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Abstract

This paper deals with the issue of nonparametric estimation of the transition probability matrix of 

a non-homogeneous Markov process with finite state space and partially observed absorbing state. 

We impose a missing at random assumption and propose a computationally efficient 

nonparametric maximum pseudolikelihood estimator (NPMPLE). The estimator depends on a 

parametric model that is used to estimate the probability of each absorbing state for the missing 

observations based, potentially, on auxiliary data. For the latter model we propose a formal 

goodness-of-fit test based on a residual process. Using modern empirical process theory we show 

that the estimator is uniformly consistent and converges weakly to a tight mean-zero Gaussian 

random field. We also provide methodology for simultaneous confidence band construction. 

Simulation studies show that the NPMPLE works well with small sample sizes and that it is robust 

against some degree of misspecification of the parametric model for the missing absorbing states. 

The method is illustrated using HIV data from sub-Saharan Africa to estimate the transition 

probabilities of death and disengagement from HIV care.
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1. Introduction

Continuous time non-homogeneous Markov processes with finite state space and absorbing 

states play an important role in medicine, epidemiology and public health. Modern medical 

decision making is frequently based on estimates of the transition probability matrix of an 

absorbing continuous time Markov process with the ultimate goal to evaluate the cost-

effectiveness of different medical strategies. Additionally, absorbing Markov processes are 

crucial in studies of natural history and prognosis of disease, for the evaluation of the health 

needs of various populations, and for the monitoring and evaluation of public health 

programs.
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Contain the proofs of the theorems presented in Section 3 and additional simulation results.
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A quite common problem in studies involving absorbing Markov processes is that absorbing 

state ascertainment is incomplete due to the usual nonresponse or by the study design. A 

design with planned missing observations on absorbing states can be used to reduce the total 

cost of the study, in case of expensive absorbing state diagnostic procedures. Moreover, such 

a design can be used to provide the necessary information to deal with absorbing state 

misclassification in studies that by default use imperfect diagnostics, such as studies that use 

electronic health record data (Ladha and Eikermann, 2015; Kolek et al., 2016). In such 

cases, a gold standard diagnostic procedure is used in a small sample of cases in an 

absorbing state due to financial or other constraints, while for the remaining cases in an 

absorbing state gold standard diagnosis is missing. The study design with planned missing 

observations in the absorbing state can be regarded as a special case of a double-sampling 

design. Double-sampling designs have been used in the past to deal with misclassification in 

simpler settings (Tenenbein, 1970; Rahardja and Young, 2011; Rahardja and Yang, 2015).

The issue of nonparametric estimation with missing absorbing state in the competing risks 

model, which is the simplest Markov process with multiple absorbing states, under a missing 

at random (MAR) assumption, has recently received some attention. Effraimidis and Dahl 

(2014) proposed a fully nonparametric estimation approach that does not utilize auxiliary 

information. This estimator was shown to converge at a rate slower than the usual n rate. 

Lee et al. (2014) proposed a n consistent estimator based on parametric multiple-

imputation (Wang and Robins, 1998; Lu and Tsiatis, 2001). Recently, Gouskova et al. (2017) 

proposed a fully nonparametric estimator which is n consistent. It is worth noting that none 

of the aforementioned works developed methodology for simultaneous confidence band 

construction for the transition probabilities, also known as cumulative incidence functions 

(CIF) in the competing risks setting. Moreover, Effraimidis and Dahl (2014) and Gouskova 

et al. (2017) established only pointwise asymptotic normality for their CIF estimators. 

Finally, the latter fully nonparametric estimation approaches do not utilize auxiliary 

information, which may be needed in order to make the MAR assumption plausible in 

practice (Lu and Tsiatis, 2001).

In this work, we address the issue of nonparametric inference for general continuous time 

non-homogeneous Markov processes with finite state space and missing absorbing state with 

right-censored and/or left-truncated data, under MAR. We use auxiliary variables in a 

parametric model for the true absorbing state probabilities and derive a closed-form 

nonparametric maximum pseudolikelihood estimator (NPMPLE) of the transition 

probability matrix. The basic idea is to replace the missing absorbing state-specific counting 

processes by the expected state-specific processes according to the fitted parametric model. 

This approach was similarly developed by Cook and Kosorok (2004) for the analysis of time 

to the first event of interest in clinical trials where event ascertainment is delayed. Our 

method can be regarded as an extension of the modified Kaplan-Meier estimator proposed 

by Cook and Kosorok (2004) in the sense that we provide an estimator of a general Markov 

process that describes the complete event history of the population under study, where some 

absorbing states are missing or their ascertainment is delayed. Using modern empirical 

process theory we study the asymptotic properties of the NPMPLE for the transition 

probability matrix and evaluate its performance with finite samples through simulation 
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studies. We show that the estimator is n consistent and converges weakly to a tight zero 

mean Gaussian random field. We also develop a methodology for the construction of 

simultaneous confidence bands. The performance of our NPMPLE with small to moderate 

samples is satisfactory and, in particular, the NPMPLE seems to be robust against some 

degree of misspecification of the parametric model for the true absorbing state probabilities. 

We also propose a formal goodness-of-fit approach for evaluating the parametric assumption 

regarding this model. As an illustration, the NPMPLE is used to estimate the transition 

probabilities of disengagement from HIV care and death while in care, using data from the 

East Africa Regional International Epidemiologic Databases to Evaluate AIDS (IeDEA) 

Consortium, where death status is incompletely ascertained due to a double-sampling 

design.

