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Abstract

This paper deals with the issue of nonparametric estimation of the transition probability matrix of
a hon-homogeneous Markov process with finite state space and partially observed absorbing state.
We impose a missing at random assumption and propose a computationally efficient
nonparametric maximum pseudolikelihood estimator (NPMPLE). The estimator depends on a
parametric model that is used to estimate the probability of each absorbing state for the missing
observations based, potentially, on auxiliary data. For the latter model we propose a formal
goodness-of-fit test based on a residual process. Using modern empirical process theory we show
that the estimator is uniformly consistent and converges weakly to a tight mean-zero Gaussian
random field. We also provide methodology for simultaneous confidence band construction.
Simulation studies show that the NPMPLE works well with small sample sizes and that it is robust
against some degree of misspecification of the parametric model for the missing absorbing states.
The method is illustrated using HIV data from sub-Saharan Africa to estimate the transition
probabilities of death and disengagement from HIV care.

Key words and phrases

Pseudolikelihood; Finite state space; Aalen-Johansen estimator; Competing risks; Cumulative
incidence function; Missing cause of failure; Double-sampling

1. Introduction

Continuous time non-homogeneous Markov processes with finite state space and absorbing
states play an important role in medicine, epidemiology and public health. Modern medical
decision making is frequently based on estimates of the transition probability matrix of an
absorbing continuous time Markov process with the ultimate goal to evaluate the cost-
effectiveness of different medical strategies. Additionally, absorbing Markov processes are
crucial in studies of natural history and prognosis of disease, for the evaluation of the health
needs of various populations, and for the monitoring and evaluation of public health
programs.

Supplementary Materials
Contain the proofs of the theorems presented in Section 3 and additional simulation results.
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A quite common problem in studies involving absorbing Markov processes is that absorbing
state ascertainment is incomplete due to the usual nonresponse or by the study design. A
design with planned missing observations on absorbing states can be used to reduce the total
cost of the study, in case of expensive absorbing state diagnostic procedures. Moreover, such
a design can be used to provide the necessary information to deal with absorbing state
misclassification in studies that by default use imperfect diagnostics, such as studies that use
electronic health record data (Ladha and Eikermann, 2015; Kolek et al., 2016). In such
cases, a gold standard diagnostic procedure is used in a small sample of cases in an
absorbing state due to financial or other constraints, while for the remaining cases in an
absorbing state gold standard diagnosis is missing. The study design with planned missing
observations in the absorbing state can be regarded as a special case of a double-sampling
design. Double-sampling designs have been used in the past to deal with misclassification in
simpler settings (Tenenbein, 1970; Rahardja and Young, 2011; Rahardja and Yang, 2015).

The issue of nonparametric estimation with missing absorbing state in the competing risks
model, which is the simplest Markov process with multiple absorbing states, under a missing
at random (MAR) assumption, has recently received some attention. Effraimidis and Dahl
(2014) proposed a fully nonparametric estimation approach that does not utilize auxiliary
information. This estimator was shown to converge at a rate slower than the usual /x rate.
Lee et al. (2014) proposed a +/n consistent estimator based on parametric multiple-
imputation (Wang and Robins, 1998; Lu and Tsiatis, 2001). Recently, Gouskova et al. (2017)
proposed a fully nonparametric estimator which is 4/ consistent. It is worth noting that none
of the aforementioned works developed methodology for simultaneous confidence band
construction for the transition probabilities, also known as cumulative incidence functions
(CIF) in the competing risks setting. Moreover, Effraimidis and Dahl (2014) and Gouskova
et al. (2017) established only pointwise asymptotic normality for their CIF estimators.
Finally, the latter fully nonparametric estimation approaches do not utilize auxiliary
information, which may be needed in order to make the MAR assumption plausible in
practice (Lu and Tsiatis, 2001).

In this work, we address the issue of nonparametric inference for general continuous time
non-homogeneous Markov processes with finite state space and missing absorbing state with
right-censored and/or left-truncated data, under MAR. We use auxiliary variables in a
parametric model for the true absorbing state probabilities and derive a closed-form
nonparametric maximum pseudolikelihood estimator (NPMPLE) of the transition
probability matrix. The basic idea is to replace the missing absorbing state-specific counting
processes by the expected state-specific processes according to the fitted parametric model.
This approach was similarly developed by Cook and Kosorok (2004) for the analysis of time
to the first event of interest in clinical trials where event ascertainment is delayed. Our
method can be regarded as an extension of the modified Kaplan-Meier estimator proposed
by Cook and Kosorok (2004) in the sense that we provide an estimator of a general Markov
process that describes the complete event history of the population under study, where some
absorbing states are missing or their ascertainment is delayed. Using modern empirical
process theory we study the asymptotic properties of the NPMPLE for the transition
probability matrix and evaluate its performance with finite samples through simulation
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studies. We show that the estimator is \/n consistent and converges weakly to a tight zero
mean Gaussian random field. We also develop a methodology for the construction of
simultaneous confidence bands. The performance of our NPMPLE with small to moderate
samples is satisfactory and, in particular, the NPMPLE seems to be robust against some
degree of misspecification of the parametric model for the true absorbing state probabilities.
We also propose a formal goodness-of-fit approach for evaluating the parametric assumption
regarding this model. As an illustration, the NPMPLE is used to estimate the transition
probabilities of disengagement from HIV care and death while in care, using data from the
East Africa Regional International Epidemiologic Databases to Evaluate AIDS (IeDEA)
Consortium, where death status is incompletely ascertained due to a double-sampling
design.

