction

Ejaculated human spermatozoa must be capacitat-

ed and undergo the acrosome reaction before fer-

tilizing the oocyte [60]. The molecular mecha-

nisms through which this is accomplished have

amply been discussed. Attention has been given to

the role of cholesterol to phospholipid ratio in

sperm membranes [56, 57, 59, 61-63]. The loss of

cholesterol during the migration of spermatozoa

toward the ovum may be an activating factor.

The discovery that progesterone may act on

spermatozoa through a mechanism that does not

require a genomic pathway has thrown some more

light on the activation of spermatozoa [64]. The

effects of progesterone are mediated essentially by

the increase of [Ca2+]i, the stimulation of the

activity of phospholipases, the phosphorylation of

proteins and efflux of chloride [65-68].

During fusion with prostasomes, lipids, pro-

teins and ions [47-49, 55] can be delivered to sper-

matozoa. This is likely to further influence the

behaviour of spermatozoa and their response to

activating or inhibiting agents for some time after

the fusion process.

The acrosome reaction is a necessary step in the

sperm maturation. Before the passage through the

epididymis, spermatozoa are unable to undergo the

acrosomal reaction, but they have acquired this

capacity when they reach the cauda epidydimis.

Yet, spermatozoa are not allowed to acro-

some-react, until they arrive in the proximity of the

ovum. Therefore the cells maintain a sort of unsta-

ble equilibrium that allows them to acrosome react

in the upper female genital tract, but not before.

The interaction with zona pellucida signals

sperm to undergo the acrosome reaction [60] that

can be initiated on capacitated spermatozoa fol-

lowing the activation of extragenomic proges-

terone receptors [65]. Progesterone also increases

spermatozoa [Ca2+]i and its effects are indepen-

dent and additive to those produced by the fusion

with prostasome [69].
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Fig. 4 Time-course of the
fusion process. Spermato-
zoa were mixed with R18-la-
belled prostasomes at pH 5.



In vagina, spermatozoa may acquire prostaso-

mal components that would, directly or indirectly,

modulate the acrosome reaction that takes place in

the proximity of the ovum. Progesterone (1 µM at

37°C and in 30 min) does not induce the acrosome

reaction [70], although spermatozoa cytosolic cal-

cium increases in these conditions [69]. Usually,

progesterone is required in concentrations about

10-15 µM for several hours to induce the acro-

some reaction [59, 71, 72].

Previously fused spermatozoa were stimulated

with 1 µM progesterone and the increase of sperm

cytosolic calcium was larger than that due either to

fusion or to progesterone alone [69]. Therefore

progesterone and fusion show an independent and

additive effect. The acrosome reaction was studied

through the FITC-labeled pisum sativum agglu-

tinin [73]. Fused spermatozoa underwent acro-

some reaction better than the non-fused cells. This

is in agreement with the finding the fused sperma-

tozoa show a larger increase of [Ca2+]i in the pres-

ence of low doses of progesterone [69].

Therefore, the fusion of prostasomes to sper-

matozoa, occurring in vagina, could alter the prop-

erties of spermatozoa producing several effects:

(a) [Ca2+]i bursts (stimulating spermatozoa move-

ment); (b) delivery of cholesterol to spermatozoa

(prevents an untimely acrosome reaction and (c)

increased response to progesterone (calcium

increase and improved acrosome reaction).

Conclusions

Since the time of their discovery, prostasomes,

small particles contained in human semen that,

since the time of their discovery, have revealed

interesting properties. One of the most dis-

cussed points is their physiological relevance in

human reproductive physiology. Some hypothe-

ses have been put forward, but it is reasonable

to think that future research will reveal much on

this subject.

It is possible that the contact of spermatozoa

with prostasomes may have a large part in sperma-

tozoa maturation. The fusion of prostasomes and

spermatozoa may help to keep spermatozoa in the

delicate equilibrium involved in capacitation and

acrosome reaction processes.
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