The rest of this article is organized as follows. Section 2 provides an overview of non-

homogeneous Markov processes, presents our nonparametric estimation approach and 

describes a formal goodness-of-fit procedure for the model of the absorbing state 

probabilities; Section 3 states the asymptotic theory for the NPMPLE and the goodness-of-

fit procedure; Sections 4 and 5 present simulation studies and data analysis for the 

motivating HIV study, respectively. Finally, Section 6 concludes the paper with some 

remarks. Proofs of the asymptotic theorems and additional simulation results are provided in 

the Supplementary Materials.

2. Data and Method

Let {X(t) : t ≥ 0} be a continuous time non-homogeneous Markov process with a finite state 

space ℐ = {0, 1, …, q}. The stochastic behaviour of X can be described by the (q + 1) × (q 
+ 1) transition probability matrix P0(s, t) = (Phj(s, t)) with elements

Phj(s, t) = Pr(X(t) = j | X(s) = h, 𝒳
s−) = Pr(X(t) = j | X(s) = h), h, j ∈ ℐ,

where t = σ〈{Nhj(u) : 0 ≤ u ≤ t, h, j ∈ ℐ}〉 is the σ-algebra generated by the counting 

processes Nhj(t), which count the direct transitions from state h ∈ ℐ to state j ∈ ℐ, with h ≠ 

j, in [0, t]. The conditional independence of the transition probabilities from the past history 

of the process is the so-called Markov property. An absorbing state h is a state for which 

Phj(s, t) = 0 for all j ≠ h, and t ∈ (s, τ], while a transient state is a state that is not absorbing. 

Let  = {h1, …, hk} ⊂ ℐ denote the absorbing state subspace. The transition probability 

matrix for Markov processes with absorbing states can be expressed as

P =
P

𝒯c P𝒯

0k × (q − k + 1) Ik
,

where P c and P  are the transition probability submatrices for the transitions from the 

transient states to the transient states and the absorbing states, respectively, 0k×(q−k+1) is a k 
× (q − k + 1) matrix containing zeros and Ik is the k × k identity matrix. The transition 

intensities are defined as
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αhj(t) = lim
u 0

1
uPhj(t, t + u), h ≠ j, h, j ∈ ℐ .

Additionally, define the (q + 1) × (q + 1) integrated transition intensity matrix A(t) with 

elements

Ahj(t) = 0
t
αhj(u)du, h, j ∈ ℐ,

where αhh ≡ − Σj≠h αhj due to the fact that Σj Phj(s, t) ≡ 1 for all s, t ∈ [0, τ] by the definition 

of a stochastic matrix. Then, the transition probability matrix can be defined as the product 

integral of the cumulative transition intensity matrix (Andersen et al., 1993)

The observations from n i.i.d. subjects that are followed over the interval [0, τ] with τ < ∞, 

are the counting processes Nihj(t), which count the observed direct transitions from h to j of 

subject i = 1, …, n on [0, t], and the at-risk processes Yih(t), which are the indicator 

processes that the ith subject is at state h ∈ ℐ just before t. Note that Nihj(t) can be > 1 for 

transient states, although we restrict our discussion to the case where the counting processes 

are uniformly bounded by some finite constant. Right censoring and/or left truncation can be 

directly incorporated in the at-risk process Yih(t), which is no longer a monotonic function 

due to both left truncation and the fact that subjects may visit a transient state more than 1 

times. The counting processes Nihj(t) are governed by the transition intensities of the form 

λhj(t) = αhj(t)Yh(t), with h ≠ j and t ∈ [0, τ].

One can estimate the elements of the integrated transition intensity matrix using the Nelson-

Aalen estimator

Ahj
N A(t) =

0

t dN ·hj(u)
Y ·h(u) , h ≠ j (2.2)

where Y · h(t) = ∑i = 1
n Y ih(t) and N·hj(t) = ∑i = 1

n Nihj(t), and the transition probability matrix 

by the Aalen-Johansen estimator (Aalen and Johansen, 1978)

(2.3)

where An
NA is the matrix with elements Ahj

NA(t), h, j ∈ ℐ. As a matter of fact, An
NA is the 

nonparametric maximum likelihood estimator (NPMLE) of A0, the true transition intensity 
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matrix, based on the likelihood for discrete-time Markov chains under the assumption of 

independent and noninformative right censoring and left truncation (Andersen et al., 1993):

(2.4)

where Ah·(t) = Σj≠h Ahj(t) and N·h·(t) = Σj≠h N·hj(t). Since the Aalen Johansen estimator (2.3) 

is a 1-1 function of the NPMLE An
NA, it is also a NPMLE of P0, the true transition 

probability matrix (Andersen et al., 1993).