The rest of this article is organized as follows. Section 2 provides an overview of non-
homogeneous Markov processes, presents our nonparametric estimation approach and
describes a formal goodness-of-fit procedure for the model of the absorbing state
probabilities; Section 3 states the asymptotic theory for the NPMPLE and the goodness-of-
fit procedure; Sections 4 and 5 present simulation studies and data analysis for the
motivating HIV study, respectively. Finally, Section 6 concludes the paper with some
remarks. Proofs of the asymptotic theorems and additional simulation results are provided in
the Supplementary Materials.

2. Data and Method

Let {X(9 : £= 0} be a continuous time non-homogeneous Markov process with a finite state
space ¥ ={0, 1, ..., g}. The stochastic behaviour of X can be described by the (g+ 1) x (¢
+ 1) transition probability matrix Po(s, §) = (Py(s, ) with elements

P50 = PrX() = jIX(5) = . T ) =Pr(X() = jIX(5)= ). h.j€S.
S

where 2= o{{Ny{1) : 0 < u<t h, jE Q}) is the o-algebra generated by the counting
processes Ny, which count the direct transitions from state /7€ W to state /€ &, with /1 #
/. in [0, 4. The conditional independence of the transition probabilities from the past history
of the process is the so-called Markov property. An absorbing state /s a state for which
Pnfs, ) =0forall j# h and ¢€ (s, 7], while a transient state is a state that is not absorbing.
Let. ={Mm, ..., ik} C R denote the absorbing state subspace. The transition probability
matrix for Markov processes with absorbing states can be expressed as

P Pg

Qexg—k+1) Tk

where P g cand P4 are the transition probability submatrices for the transitions from the
transient states to the transient states and the absorbing states, respectively, Oxx(g-4+1) is @ &
x (g - k+ 1) matrix containing zeros and /x is the &k x kidentity matrix. The transition
intensities are defined as
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1 . ,
ahj(t) = ullinOEPhj(t,t +u), h+#j, h,je s.

Additionally, define the (g + 1) x (¢ + 1) integrated transition intensity matrix A(?) with
elements

t .
Ahj(t) = [) ahj(u)du, h,je s,

where apy = - Zizp apjdue to the fact that 2 Py(s, §) = 1 for all s, € [0, ] by the definition
of a stochastic matrix. Then, the transition probability matrix can be defined as the product
integral of the cumulative transition intensity matrix (Andersen et al., 1993)

P(s.t) = ]"( I+ dA(u)].

(s,t]

The observations from ni.i.d. subjects that are followed over the interval [0, 7] with 7 < oo,
are the counting processes Njy(2), which count the observed direct transitions from /1to jof
subject /=1, ..., non [0, 4, and the at-risk processes Yj(, which are the indicator
processes that the th subject is at state 7€ \ just before £ Note that Aj,(#) can be > 1 for
transient states, although we restrict our discussion to the case where the counting processes
are uniformly bounded by some finite constant. Right censoring and/or left truncation can be
directly incorporated in the at-risk process Y9, which is no longer a monotonic function
due to both left truncation and the fact that subjects may visit a transient state more than 1
times. The counting processes Nj,{{) are governed by the transition intensities of the form
Ap{D = ap(t) YD), with ~# jand € [0, 7].

One can estimate the elements of the integrated transition intensity matrix using the Nelson-
Aalen estimator

~ LdN , (u)
AZ‘A(IFA Y.:gu), h#j @2)

where Y () = Z;’= Y0 and N.hj(t) = ZL lNihj(z)’ and the transition probability matrix

by the Aalen-Johansen estimator (Aalen and Johansen, 1978)

ST ()

(s.t]

(23)

where XnNA is the matrix with elements Ath‘(z), h, J€ Q. As a matter of fact, XnNA is the

nonparametric maximum likelihood estimator (NPMLE) of Ag, the true transition intensity

Stat Sin. Author manuscript; available in PMC 2020 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bakoyannis et al.

Page 5

matrix, based on the likelihood for discrete-time Markov chains under the assumption of
independent and noninformative right censoring and left truncation (Andersen et al., 1993):

H H {H[}'I‘U}Iﬂih””]]d\ f.‘,.'-"f-[-l . d.-‘h,_(!}]"“"‘” AN, [f]} .
th

J#h

24

where Ap(8) = Zjep Apf(9) and Ny (9 = Zpep N.p[(D). Since the Aalen Johansen estimator (2.3)
is a 1-1 function of the NPMLE KnNA, it is also a NPMLE of Py, the true transition

probability matrix (Andersen et al., 1993).

