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Apolipoprotein E Markedly Facilitates Age-Dependent
Cerebral Amyloid Angiopathy and Spontaneous Hemorrhage
in Amyloid Precursor Protein Transgenic Mice
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Cerebral amyloid angiopathy (CAA) is a common cause of brain hemorrhage in the elderly. It is found in the majority of patients with
Alzheimer’s disease (AD). The most common form of CAA is characterized by the deposition of the amyloid-3 (A$3) peptide in the walls
of cerebral vessels, and this deposition can lead to hemorrhage and infarction. As in AD, the €4 allele of apolipoprotein E (APOE) is a risk
factor for CAA. To determine the effect of apoE on CAA and associated hemorrhage in vivo, we used two amyloid precursor protein (APP)
transgenic mouse models that develop age-dependent A3 deposition: PDAPP and APPsw mice. We found that both models developed an
age-dependent increase in CAA and associated microhemorrhage, with the APPsw model having an earlier and more severe phenotype;
however, when APPsw and PDAPP mice were bred onto an Apoe—/— background, no CAA was detected through 24 months of age, and
there was little to no evidence of microhemorrhage. Biochemical analysis of isolated cerebral vessels from both PDAPP and APPsw mice
with CAA revealed that, as in human CAA, the ratio of A 40:42 was elevated relative to brain parenchyma. In contrast, the ratio of A
40:42 from cerebral vessels isolated from old PDAPP, Apoe—/— mice was extremely low. These findings demonstrate that murine apoE
markedly promotes the formation of CAA and associated vessel damage and that the effect of apoE combined with the level of A3, or the

ratio of A3 40:42 facilitates this process.
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Introduction

Cerebral amyloid angiopathy (CAA) consists of deposition of
amyloid in brain arterioles, capillaries, and leptomeningeal ves-
sels. The most common form of CAA results from deposition of
the amyloid- 3 (AB) peptide in the walls of cerebral vessels, grad-
ually replacing the smooth muscle cell layer (Vinters, 1987). The
vast majority of patients diagnosed with Alzheimer’s disease
(AD) also have CAA. A major consequence of CAA is fatal lobar
cerebral hemorrhage, and it also appears to play a role in ischemic
brain lesions and leukoariaosis (Greenberg, 1998; Revesz et al.,
2002).

The AB peptide is 38—43 amino acids in length and is derived
from proteolytic processing of a longer precursor protein termed
the amyloid-B precursor protein (APP). The predominant A3
peptide present in CAA is AB,,, whereas in brain parenchymal
plaques it is AB,, (Joachim et al., 1988; Prelli et al., 1988; Suzuki
et al., 1994; Alonzo et al., 1998; McCarron et al., 2000). Several
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transgenic mice have been created using APP constructs contain-
ing familial AD mutations that recapitulate many aspects of the
amyloid-related pathology of AD (Hock and Lamb, 2001). Many
of these models have been shown to have both diffuse and neu-
ritic plaques in brain parenchyma, and a few have been shown to
develop CAA (Calhoun et al., 1999; Holtzman et al., 2000a; Van
Dorpe et al., 2000).

The role of apolipoprotein E (apoE) in the genetics and patho-
genesis of AD has been well established (Strittmatter and Roses,
1995; Wisniewski et al., 1997). As with AD, the €4 allele of APOE
is a risk factor for developing CAA (Schmechel et al., 1993;
Greenberg et al., 1995; Nicoll et al., 1997), whereas the €2 allele is
a risk factor for developing hemorrhage associated with CAA
(Nicoll etal., 1996, 1997; Greenberg et al., 1998). Previous studies
using APP transgenic mouse models of AD (in particular the
PDAPP mouse) have shown that the absence of murine apoE
doesnot resultin a delay in the onset of A deposition (Holtzman
et al., 1999), but it does result in a decrease in the level of AS
deposition and a marked delay in the onset of fibrillar AB depos-
its (amyloid) (Bales et al., 1997) as well as CAA up to 12 months
of age (Holtzman et al., 2000a).