2.1 Inference with Missing Absorbing States

In this paper we assume that the absoring states are MAR. In cases with incomplete 

absorbing state ascertainment let Ri to be the “response” indicator, with Ri = 1 if the 

absorbing state has been observed and Ri = 0 otherwise. Additionally, let Zi ∈  ⊂ ℝp be an 

auxiliary covariate vector that may contain information about the true unobserved absorbing 

state, such as a diagnosis obtained by an imperfect absorbing state ascertainment procedure 

and the last state visited prior to the arrival at an the absorbing state. Such information is 

critical in practice to make the MAR assumption plausible (Lu and Tsiatis, 2001) and to 

potentially increase the efficiency of the estimator. Next, let δij and δi = ∑ j = 1
k δij be the 

indicators that the ith subject has reached the absorbing state j ∈  and any absorbing state, 

respectively. The observed data for the ith subject are

Di =

(Ni, Yi, δi, Ri, Zi) if δi = 0

(Ni, Yi, δi, Ri, Zi) if δi = 1 and Ri = 1

(Ni
⋆, Yi, δi, Ri, Zi) if δi = 1 and Ri = 0,

where Ni = (Nihj : h ≠ j), Ni
⋆ is equal to Ni with Nihj(t) being replaced by Nih·(t) = Σj∈

Nihj(t) for all j ∈  which is a one-jump counting process, Yi = (Yi0, …, Yiq)T, and δi = 

(δi1, …, δik)T. The absorbing state-specific counting processes can be expressed as Nihj(t) = 

δijNih·(t), h ∉ , j ∈ . We propose replacing the missing dN·hj(t), j ∈ , in the logarithm 

of the likelihood (2.4) which is linear in the missing data dN·hj(t), by

E[dN ·hj(t) |D] ≡ dN
∼

·hj(t) = ∑
i = 1

n
[Riδij + (1 − Ri)E(δij |D)]dNih·(t), (2.5)

where D denotes the observed data Di for all i = 1, …, n. Following Cook and Kosorok 

(2004), we propose replacing E(δij|D) by an estimate πj(Zi, βn̂) based on maximum 

likelihood under a parametric “working” model (such as the multinomial logit model), using 

the subjects in any absorbing state with known δij and utilizing the auxiliary information Zi. 

This approach is valid under the MAR assumption since:
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Pr(δij = 1| Ri = 1, Zi) = Pr(δij = 1| Ri = 0, Zi) ≡ π j(Zi, β0),

where β0 is the true parameter value. Maximizing the resulting pseudolikelihood, which 

involves πj(Zi, β̂n), gives the NPMPLEs

An, hj(t) =
0

t dN∼·hj(u; βn)
Y ·h(u) , h ∉ 𝒯, j ∈ 𝒯, t ∈ [0, τ]

and An, hj(t) = Ahj
NA(t) if j ∉ , with h ≠ j, of the integrated transition intensities. Now, the 

NPMPLE of the transition probability matrix is given by the plug-in estimator

(2.6)

where the components of Ân are Ân,hj which were given above. Methodology for 

constructing 1 − α pointwise confidence intervals and simultaneous confidence bands for the 

components of P0(s, t) is presented in Section 3 of this paper.

2.2 Goodness-of-Fit Procedure

To simultaneously evaluate the parametric model assumption for πj(Zi, β0), j ∈ , we 

provide a goodness-of-fit procedure. First, we define the (estimated) residual processes 

L j(t; βn) = n−1∑i = 1
n Lij(t; βn), where

Lij(t; βn) = Ri[Ni· j(t) − π j(Zi, βn)Ni··(t)], j ∈ 𝒯( − 1), t ∈ [0, τ],

with Ni·j(t) = Σh∉  Nihj(t) and Ni··(t) = Σh∉  Σj∈  Nihj(t) being the counting processes that 

count the transitions to the absorbing state j and to any absorbing state by time t ∈ [0, τ], 

respectively. Also, (−1) ⊂  denotes the absorbing state subspace that includes k − 1 

absorbing states. Note that only k−1 residual processes are considered since the model for 

one absorbing state is completely determined by the models for the remaining k − 1 

absorbing states. To construct a formal statistical test for goodness of fit and a diagnostic 

plot for the parametric absorbing state probability model, we follow a procedure similar to 

that developed by Pan and Lin (2005). First, it can be shown (Supplementary Material) that 

under the null hypothesis E[Lj(t; β0)] = 0 we have

Vnj(t) ≡ nL j(t; βn) = n−1/2 ∑
i = 1

n
ψij

L(t) + op(1)
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where ψ ij
L(t) = Lij(t; β0) − ωi

TE[π̇ j(Zi, β0)RiNi · ·(t)], in which ωi is the ith individual influence 

function for βn̂, given by ωi = I−1(β0)Ui(β0) where I(β0) is the Fisher information about β0, 

Ui(β0) is the individual score function for the ith subject, and π̇
j(Zi, β0) = ∂πj(Zi, β)/∂β|β=β0. 

The influence functions ψ ij
L(t) can be estimated by replacing the unknown components with 

the corresponding estimated components and the expectation with the sample average, that is

ψij
L(t) = Lij(t; βn) − ωi

Tn−1 ∑
i = 1

n
[π̇ j(Zi, βn)RiNi··(t)],

with ω̂
i = Î−1(β̂n)Ui(β̂n). Now define Vnj(t) = n−1/2∑i = 1

n ψ ij
L(t)ξij, with ξij, i = 1, …, n 

randomly drawn from N(0, 1). The goodness of fit for the parametric model can be evaluated 

as follows:

1. Simulate many {ξij}i∈{1,…,n},j∈ (−1) sets of values from N(0, 1).

2. For each simulated set {ξij}i∈{1,…,n},j∈ (−1) calculate, given ψ ij
L(t), the quantity 

supt∈[0,τ] maxj∈ (−1) |V̂
nj(t)|.

3. Calculate the 1−α percentile of the distribution of supt∈[0,τ] maxj∈ (−1) |V̂
nj(t)| 

values that is denoted by c1−α.

4. Calculate the simultaneous confidence band for E[Lj(t; β0)] = 0 as ±n−1/2ĉ1−α, 

and plot it along with the residual processes Lj(t; β̂n), j ∈ (−1) and t ∈ [0, τ].