2.1 Inference with Missing Absorbing States

In this paper we assume that the absoring states are MAR. In cases with incomplete
absorbing state ascertainment let /;to be the “response” indicator, with ;=1 if the
absorbing state has been observed and 7= 0 otherwise. Additionally, let Z;€ Z C R be an
auxiliary covariate vector that may contain information about the true unobserved absorbing
state, such as a diagnosis obtained by an imperfect absorbing state ascertainment procedure
and the last state visited prior to the arrival at an the absorbing state. Such information is
critical in practice to make the MAR assumption plausible (Lu and Tsiatis, 2001) and to

potentially increase the efficiency of the estimator. Next, let §;7and 5, = 2’]‘. ~ 19 be the

indicators that the h subject has reached the absorbing state /€ .7 and any absorbing state,
respectively. The observed data for the th subject are

(N.,Y.,6.,R.,Z) ifo.=0
[ A e i

Di _ (Ni’ Yi’ 61" Ri’ Zi) if 6i =1and Ri =1

(N*,Y.6,R,Z) if6.=1andR. = 0,
1 U1 I 1 1 1

where N;j= (N1 h# ), Nl?* is equal to N, with Nj,(7) being replaced by Nju (8 = Zes

Nip{9 for all J€ 7 which is a one-jump counting process, Y ;= (Y7, --., Y,-q)T, and ;=
(841, ..., 8 7. The absorbing state-specific counting processes can be expressed as Nip8 =
S;iNin(, h& .7, j€ 7. We propose replacing the missing dN.(9, j€ 7, in the logarithm
of the likelihood (2.4) which is linear in the missing data d/V.x(9), by

n
E[dN ,(t)ID] = d&hj(t) =) [R; + (1 = R)E(S,ID)IAN ;. (1), @5)
i=1
where D denotes the observed data D, for all /=1, ..., n. Following Cook and Kosorok
(2004), we propose replacing £(&;|D) by an estimate {(Z;, ,3,,) based on maximum
likelihood under a parametric “working” model (such as the multinomial logit model), using
the subjects in any absorbing state with known &;7and utilizing the auxiliary information Z;.
This approach is valid under the MAR assumption since:
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Pr(3; = 11R; = 1,Z)) = Pro; = 1IR; = 0.2,) = 7 (Z, By,

where £ is the true parameter value. Maximizing the resulting pseudolikelihood, which
involves z(Z;; B,), gives the NPMPLESs

- tdﬁ,hj(u;ﬁn)
—_ g i o
Ay = O h¢ T, jeT, 1€]0,1]

and Xn, hj(t) = KZ.A(t) if /& .7, with h# j of the integrated transition intensities. Now, the

NPMPLE of the transition probability matrix is given by the plug-in estimator

]E’N{s.!} = T( [I 4 :J’A”[u'}l] ,

(s.]

(2.6)

where the components of A, are A,,lhjwhich were given above. Methodology for
constructing 1 — a pointwise confidence intervals and simultaneous confidence bands for the
components of Py(s, 9 is presented in Section 3 of this paper.

2.2 Goodness-of-Fit Procedure

To simultaneously evaluate the parametric model assumption for (Z; Bo), /€ 7, we
provide a goodness-of-fit procedure. First, we define the (estimated) residual processes

Lt:B,)=n""SI_ | L(t:B,), where

LB, =RIN, (0 -2 BN 0L jeT D reioq,

with N; () = Zpg7 NipfD and N;.() = Zpe 7 Zje7 Nip{D) being the counting processes that
count the transitions to the absorbing state jand to any absorbing state by time € [0, ],
respectively. Also, .7 (-1) C .7 denotes the absorbing state subspace that includes & - 1
absorbing states. Note that only A=1 residual processes are considered since the model for
one absorbing state is completely determined by the models for the remaining A - 1
absorbing states. To construct a formal statistical test for goodness of fit and a diagnostic
plot for the parametric absorbing state probability model, we follow a procedure similar to
that developed by Pan and Lin (2005). First, it can be shown (Supplementary Material) that
under the null hypothesis £[L(# B)] = 0 we have

n
- A 12 L
Vi) = VnL (6B, =n i =§ 1l//,-j(t) +o,(D)
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where y/iLj(z) = L(t: ) - a;l.TE[/zj(Zl., ByRN, (0], inwhich w;is the ih individual influence

i
function forB,,, given by @;= I"1(By) U{Bo) where /(o) is the Fisher information about S,
U{B) is the individual score function for the #h subject, and zi,(Z,-, o) = Irf(Z;, B)l 9P g=py-
The influence functions y/l.Lj(r) can be estimated by replacing the unknown components with

the corresponding estimated components and the expectation with the sample average, that is

n
0 =Ly:p) - n”! 2 VT B RN, O
=

with @; = F1(B,) U{B,). Now define Vi = e Yo llpiLj(z)gij, with & 7=1, ..., n

randomly drawn from MO, 1). The goodness of fit for the parametric model can be evaluated
as follows:

1. Simulate many {&;}iequ..... i3 o7 (-1) sets of values from MO, 1).

SUP [0, 4 Maxe 7 (-1) | V(D).