To date, the effects of apoE on CAA and its consequences have
not been well studied. Herein, we examine the extent and effects
of apoE on CAA in both APPsw (Tg2576) and PDAPP mice
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through 24 months of age, two different transgenic models with
AD pathology. We found that CAA occurs earlier and to a much
greater extent in APPsw than PDAPP mice but that both develop
CAA-associated microhemorrhages. In the absence of apoE,
however, CAA and CAA-associated microhemorrhages are
markedly reduced even when assessed at a very old age. Finally, as
in human CAA, the ratio of AB 40:42 is elevated relative to brain
parenchyma and also reduced in the absence of apoE. Our find-
ings demonstrate a critically important contribution of apoE to
CAA pathogenesis.

Materials and Methods

Animals and tissue preparation. The production, genotyping, and back-
ground strain (B6/SJL) of APPsw (Tg2576) and APPsw, Apoe—/— mice
ages 12—18 months used in this study have been described previously
(Hsiao et al., 1996; Holtzman et al., 2000a). APPsw mice overexpress
human APP,; with the familial Swedish AD mutations at positions 670/
671 under control of the prion promoter and were a generous gift from
Dr. K. Ashe (University of Minnesota, Minneapolis, MN). The produc-
tion, genotyping, and background strains of PDAPP and PDAPP,
Apoe—/— mice ages 15-24 months used in this study have been described
previously (Games et al., 1995; Bales et al., 1997; Holtzman et al., 1999).
PDAPP mice overexpress human APP.., with the familial AD mutation
at position 717 (APPY7'"F) under control of the neuronal-specific
platelet-derived growth factor promoter. Animals were anesthetized with
pentobarbital (150 mg/kg, i.p.) and perfused transcardially with 0.1 m
PBS containing heparin (3 U/ml), pH 7.4. One hemibrain was
immersion-fixed in PBS containing 4% paraformaldehyde overnight at
4°C. After fixation, the brain was cryoprotected in PBS containing 30%
sucrose at 4°C. All experimental protocols were approved by the animal
studies committee at Washington University.

Histological analysis. Coronal sections (50 wm) were cut on a freezing-
sliding microtome and mounted on Superfrost Plus slides (Fisher Scien-
tific, Houston, TX) and permeabilized with PBS containing 0.25% Triton
X-100 (PBS-X) for 30 min at room temperature (RT). Every sixth section
from the genu of the corpus callosum to the caudal end of the hippocam-
pus (20-25 sections per animal) was examined. To assess for evidence of
previous microhemorrhage, the Prussian Blue stain was performed as
described (Gomori, 1936; Winkler et al., 2001). The Prussian Blue re-
agent stains microglia that have engulfed ferric iron-containing hemo-
siderin from red blood cells, indicating a previous hemorrhage. Briefly,
sections were washed twice quickly in deionized water and incubated in
2% HCI containing 2% potassium ferrocyanide for 20 min. Slides were
rinsed three times in PBS, coverslipped with 70% glycerol, and examined
with a 10X objective for blue puncta. Microhemorrhage was defined as
having at least two blue puncta surrounding a cerebral vessel. To confirm
that microhemorrhage was associated with CAA (as shown in Fig. 1), the
sections were costained with thioflavine-S as described previously (Bales
et al,, 1997). Prussian blue stain was always imaged first because of ex-
tremely rapid dissolution of the blue precipitate after UV excitation re-
quired for thioflavine-S imaging. For triple-label immunohistochemis-
try, sections were blocked with 2% dry milk-PBS-X for 1 hr at RT.
Sections were then incubated with rabbit anti-mouse apoE sera (gener-
ous gift from Dr. R. Pitas, Gladstone Institute, University of California
San Francisco) at 1:500 dilution in 1% dry milk—PBS-X overnight at 4°C.
Sections were washed three times with PBS-X and incubated with goat
anti-rabbit conjugated with Alexa-568 (Molecular Probes, Eugene, OR)
in 1% milk—PBS for 1 hr at RT. Sections were washed three times with
PBS-X and then incubated with a monoclonal antibody, m3D6
(Johnson-Wood et al., 1997) directed against the A3 peptide (amino acid
residues 1-5) conjugated with Alexa-488 in 1% dry milk-PBS. Sections
were washed three times in PBS-X and then stained for fibrillar amyloid
with the Congo red derivative X-34 dye (generous gift from Dr. W.
Klunk, University of Pittsburgh, Pittsburgh, PA). This dye has the advan-
tage of narrow emission spectra compared with thioflavine-S, which has
fluorescent emission well into the 488 range (Styren et al., 2000).
Fluorescein-conjugated monoclonal antibody against smooth muscle ac-
tin (Accurate Chemical, Westbury, NY) was used with Alexa 488 tyra-
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mide signal amplification using anti-fluorescein-peroxidase (Molecular
Probes) and imaged on a Zeiss LSM 510 META laser scanning confocal
microscope (Carl Zeiss, Jena, Germany).