5. Calculate the p-value for the null hypothesis of overall goodness of fit as the 

proportion of supt∈[0,τ] maxj∈ (−1) |V̂
nj(t)| values that are larger than or equal to 

supt∈[0,τ] maxj∈ (−1) |υnj(t)|, where υnj(t) is the observed value of the Vnj(t) 
statistic based on the data.

Lack of fit for the parametric model πj(Zi, β0)Ni··(t), j ∈ , is indicated with a type I error α 
if the residual process for at least one j ∈ (−1) is not contained in the confidence band for 

E[Lj(t; β0)] = 0. Equivalently, a p-value less than α provides evidence for lack of fit for at 

least one absorbing state model. The validity of this approach is ensured by Theorem 3 that 

is stated in Section 3.

3. Asymptotic Theory

Assume that the following regularity conditions hold:

C1 The follow-up interval is [0, τ], with τ < ∞.

C2 Pr(Nhj(τ) ≤ C) = 1 for some constant C ∈ (0, ∞), for all h, j ∈ ℐ. Also, inft∈[0,τ] 

E[Yh(t)] > 0, for all h ∉ , which implies that the expected number of 

observations at all transient states is positive for any time t ∈ [0, τ].

C3 C3A0 is a (q + 1) × (q + 1) matrix-valued function with elements that are 

continuous functions of bounded variation on [0, τ].
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C4 The inverse of the link function for the model of the absorbing state vector δ, has 

a continuous derivative on compact sets. Also, the corresponding parameter 

space ℬ is a bounded subset of ℝp.

C5 The estimator βn̂ for the true model parameter β0 for the absorbing states δ is 

strongly consistent and asymptotically linear, i.e. 

n(βn − β0) = n−1/2∑i = 1
n ωi + op(1), with ωi being i.i.d., Eωi = 0 and E‖ωi‖2 < 

∞. Additionally, the plug-in estimators of ωi, ω̂
i for i = 1, …, n satisfy 

n−1∑i = 1
n ‖ωi − ωi‖

2 = op(1).

C6 The auxiliary covariate vector Z is bounded in the sense that there exists a 

constant K ∈ (0, ∞) such that Pr(‖Z‖ ≤ K) = 1.

It has to be noted that estimating β0 using maximum likelihood under a correctly specified 

generalized linear model and assuming that the proportion of missing data is independent of 

the sample size implies C5. Before stating the asymptotic theory results we introduce some 

further notation. First, the NPMPLE can be expressed as

Pn(s, t) =
P

n, 𝒯c(s, t) Pn, 𝒯(s, t)

0k × (q − k + 1) Ik
.

Next, define the influence functions

γihj(s, t) = ∑
l ∉ 𝒯

∑
m ∈ ℐ s

t
P0, hl(s, u − )P0, mj(u, t)dψilm(u),

for h ∉ , j ∈ ℐ, and i = 1, …, n, where

ψilm(t) = 0

t dN∼ilm(u; β0)
EYl(u) −

0

t Yil(u)
EYl(u)dA0, lm(u) + ωi

TRlm(t)   if  m ∈ 𝒯

0

t dNilm(u)
EYl(u) −

0

t Yil(u)
EYl(u)dA0, lm(u)   if  m ∉ 𝒯

for l ≠ m, where Rlm(t) = E{(1 − R)π̇m(Z, β0)∫ 0
t [EY l(u)]−1dNl·(u)}. If l = m then ψill(t) = − Σh≠l 

ψilh(t). Moreover, define

Wn, hj(s, t) = 1
n ∑

i = 1

n
γihj(s, t)ξi, 0 ≤ s < t ≤ τ

where γ̂
ihj(s, t) are the estimated influence functions where the unknown quantities have 

been replaced by their consistent estimators and the expectations by sample averages, and ξi 
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are independent draws from N(0, 1). Given regularity conditions C1–C6 the following 

theorems hold:

Theorem 1

The NPMPLE is uniformly consistent in the sense that

sup
t ∈ (s, τ]

Pn(s, t) − P0(s, t) as∗ 0,

for any s ∈ [0, τ), where the norm ‖A‖ stands for suph Σl|ahl| for the matrix A = [ahl].

Theorem 2

The NPMPLE is an asymptotically linear estimator with

n Pn(s, t) − P0(s, t) = 1
n ∑

i = 1

n
γi(s, t) + ε,

where γi(s, t) is a matrix-valued function with elements γihj(s, t) that belong to Donsker 

classes and ε is a (q+1) × (q+1) matrix with elements that are op(1). Moreover, Ŵn,hj(s, ·) 

converges weakly conditional on the observed data D to the same limiting process as that of 

n[Pn, hj(s, ·) − P0, hj(s, ·)] (unconditionally) for any s ∈ [0, τ), h ∉ , and j ∈ ℐ.

Theorem 3

The goodness-of-fit statistic supt∈[0,τ] maxj∈ (−1) |V̂
nj(t)| converges weakly conditional on 

the data D to the same limiting process as that of supt∈[0,τ] maxj∈ (−1) |Vnj(t)| 
(unconditionally).

The proofs for the theorems are outlined in the Supplementary Materials.