3. Calculate the 1-a percentile of the distribution of suppo, 4 Mmaxe 7 (-1) | \7,,,(1‘)|
values that is denoted by ¢;-,.

2. For each simulated set {&;} e, ..., iy €7 (-1) calculate, given lﬁfj(t), the quantity

4, Calculate the simultaneous confidence band for £[LAZ fo)] = 0 as 72,
and plot it along with the residual processes Lz, ﬁ,,),jE 7D and re€ [0, 1.

5. Calculate the p-value for the null hypothesis of overall goodness of fit as the
proportion of sup (o, 4 Maxe7 (1) | \7,,,(1)| values that are larger than or equal to
SUp (o, Maxe 7 (1) |va (|, where vp(9) is the observed value of the V/,(2)
statistic based on the data.

Lack of fit for the parametric model (Z;, fo)N;.(9), /€ .7, is indicated with a type | error a
if the residual process for at least one j € .7 (1) is not contained in the confidence band for
E[Lt Bo)] = 0. Equivalently, a p-value less than a provides evidence for lack of fit for at
least one absorbing state model. The validity of this approach is ensured by Theorem 3 that
is stated in Section 3.

3. Asymptotic Theory

Assume that the following regularity conditions hold:
Cl1  The follow-up interval is [0, ], with £ < oo,

Cc2 Pr(Np(7) < C) = 1 for some constant C € (0, 00), for all A, /€ Q. Also, infg[p, 4
E[YKH] > 0, for all 7€ .7, which implies that the expected number of
observations at all transient states is positive for any time ¢€ [0, z].

C3 C3Agisa(g+1)x(g+ 1) matrix-valued function with elements that are
continuous functions of bounded variation on [0, z].
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C4  The inverse of the link function for the model of the absorbing state vector &, has
a continuous derivative on compact sets. Also, the corresponding parameter
space & is a bounded subset of R~.

C5  The estimator ,Bn for the true model parameter B, for the absorbing states & is
strongly consistent and asymptotically linear, i.e.

ViR, ~ B =~ EI_ @+ 0 (1), with w;being i.i.d., Faw;=0and Alwl? <
oo, Additionally, the plug-in estimators of w,, a?,-for i=1, ..., nsatisfy

—1yn ~ 2
Yoo - ol =op(1).

C6  The auxiliary covariate vector Z is bounded in the sense that there exists a
constant K € (0, 0o) such that Pr(lizll < K) = 1.

It has to be noted that estimating £ using maximum likelihood under a correctly specified
generalized linear model and assuming that the proportion of missing data is independent of
the sample size implies C5. Before stating the asymptotic theory results we introduce some
further notation. First, the NPMPLE can be expressed as

P (s P (50
~ C n,J
Pson=|®T
n 0 I
kx(q—k+1) k

Next, define the influence functions

t
Vip/l$: D = 1 ézg B / Po, iS4 =B, 0 DAYy (),
m K

forh&.7,jEK, and 7=1, ..., n, where

t % t
dN . B Y (u)
ilm 0 il T . o
/ ety / EYl(u)dAO’ W+ R, (1) if mE T
0 0

TdN () 1Y) ) -
o EY[® - o EYl(u)dAO, ) i mET

v lm(t) =

for /# m, where R, O =E{( - R)z'rm(Z,ﬂo)/f)[EYl(u)]_lle.(u)}. If /= mthen i) = — Zpzy

wind . Moreover, define

]yihj(s’t)éi’ 0O<s<r<rt

I \gE!

N 1
Wn,hj(s’ 0= Wi

where ;3,-/,/(5, 9 are the estimated influence functions where the unknown quantities have
been replaced by their consistent estimators and the expectations by sample averages, and &;
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are independent draws from MO, 1). Given regularity conditions C1-C6 the following
theorems hold:

The NPMPLE is uniformly consistent in the sense that

as#
=30,

sup [P (s, 1) = Py(s,0)

t € (s, 7]

for any s€ [0, z), where the norm IIAll stands for supp X jap/ for the matrix A = [ap].

The NPMPLE is an asymptotically linear estimator with

g

f’n(s, 0= Py(s,1)

n
1
=7 .Zl 750+,
=

where (s, ) is a matrix-valued function with elements (s, § that belong to Donsker
classes and eis a (g+1) x (g+1) matrix with elements that are 9,(1). Moreover, W), 4(s, -)
converges weakly conditional on the observed data D to the same limiting process as that of
\/Z[ﬁn’hj(s, )= Py (8] (unconditionally) for any s€ [0, 7), ¢ 7, and j € Q.

The goodness-of-fit statistic suppo, 4 Maxe 7 (-1) | \7,,j(I)| converges weakly conditional on
the data D to the same limiting process as that of sup o, 4 maxe 7 (-1) | V(9|
(unconditionally).

The proofs for the theorems are outlined in the Supplementary Materials.