Remarks—The asymptotic result of Theorem 2 can be also expressed in a conventional 

vector form as n 𝒫n(s, t) − 𝒫0(s, t) , where 𝒫̂
n = (vecTP̂

n, c, vecTP̂
n, )T and 0 = 

(vecTP0, c, vecTP0, )T with vecA being the column vector formed by concatenating the 

columns of the matrix A and vecT A the transpose of vecA. As a consequence of Theorem 2 

and an application of the Cramer-Wold device, n 𝒫n(s, ·) − 𝒫0(s, ·)  converges weakly to a 

Gaussian random field with each of its elements being a tight mean-zero Gaussian processes 

in the space D[s, τ] of cadlag functions on [s, τ]. Due to the asymptotic linearity of the 

NPMPLE, the corresponding asymptotic variance-covariance matrix-valued function, given 

the starting time point s, is equal to Σ(t, w; s) = E [vecγi(s, t)vecTγi(s, w)], 0 ≤ s < t, w ≤ τ, 

where Σ(t, w; s) is a (q − k + 1) (q + 1) × (q − k + 1) (q + 1) matrix-valued process. Using 

this asymptotic variance-covariance matrix-valued function and after some algebra it can be 

shown that the asymptotic variance of

n[Pn, hj(s, t) − P0, hj(s, t)], t ∈ (s, τ],

Bakoyannis et al. Page 9

Stat Sin. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the hj-element of the transition probability matrix, for given s ≥ 0, can be decomposed as

E[γihj
F (s, t)]2 + E[γihj

M (s, t)]2 + 2E[γihj
F (s, t)γihj

M (s, t)], (3.3)

where

γihj
F (s, t) = ∑

l ∉ 𝒯
∑

m ∈ ℐ s

t
P0, hl(s, u − )P0, mj(u, t)dψilm

F (u),

with

ψilm
F (t) =

0

t dNilm(u)
EYl(u) −

0

t Yil(u)
EYl(u)dA0, lm(u),

and where

γihj
M (s, t) = ∑l ∉ 𝒯 s

t
P0, hl(s, u − )dψilj

M(u)   if   j ∈ 𝒯

0   if   j ∉ 𝒯

with

ψilj
M(t) = (1 − Ri)

0

t d[π j(Zi, β0)Nil·(u) − Nilj(u)]
EYl(u) + ωi

TRlj(t),

for j ∈ . The influence function γihj
F (s, t) is the influence of the ith observation on the 

estimator in the ideal situation without missing absorbing states, while γihj
M (s, t) is the 

influence associated with missingness and the fact that we impute the unobserved jumps 

dNilj(t) with πj(Zi, β̂n)dNil·(t), for j ∈ . Therefore, based on decomposition (3.3) it is 

obvious that the asymptotic variance of the transition probability estimator to an absorbing 

state is equal to the variance of this estimator in the absence of missing data E[γihj
F (s, t)]2, plus 

the additional variability due to missingness E[γihj
M (s, t)]2 and 2 times the covariance between 

the influence function of the estimator without missingness and the influence function 

related to missingness E[γihj
F (s, t)γihj

M (s, t)]. It is also obvious that the variability E[γihj
M (s, t)]2 due 

to missingness depends on the variability of βn̂, through its influence function ωi, weighted 

by the fixed quantity Rlj(t) which is proportional to the percent of missingness, and also the 

difference between the imputed expected jump πj(Zi, β0)dNil·(t) and the actual unobserved 

jump dNilj(t) for the missing cases. Hence the variability of our proposed estimator for 

incorporating missing absorbing states is influenced by the missing rate in addition to the 

total sample size.
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Using regularity conditions C1–C6 and Theorems 1 and 2 it can be shown that the 

asymptotic variance-covariance function of the transition probability matrix estimator can be 

uniformly consistently (in probability) estimated by 

∑ n (t, w; s) = n−1∑i = 1
n [vecγ i(s, t)vecTγ i(s, w)], with the components of γ̂

i(s, ·) being γ̂
ihj(s, ·), 

defined above, for h ∉  and j ∈ ℐ and 0 otherwise. These results along with the functional 

delta method can be used for the construction of 1 − α pointwise confidence intervals for 

P0,hj(s, t), under a known and differentiable transformation g (for example g(x) = 

log[−log(x)]) that ensures that the corresponding limits of the interval lie in (0, 1). For the 

construction of simultaneous confidence bands consider the process 

nqhj(s, t){g[Pn, hj(s, t)] − g[P0, hj(s, t)]}, where qhj(s, t) is a time-dependent weight that 

converges uniformly in probability to a nonnegative bounded function on [t1, t2] with 0 ≤ s ≤ 

t1 ≤ t2 < τ. This weight function can be set equal to P̂
n,hj(s, t)/σ̂

hj(s, t), where 

σhj(s, t) = [n−1∑i = 1
n γ ihj

2 (s, t)]1/2
 is the estimated standard error of 

Wn, hj(s, t) = n−1/2∑i = 1
n γihj(s, t), or to Pn, hj(s, t)/[1 + σhj

2 (s, t)]. The first weight is equivalent to 

an equal precision weight (Nair, 1984) and the second to a Hall-Wellner weight (Hall and 

Wellner, 1980). Using Theorem 2 and the functional delta method it can be easily shown that 

the process nqhj(s, t){g[Pn, hj(s, t)] − g[P0, hj(s, t)]} is asymptotically equivalent to the process 

B̂
n,hj(s, t) = qhj(s, t) ġ [P̂

n,hj(s, t)]Ŵn,hj(s, t). Next, similarly to Spiekerman and Lin (1998), 

define cα to be the 1 − α percentile from a large number of realizations of supt∈[t1,t2] |B̂
n,hj(s, 

t)| generated by repeated simulations of {ξi}i = 1
n . Now, the 1 − α confidence band is

g−1 g[Pn, hj(s, t)] ±
ca

nqhj(s, t) , t ∈ [t1, t2],

for a given s ∈ [0, t1]. In general, the confidence band can be unstable in the tails of the 

observable time domain (Yin and Cai, 2004). To deal with this issue we can restrict the 

domain of the confidence band to [u1, u2], where these limits can be set equal to the 

solutions of cl = σhj
2 (s, ul)/[1 + σhj

2 (s, ul)], l = 1, 2, with {c1, c2} = {0.1, 0.9} or {c1, c2} = 

{0.05, 0.95} (Nair, 1984; Yin and Cai, 2004).

4. Simulation Study

To evaluate the performance of the proposed estimator with finite samples and to study its 

robustness against misspecification of the parametric model for the probability of the 

absorbing states, we conducted extensive simulation studies. We considered a non-

homogeneous Markov process with two absorbing states, denoted by 1 and 2, and one initial 

transient state denoted by 0. This model is equivalent to the competing risks model with two 

causes of failure. The transition probabilities for the two absorbing states were P01(0, t) = 

0.4 {1 − exp [−(t/λ1)ν1]} and P02(0, t) = 0.6 {1 − exp [−(t/λ2)ν2]}. The probability of 

remaining in the transient state was P00(0, t) = 1 − ∑ j = 1
2 P0 j(0, t). Four scenarios were 

considered: 1) (λ1, ν1, λ2, ν2)T = (1, 1, 0.5, 1)T; 2) (λ1, ν1, λ2, ν2)T = (1, 0.8, 0.5, 1)T; 3) 
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(λ1, ν1, λ2, ν2)T = (1, 0.4, 0.5, 1)T; and 4) (λ1, ν1, λ2, ν2)T = (1, 0.2, 0.5, 1)T. Right 

censoring times were simulated based on the uniform distribution U(0, 5). Under these 

simulation settings, the average proportion of right-censored observations was 15% and the 

proportion of non-censored observations in the absorbing state 1 was 37%. The probability 

of a missing absorbing state was set equal to 0.8 or 0.6. To mimic a setting with planned 

missingness due to a double-sampling design, such as the design in our motivating HIV 

study presented in Section 5, we considered the auxiliary covariate Z = (T, C⋆)T, where T is 

the arrival time at an absorbing state and C⋆ is the absorbing state according to an imperfect 

diagnostic procedure. Let C denote the true, but incompletely observed absorbing state. C⋆ 

was simulated conditional on C from the Bernoulli distribution with probabilities 

π11
⋆ = Pr(C⋆ = 1|C = 1) = 0.9 and π22

⋆ = Pr(C⋆ = 2|C = 2) = 0.7. Therefore, the 

misclassification probabilities of the imperfect diagnostic were 0.1 and 0.3 for absorbing 

states 1 and 2, respectively. It is noted that C⋆ was completely observed. We considered the 

sample sizes of n = 200 and n = 400.

In this simulation study we evaluated the usual Aalen-Johansen estimator for the observed 

data by only using the misclassified absorbing state C⋆ and ignoring the non-missing C 
values (Naïve), the Aalen-Johansen estimator under a complete-case analysis where the 

observations with a missing C were discarded from the analysis (CC), and the proposed 

estimator. For the proposed estimator we considered a “working” logistic model with 

logit[π1(Z, β)] = β0 + β1T + β2I{C⋆=1}. Note that the true probability of the absorbing state 

1 under the four simulation scenarios is given by

logit[π1(T , C⋆; β)] = β0 + f (T; λ1, ν1, λ2, ν2) + β2I
{C⋆ = 1}

where

f (T; λ1, ν1, λ2, ν2) = − λ1
−ν1T

ν1 − λ2
−ν2T

ν2 + (ν1 − ν2) log(T) .

Setting ν1 = ν2 = 1 in Scenario 1 implied a linear logit model for the where probability of 

the absorbing state 1 in T, of the form logit[π1(Z, β0)] = β0 + β1T + β2I{C⋆=1}, while 

Scenarios 2–4 implied nonlinear logit models in T. Therefore, our “working” linear logit 

model was correctly specified in Scenario 1 and was misspecified in Scenarios 2–4. The 

nonlinear dependence of logit[π1(Z, β0)] on T in Scenarios 2–4, that corresponds to 

misspecification of our “working” model, is depicted in Figure S1 in the Supplementary 

Materials. Based on this Figure it is clear that the degree of nonlinearity on T, and thus the 

degree of linear logit model misspecification, increases as ν1 decreases. For constructing 

95% simultaneous confidence bands we performed 1,000 simulations of sets {ξi}i = 1
n  of i.i.d. 

random variables from N(0, 1) and considered both equal-precision and Hall–Wellner-type 

weights.

Pointwise simulation results for absorbing state 1 under Scenario 1 are presented in Table 1. 