Remarks—The asymptotic result of Theorem 2 can be also expressed in a conventional
vector form as |2, (s.1) — 2(s.1)|, where 9, = (vec’P, 77¢, vecTP, 7) Tand # =

(vec’Pg 77, vec P 77) T with vecA being the column vector formed by concatenating the
columns of the matrix A and vec” A the transpose of vecA. As a consequence of Theorem 2
and an application of the Cramer-Wold device, \/ﬁ[@n(s, )= Pys, -)] converges weakly to a

Gaussian random field with each of its elements being a tight mean-zero Gaussian processes
in the space Ofs, ] of cadlag functions on [s, z]. Due to the asymptotic linearity of the
NPMPLE, the corresponding asymptotic variance-covariance matrix-valued function, given
the starting time point s, is equal to Z(¢, w; s) = E[vecy(s, hvec’y(s, W)],0< s<t w< g,
where 2(f, w;, s)isa(g— k+ 1) (g+1) x (g k+ 1) (g+ 1) matrix-valued process. Using
this asymptotic variance-covariance matrix-valued function and after some algebra it can be
shown that the asymptotic variance of

ValP, 30 = Po (501 1 € (57,
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the Aj-element of the transition probability matrix, for given s= 0, can be decomposed as

2 2
Elyjp(s, 01" + Elyj(s, 01" + 2Ly (s, 07 (s, 1)), (33)
where
t
CICORED) / Pyl = P i D}y, 0,
1ETmesSs ’
with
tdN., (u) LY. (u)
F . _ ilm il
Vitm® = [) EY ) A EYl(u)dAO, Im{-
and where
t M, | . o
y%(s,t)= Zlé?/‘ﬁ PO,hl(‘Y’u_)dWilj(u) if jeT
0if jeT
with

tdlz (Z., fo)N ; () — N, ()]

for j€.7. The influence function }/glj(s, 1) is the influence of the th observation on the

estimator in the ideal situation without missing absorbing states, while y%j(s, 7) is the

influence associated with missingness and the fact that we impute the unobserved jumps
N9 with {Z;, ﬁ,,)dN,-/.(t), for j€ 7. Therefore, based on decomposition (3.3) it is
obvious that the asymptotic variance of the transition probability estimator to an absorbing

state is equal to the variance of this estimator in the absence of missing data E[yf;l/.(s, H], plus

the additional variability due to missingness E[}/%j(s, t)]2 and 2 times the covariance between
the influence function of the estimator without missingness and the influence function
related to missingness E[}/f;lj(s, t)yf‘,’fj.(s, 1. It is also obvious that the variability E[y%(s, T due

to missingness depends on the variability of ﬁn, through its influence function w;, weighted
by the fixed quantity R/{# which is proportional to the percent of missingness, and also the
difference between the imputed expected jump rz(Z; Bo)@Njy(?) and the actual unobserved
jump a9 for the missing cases. Hence the variability of our proposed estimator for
incorporating missing absorbing states is influenced by the missing rate in addition to the
total sample size.
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Using regularity conditions C1-C6 and Theorems 1 and 2 it can be shown that the
asymptotic variance-covariance function of the transition probability matrix estimator can be
uniformly consistently (in probability) estimated by

¥ owis)=n"Y_ | [vecy (s nvec! 7 (s, w)], with the components of s, -) being yin(s, ),
defined above, for /¢ 7 and j € & and 0 otherwise. These results along with the functional
delta method can be used for the construction of 1 — a pointwise confidence intervals for
Po,p{s, B, under a known and differentiable transformation g (for example g(x) =
log[-log(x)]) that ensures that the corresponding limits of the interval lie in (0, 1). For the
construction of simultaneous confidence bands consider the process

\/;lth(s, l){g[ﬁn’ hj(s, Nl - glPy, hj(s, n1}, where gp{s, 9 is a time-dependent weight that

converges uniformly in probability to a nonnegative bounded function on [#, 6] with0 < s<
4 < b < . This weight function can be set equal to P, (s, Hlan{s, 9, where

_ R 172 . .
8hj(s, H=n IZL 1y?hj(s, )] " is the estimated standard error of

W, hj(s, H= "_1/22?= 17l,hj(s, 0,0rt0 P, (s,0)/[1 + 8ii(s, 1)]. The first weight is equivalent to

n, hj
an equal precision weight (Nair, 1984) and the second to a Hall-Wellner weight (Hall and
Wellner, 1980). Using Theorem 2 and the functional delta method it can be easily shown that
the process \/ﬁth(s, t){g[ﬁn’ hj(s, Nl - glP, hj(s, )]} is asymptotically equivalent to the process
én,hj(s, H=aps 9 g[ﬁn,h,(s, D] Wn,/,j(s, 7). Next, similarly to Spiekerman and Lin (1998),
define ¢, to be the 1 — a percentile from a large number of realizations of sup(4, ] [Bn (S,
| generated by repeated simulations of {fi};?: v Now, the 1 — a confidence band is

c

1| .5 a
P (s - .
g el n,hj("’)]i\/zth(s,t) . tEIL ]

for a given s€ [0, 4]. In general, the confidence band can be unstable in the tails of the
observable time domain (Yin and Cai, 2004). To deal with this issue we can restrict the
domain of the confidence band to [, t»], where these limits can be set equal to the

solutions of ¢, = r?ij(s, /[l + (?Zj(s, u)l, 1=1, 2, with {¢1, ¢} ={0.1, 0.9} or {c1, &} =

{0.05, 0.95} (Nair, 1984; Yin and Cai, 2004).