In all cases, the naïve approach gave highly biased estimates. The CC analysis also provided 
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biased estimates and lower than the nominal 95% level coverage probabilities. In contrast, 

the proposed NPMPLE provided virtually unbiased estimates. Furthermore, the estimated 

standard errors (ASE) were close to the Monte Carlo standard deviations (MCSD) of the 

estimates and the coverage probabilities close to the nominal 95% level even with 80% 

missing absorbing states and n = 200. Interestingly, the MCSD of our estimator was larger 

compared to that from the CC analysis at the time points t1 and t2 with 80% missingness and 

n = 200. This is attributed to: i) the large variability of βn̂, the estimated parameter of the 

model for the probability of the absorbing state 1, as a consequence of the fact that it was 

estimated using only 34 observations on average, and ii) the fact that β̂n was used in 

imputing the missing counting process jumps in a relatively large number of cases (i.e. 136 

on average or 80% of the non-right-censored cases). When sample size was 400 or the 

missing rate was 60%, this phenomenon was almost gone and our estimator was more 

efficient than the CC analysis, except at time point t1 for the case of n = 400 with missing 

rate of 80%. Although the proposed estimator may have slightly larger standard error in 

some cases compared to the CC analysis when sample size is not large and the missing rate 

is high, our estimator still outperforms the CC estimator in terms of the mean squared error 

due to fact that the CC analysis usually yields biased estimates.

Simulation results under Scenario 2, where the proposed method was evaluated under a 

misspecified parametric model π1(Z, β), are presented in Table 2. Again, the naïve approach 

and the CC analysis provided biased estimates. The proposed approach performed well, as in 

Scenario 1. Simulation results about the performance of the simultaneous confidence bands 

are presented in Table 3. The coverage probabilities for the 95% simultaneous confidence 

bands were close to the nominal level even with 80% missing absorbing states, n = 200, and 

a misspecified parametric model π1(Z, β). Simulation results for more pronounced 

misspecification of the probability model of absorbing state 1 (Scenarios 3 and 4) are 

reported in Tables S1–S3, and Figure S2 in the Supplementary Materials. The pointwise 

results in Tables S1 and S2 reveal that more pronounced misspecification of π1(Z, β) led to 

more pronounced bias in the transition probability estimates. However, the degree of bias 

under the misspecified models was still much smaller than that in the naïve and CC analyses, 

and was almost negligible compared to the corresponding true values (Figure S2). Moreover, 

the ASE were close to the corresponding MCSD and the coverage probabilities close to the 

nominal level in all cases. When considering the whole estimated transition probability 

functions (Figure S2), it appears that the bias levels were in general small even under a 

severely misspecified model π1(Z, β) (Scenario 4). Thus, it is evident that the proposed 

estimator is robust against some degree of misspecification of the “working” model π1(Z, 

β). Nevertheless, the impact of misspecification was more pronounced with respect to the 

coverage of the simultaneous confidence bands, especially under Scenario 4 (Table S3 in the 

Supplementary Materials).

The efficiency of our estimator is expected to depend on the missing rate and the accuracy of 

the auxiliary variable C⋆. To evaluate numerically this efficiency dependence we performed 

further simulation experiments by varying the missing rate from 0% to 80% while keeping 

π11
⋆  and π22

⋆  fixed at 0.9 and 0.7, respectively, as well as by varying π11
⋆  from 0.5 to 0.9, while 

setting π22
⋆ = π11

⋆  and the missing rate at 80%. The simulation results on the MCSD of the 
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estimated transition probability at t = 0.4, 0.8 and 1.2, based on 1,000 simulations, are 

presented in Figure S3 and Table S4 in the Supplementary Materials. As expected, higher 

missing rate led to larger estimation standard error and higher accuracy of C⋆ lead to smaller 

estimation standard error. Interestingly, the effect of the accuracy of C⋆ on standard error 

was not pronounced.

We also compared our method to that proposed by Gouskova et al. (2017) (GLF) for the 

competing risks model, which does not incorporate auxiliary covariates, by considering 

Scenarios 1–3 with n = 400. In this simulation study we did not consider Scenario 4 because 

the GLF estimator was highly unstable under this Scenario. In these simulations, we 

generated missingness according to the following two scenarios: i) missing completely at 

random (MCAR) where the probability of missingness did not depend on the auxiliary 

variable C⋆ with Pr(R = 0) = 0.6, and ii) MAR where the probability of missingness 

depended on the auxiliary variable C⋆ with Pr(R = 0|C⋆) = 0.5 + 0.2I{C⋆=1}. These 

simulation results, which are presented in Tables S5 and S6 in the Supplementary Materials, 

revealed that the GLF estimator had always larger mean squared error compared to our 

proposed method, even in cases where our parametric model π1(Z, β) was misspecified 

(Scenarios 2 and 3). Moreover, the GLF estimator was severely biased when the probability 

of missingness depended on the auxiliary variM able C⋆.

To illustrate the computational efficiency of our estimator we present the average 

computation times in seconds and the corresponding standard deviations, based on 100 

simulations, in Table S7 in the Supplementary Materials. These figures correspond to the 

time needed to compute the transition probability estimates and the associated standard 

errors, with and without the construction of simultaneous confidence bands, for sample sizes 

n = 200 to n = 1, 500, under Scenario 1. The computation times under the Scenarios 2–4 

were similar. Finally, we investigated the performance of the naïve approach according to 

the diagnostic accuracy of C⋆ under Scenario 1. These results are presented in Table S8 in 

the Supplementary Materials. As expected, a lower accuracy of C⋆ was associated with a 

larger bias in the naïve approach as a result of the higher misclassification rate of C⋆.

To sum up, our extensive simulation studies provided sufficient evidence to numerically 

justify the superior statistical and computational efficiency properties of our proposed 

method for estimating the transition probabilities of non-homogeneous Markov processes 

with partially observed absorbing states.