4. Simulation Study

To evaluate the performance of the proposed estimator with finite samples and to study its
robustness against misspecification of the parametric model for the probability of the
absorbing states, we conducted extensive simulation studies. We considered a non-
homogeneous Markov process with two absorbing states, denoted by 1 and 2, and one initial
transient state denoted by 0. This model is equivalent to the competing risks model with two
causes of failure. The transition probabilities for the two absorbing states were £y (0, 4 =
0.4 {1 - exp [-(ZA1) ™11} and Pyo(0, ) = 0.6 {1 — exp [-(Z12)*2]}. The probability of

2 .
= IPOj(O’ r). Four scenarios were

considered: 1) (A3, v, A2, )7 =(1,1,05,1)7; 2) (A1, v1, A2, v)7=(1,08,05,1)7; 3)

remaining in the transient state was P00y =1-3%
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(A1, vi, A2, w)T=(1,0.4,0.5,1)7;: and 4) (11, v, A3, w)7=(1,0.2,0.5, 1)7. Right
censoring times were simulated based on the uniform distribution /0, 5). Under these
simulation settings, the average proportion of right-censored observations was 15% and the
proportion of non-censored observations in the absorbing state 1 was 37%. The probability
of a missing absorbing state was set equal to 0.8 or 0.6. To mimic a setting with planned
missingness due to a double-sampling design, such as the design in our motivating HIV
study presented in Section 5, we considered the auxiliary covariate Z = (7, C*)7, where Tis
the arrival time at an absorbing state and C" is the absorbing state according to an imperfect
diagnostic procedure. Let C denote the true, but incompletely observed absorbing state. C*
was simulated conditional on C from the Bernoulli distribution with probabilities

7y, =Pr(C* =11C=1)=09 and 3, = Pr(C* = 21C = 2) = 0.7. Therefore, the

misclassification probabilities of the imperfect diagnostic were 0.1 and 0.3 for absorbing
states 1 and 2, respectively. It is noted that C* was completely observed. We considered the
sample sizes of 7= 200 and = 400.

In this simulation study we evaluated the usual Aalen-Johansen estimator for the observed
data by only using the misclassified absorbing state C* and ignoring the non-missing C
values (Naive), the Aalen-Johansen estimator under a complete-case analysis where the
observations with a missing C were discarded from the analysis (CC), and the proposed
estimator. For the proposed estimator we considered a “working” logistic model with
logit[my(Z, B = fo + BL T + Bolyc*=13- Note that the true probability of the absorbing state
1 under the four simulation scenarios is given by

logit[| (T, C*; B)] = By + f(T3 A, v s Ay vp) + ﬂzl{c* .

where

—v, v -V, U,
1.1 2.2
f(T;/ll,yl,lz,uz): —11 T —12 T +(1/1—1/2) log(T) .

Setting vi = v =1 in Scenario 1 implied a linear logit model for the where probability of
the absorbing state 1 in 7, of the form logit[1(Z, Bo)] = Bo + B T+ Bol{c*=13, While
Scenarios 2-4 implied nonlinear logit models in 7. Therefore, our “working” linear logit
model was correctly specified in Scenario 1 and was misspecified in Scenarios 2—4. The
nonlinear dependence of logit[z1(Z, By)] on Tin Scenarios 2—4, that corresponds to
misspecification of our “working” model, is depicted in Figure S1 in the Supplementary
Materials. Based on this Figure it is clear that the degree of nonlinearity on 7, and thus the
degree of linear logit model misspecification, increases as v; decreases. For constructing

95% simultaneous confidence bands we performed 1,000 simulations of sets {51.}:’_ . of i.i.d.

random variables from MO, 1) and considered both equal-precision and Hall-Wellner-type
weights.

Pointwise simulation results for absorbing state 1 under Scenario 1 are presented in Table 1.
In all cases, the naive approach gave highly biased estimates. The CC analysis also provided

Stat Sin. Author manuscript; available in PMC 2020 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bakoyannis et al.

Page 13

biased estimates and lower than the nominal 95% level coverage probabilities. In contrast,
the proposed NPMPLE provided virtually unbiased estimates. Furthermore, the estimated
standard errors (ASE) were close to the Monte Carlo standard deviations (MCSD) of the
estimates and the coverage probabilities close to the nominal 95% level even with 80%
missing absorbing states and /7= 200. Interestingly, the MCSD of our estimator was larger
compared to that from the CC analysis at the time points 4 and % with 80% missingness and
n=200. This is attributed to: i) the large variability of /§,,, the estimated parameter of the
model for the probability of the absorbing state 1, as a consequence of the fact that it was
estimated using only 34 observations on average, and ii) the fact that ,é,, was used in
imputing the missing counting process jumps in a relatively large number of cases (i.e. 136
on average or 80% of the non-right-censored cases). When sample size was 400 or the
missing rate was 60%, this phenomenon was almost gone and our estimator was more
efficient than the CC analysis, except at time point # for the case of 7= 400 with missing
rate of 80%. Although the proposed estimator may have slightly larger standard error in
some cases compared to the CC analysis when sample size is not large and the missing rate
is high, our estimator still outperforms the CC estimator in terms of the mean squared error
due to fact that the CC analysis usually yields biased estimates.