5. HIV Data Analysis

From an implementation science perspective, the primary outcome of interest in HIV care is 

how adhesive to care are the HIV patients and this was the main objective in our motivating 

study. In the light of this, the proposed method was applied to estimate the transition 

probabilities of disengagement from care and death while in care based on data from the 

East Africa IeDEA study. A major issue in this ongoing study is the significant death under-

reporting, where unreported deaths are incorrectly classified as disengagements from care 

since deceased patients do not return to care. To deal with this issue, a double-sampling 

design was applied in the IeDEA study, where a small sample of patients lost to clinic was 
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intensively pursued in the community by outreach workers, and, subsequently, the 

corresponding vital statuses were actively ascertained. The database consisted of 58,876 

HIV-infected individuals who initiated antiretroviral therapy (ART) with a CD4 count below 

350 cells/µl. Throughout the study, 3,338 (5.7%) patients were (passively) recorded as dead 

and 27,034 (45.9%) were lost to clinic. The remaining patients were alive and in care at the 

data closure date, and their arrival times at an absorbing state were considered 

administratively right-censored. In this dataset, 4,020 (14.9%) patients, out of the 27,034 

who were lost, were doubly-sampled and outreached within a short period after the time they 

were agged as disengagers by the clinicians. Among these doubly-sampled patients, 917 

(22.8%) were actually dead indicating a significant death under-reporting issue. The vital 

status was missing for the remaining 85.1% of the lost patients who were not doubly-

sampled.

At the first stage of the analysis we considered a logistic regression model for the probability 

of death among those who were agged as disengagers, with a linear effect of time from ART 

initiation. We evaluated the goodness of fit of this model using the residual process 

presented in Section 2. The left panel of Figure 1 clearly indicates the lack of fit of this 

model. More specifically, the model seems to overestimate the true probability of death 

during the first year after ART initiation. We then considered a model with piecewise linear 

effect of time with a change in slope at 12 months post ART initiation. The residual process 

for this model (right panel of Figure 1) was close to 0 at all time points and remained within 

the 95% goodness-of-fit band (p-value=0.436). This was the model used in our proposed 

NPMPLE for this analysis.

The estimates of the transition probabilities of death while in HIV care and disengagement 

from care are presented in Figure 2. The naïve analysis, which ignores the information from 

double-sampling, significantly underestimated mortality while in HIV care (left panel of 

Figure 2) and, also, overestimated disengagement from HIV care (right panel of Figure 2), 

compared to the proposed NPMPLE method. The CC analysis underestimated both 

probabilities of death and disengagement from care, compared to the proposed estimator. 

Note that the findings from the CC analysis were in accordance to the findings from the 

simulation study. However, the results from the naïve analysis were not in accordance to the 

results from the simulation study since in the HIV data example Pr(C⋆ = 2|C = 2) = 1, that is 

the imperfect state classification was always correct when the true state was 

“disengagement”. On the contrary, in the simulation study we considered the more general 

case with Pr(C⋆ = 2|C = 2) < 1. The computing time for estimating the transition 

probabilities over the whole study period using our motivating dataset of 58,876 

observations was only 15 seconds in a modern i7 processor.

6. Concluding Remarks

In this paper we proposed a computationally efficient nonparametric estimation approach for 

the transition probability matrix of a non-homogeneous Markov process with missing 

absorbing state, allowing for both right censoring and left truncation. Additionally, we 

derived a covariance function estimator based on the estimated influence functions and 

proposed a methodology for simultaneous confidence band construction. The validity of our 
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methodology was studied both theoretically and numerically. Even though our approach uses 

the parametric model πj(Z, β) to estimate the probabilities of each absorbing state for the 

missing cases, it seems, based on our simulation studies, to be robust against some degree of 

misspecification of this model. Moreover, we proposed a formal goodness-of-fit approach 

for evaluating the “working” model for πj(Z, β).

Alternative approaches for the competing risks model, which is a special case of an 

absorbing Markov process with a single transient state, are the estimators proposed by 

Effraimidis and Dahl (2014) and Gouskova et al. (2017). These methods estimate 

nonparametrically the probabilities of the absorbing states πj(t) as functions of time. 

However, unlike our approach, these methods do not incorporate auxiliary variables and thus 

impose stronger missing at random assumptions. Therefore, these estimators can be biased 

in cases where the probability of missingness depends on variables other than time, as it was 

illustrated in the simulation study.

While the proposed method is computationally efficient and has superior statistical 

properties compared to the existing methods, it is not clear if it is fully statistically efficient. 

Therefore, it would be interesting to study the efficiency of our pseudolikelihood estimator 

theoretically. For this, one could consider either the full class of nonparametric estimators of 

the transition probability matrix of a Markov process that utilize a parametric model for the 

probabilities of the absorbing states, or the subclass of the union of pseudolikelihood 

estimators considered in this article and potential augmented inverse probability estimators. 

The latter approach is very useful in cases where derivation of the efficient influence 

function is very challenging. The study of efficiency within a restricted class of estimators 

has been considered by Kulich and Lin (2004) and Breslow et al. (2009) for the class of 

augmented inverse probability weighting estimators for the Cox proportional hazards model 

under case-cohort study designs. Such efficiency considerations in the framework of the 

method proposed in this article are technically challenging, but constitute an interesting 

topic for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Residual process for the parametric model π1(Z, β) based on the IeDEA HIV data along 

with the 95% goodness-of-fit band (grey area) and the corresponding p-value.
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Figure 2. 
Transition probability estimates in the HIV study based on the naïve approach, the complete 

case analysis (CC) and the proposed NPM-PLE method.
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