Simulation results under Scenario 2, where the proposed method was evaluated under a
misspecified parametric model z1(Z, B), are presented in Table 2. Again, the naive approach
and the CC analysis provided biased estimates. The proposed approach performed well, as in
Scenario 1. Simulation results about the performance of the simultaneous confidence bands
are presented in Table 3. The coverage probabilities for the 95% simultaneous confidence
bands were close to the nominal level even with 80% missing absorbing states, 7= 200, and
a misspecified parametric model y(Z, B). Simulation results for more pronounced
misspecification of the probability model of absorbing state 1 (Scenarios 3 and 4) are
reported in Tables S1-S3, and Figure S2 in the Supplementary Materials. The pointwise
results in Tables S1 and S2 reveal that more pronounced misspecification of z1(Z, B) led to
more pronounced bias in the transition probability estimates. However, the degree of bias
under the misspecified models was still much smaller than that in the naive and CC analyses,
and was almost negligible compared to the corresponding true values (Figure S2). Moreover,
the ASE were close to the corresponding MCSD and the coverage probabilities close to the
nominal level in all cases. When considering the whole estimated transition probability
functions (Figure S2), it appears that the bias levels were in general small even under a
severely misspecified model 1(Z, B) (Scenario 4). Thus, it is evident that the proposed
estimator is robust against some degree of misspecification of the “working” model m;(Z,
P). Nevertheless, the impact of misspecification was more pronounced with respect to the
coverage of the simultaneous confidence bands, especially under Scenario 4 (Table S3 in the
Supplementary Materials).

The efficiency of our estimator is expected to depend on the missing rate and the accuracy of
the auxiliary variable C. To evaluate numerically this efficiency dependence we performed
further simulation experiments by varying the missing rate from 0% to 80% while keeping

nfl and JI;Z fixed at 0.9 and 0.7, respectively, as well as by varying zrl*l from 0.5 t0 0.9, while

setting n;Z = ;zl*l and the missing rate at 80%. The simulation results on the MCSD of the
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estimated transition probability at #= 0.4, 0.8 and 1.2, based on 1,000 simulations, are
presented in Figure S3 and Table S4 in the Supplementary Materials. As expected, higher
missing rate led to larger estimation standard error and higher accuracy of C" lead to smaller
estimation standard error. Interestingly, the effect of the accuracy of C* on standard error
was not pronounced.

We also compared our method to that proposed by Gouskova et al. (2017) (GLF) for the
competing risks model, which does not incorporate auxiliary covariates, by considering
Scenarios 1-3 with /7= 400. In this simulation study we did not consider Scenario 4 because
the GLF estimator was highly unstable under this Scenario. In these simulations, we
generated missingness according to the following two scenarios: i) missing completely at
random (MCAR) where the probability of missingness did not depend on the auxiliary
variable C* with Pr(R=0) = 0.6, and ii) MAR where the probability of missingness
depended on the auxiliary variable C* with Pr(R=0|C") = 0.5 + 0.2/ ¢*=13. These
simulation results, which are presented in Tables S5 and S6 in the Supplementary Materials,
revealed that the GLF estimator had always larger mean squared error compared to our
proposed method, even in cases where our parametric model r1(Z, B) was misspecified
(Scenarios 2 and 3). Moreover, the GLF estimator was severely biased when the probability
of missingness depended on the auxiliary variM able C".

To illustrate the computational efficiency of our estimator we present the average
computation times in seconds and the corresponding standard deviations, based on 100
simulations, in Table S7 in the Supplementary Materials. These figures correspond to the
time needed to compute the transition probability estimates and the associated standard
errors, with and without the construction of simultaneous confidence bands, for sample sizes
n=200to n=1, 500, under Scenario 1. The computation times under the Scenarios 2—4
were similar. Finally, we investigated the performance of the naive approach according to
the diagnostic accuracy of C* under Scenario 1. These results are presented in Table S8 in
the Supplementary Materials. As expected, a lower accuracy of C* was associated with a
larger bias in the naive approach as a result of the higher misclassification rate of C".

To sum up, our extensive simulation studies provided sufficient evidence to numerically
justify the superior statistical and computational efficiency properties of our proposed
method for estimating the transition probabilities of non-homogeneous Markov processes
with partially observed absorbing states.

5. HIV Data Analysis

From an implementation science perspective, the primary outcome of interest in HIV care is
how adhesive to care are the HIV patients and this was the main objective in our motivating
study. In the light of this, the proposed method was applied to estimate the transition
probabilities of disengagement from care and death while in care based on data from the
East Africa leDEA study. A major issue in this ongoing study is the significant death under-
reporting, where unreported deaths are incorrectly classified as disengagements from care
since deceased patients do not return to care. To deal with this issue, a double-sampling
design was applied in the leDEA study, where a small sample of patients lost to clinic was
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intensively pursued in the community by outreach workers, and, subsequently, the
corresponding vital statuses were actively ascertained. The database consisted of 58,876
HIV-infected individuals who initiated antiretroviral therapy (ART) with a CD4 count below
350 cells/pl. Throughout the study, 3,338 (5.7%) patients were (passively) recorded as dead
and 27,034 (45.9%) were lost to clinic. The remaining patients were alive and in care at the
data closure date, and their arrival times at an absorbing state were considered
administratively right-censored. In this dataset, 4,020 (14.9%) patients, out of the 27,034
who were lost, were doubly-sampled and outreached within a short period after the time they
were agged as disengagers by the clinicians. Among these doubly-sampled patients, 917
(22.8%) were actually dead indicating a significant death under-reporting issue. The vital
status was missing for the remaining 85.1% of the lost patients who were not doubly-
sampled.

At the first stage of the analysis we considered a logistic regression model for the probability
of death among those who were agged as disengagers, with a linear effect of time from ART
initiation. We evaluated the goodness of fit of this model using the residual process
presented in Section 2. The left panel of Figure 1 clearly indicates the lack of fit of this
model. More specifically, the model seems to overestimate the true probability of death
during the first year after ART initiation. We then considered a model with piecewise linear
effect of time with a change in slope at 12 months post ART initiation. The residual process
for this model (right panel of Figure 1) was close to 0 at all time points and remained within
the 95% goodness-of-fit band (p-value=0.436). This was the model used in our proposed
NPMPLE for this analysis.

The estimates of the transition probabilities of death while in HIV care and disengagement
from care are presented in Figure 2. The naive analysis, which ignores the information from
double-sampling, significantly underestimated mortality while in HIV care (left panel of
Figure 2) and, also, overestimated disengagement from HIV care (right panel of Figure 2),
compared to the proposed NPMPLE method. The CC analysis underestimated both
probabilities of death and disengagement from care, compared to the proposed estimator.
Note that the findings from the CC analysis were in accordance to the findings from the
simulation study. However, the results from the naive analysis were not in accordance to the
results from the simulation study since in the HIV data example Pr(C = 2|C=2) = 1, that is
the imperfect state classification was always correct when the true state was
“disengagement”. On the contrary, in the simulation study we considered the more general
case with Pr(C" = 2|C=2) < 1. The computing time for estimating the transition
probabilities over the whole study period using our motivating dataset of 58,876
observations was only 15 seconds in a modern i7 processor.

6. Concluding Remarks

In this paper we proposed a computationally efficient nonparametric estimation approach for
the transition probability matrix of a non-homogeneous Markov process with missing
absorbing state, allowing for both right censoring and left truncation. Additionally, we
derived a covariance function estimator based on the estimated influence functions and
proposed a methodology for simultaneous confidence band construction. The validity of our
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methodology was studied both theoretically and numerically. Even though our approach uses
the parametric model z{Z, B) to estimate the probabilities of each absorbing state for the
missing cases, it seems, based on our simulation studies, to be robust against some degree of
misspecification of this model. Moreover, we proposed a formal goodness-of-fit approach
for evaluating the “working” model for =(Z, B).

Alternative approaches for the competing risks model, which is a special case of an
absorbing Markov process with a single transient state, are the estimators proposed by
Effraimidis and Dahl (2014) and Gouskova et al. (2017). These methods estimate
nonparametrically the probabilities of the absorbing states {4 as functions of time.
However, unlike our approach, these methods do not incorporate auxiliary variables and thus
impose stronger missing at random assumptions. Therefore, these estimators can be biased
in cases where the probability of missingness depends on variables other than time, as it was
illustrated in the simulation study.

While the proposed method is computationally efficient and has superior statistical
properties compared to the existing methods, it is not clear if it is fully statistically efficient.
Therefore, it would be interesting to study the efficiency of our pseudolikelihood estimator
theoretically. For this, one could consider either the full class of nonparametric estimators of
the transition probability matrix of a Markov process that utilize a parametric model for the
probabilities of the absorbing states, or the subclass of the union of pseudolikelihood
estimators considered in this article and potential augmented inverse probability estimators.
The latter approach is very useful in cases where derivation of the efficient influence
function is very challenging. The study of efficiency within a restricted class of estimators
has been considered by Kulich and Lin (2004) and Breslow et al. (2009) for the class of
augmented inverse probability weighting estimators for the Cox proportional hazards model
under case-cohort study designs. Such efficiency considerations in the framework of the
method proposed in this article are technically challenging, but constitute an interesting
topic for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Residual process for the parametric model rz1(Z, B) based on the leDEA HIV data along

with the 95% goodness-of-fit band (grey area) and the corresponding p-value.
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Figure 2.
Transition probability estimates in the HIV study based on the naive approach, the complete

case analysis (CC) and the proposed NPM-PLE method.
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