Quantitation of CAA and A load. The percentage of cross-sectional
area covered by CAA vessels (percentage CAA load) as defined by
thioflavine-S-positive vessels was quantified using unbiased stereological
principles. CAA load was determined in the cortex and overlying lepto-
meningeal vessels immediately dorsal to the hippocampus in three sec-
tions, each separated by 300 wm. StereoInvestigator image analysis soft-
ware (MicroBrightField, Williston, VT) was used to quantify percentage
CAA load using the Cavalieri point counting method (Cavalieri, 1966).
Percentage A load in hippocampus was quantified using stereological
techniques as described previously (DeMattos et al., 2002).

Isolation of cerebral vessels and parenchymal tissue. The isolation of
cerebral vessels for biochemical analysis was performed essentially as
described (Zlokovic et al., 1993) with minor modifications. Briefly, ani-
mals were anesthetized and perfused transcardially with 0.1 M PBS with
heparin (3 U/ml). The brain was removed gently and placed in ice-cold
vessel buffer consisting of HBSS (Invitrogen, Carlsbad, CA) containing
15 mm HEPES, 1 mum pyruvate, 25 mM glucose, 25 mm NaHCOs5, 0.1%
BSA, and 1% dextran (~64,000 mol weight). After the cerebellum was
removed, the brain was homogenized in a loose-fitting glass Dounce
homogenizer in fivefold excess of vessel buffer. An equal volume of 26%
dextran was added for a final concentration of 13.5%, and the tissue was
immediately centrifuged at 6200 X gin a Beckman SW40 Ti ultracentri-
fuge swinging bucket rotor for 30 min at 4°C. Using this protocol, the
vessels form a pellet, whereas the parenchymal “vessel-free” material
forms a solid, compact disc at the top of the solution with little protein in
the clear interface between the vessel pellet and the parenchymal disc.
This parenchymal material was gently aspirated with a transfer pipette,
collected in a conical tube with 50 ml of ice-cold PBS, and centrifuged at
2000 X gto pellet the material. The parenchymal pellet was washed once
with vessel buffer (minus dextran and BSA). The vessel pellet was resus-
pended in 10 ml of vessel buffer (minus dextran) and passed over a 40 wm
nylon mesh (Fisher Scientific) to capture vessels. Vessels were washed
extensively with vessel buffer (minus dextran) and were recovered by
inverting the mesh and collecting into a 50 ml conical tube with a stream
of vessel buffer (minus dextran). Vessels were spun in a tabletop centri-
fuge at 2000 X g and washed once with 30 ml of vessel buffer (minus
dextran). Purity of similarly prepared samples was verified by light mi-
croscopy. Vessel and parenchymal material were lysed in 5 M guanidine,
50 mm Tris, pH 8, with protease inhibitor mixture (Roche, Indianapolis,
IN) and 1 mm PMSF (Sigma, St. Louis, MO) rotating for 3 hr at RT.

Acid-urea gel and ELISA. Denaturing acid-urea PAGE followed by
immunoblotting was used to identify forms of AB in tissue lysates as
described previously (DeMattos et al., 2002). AB,, and AB,, were quan-
tified by ELISA as described previously (DeMattos et al., 2001).

Statistical analysis. Because CAA load and microhemorrhage data were
not distributed normally, Mann—-Whitney two-tailed ¢ test was used to
compare APPsw, Apoe I+ with APPsw, Apoe —/— mice or PDAPP,
Apoe 't with PDAPP, Apoe —/— mice at the same age in regard to
percentage CAA load or microhemorrhage. To compare AS levels by
ELISA and A deposition between PDAPP and APPsw mice of the same
age, a two-tailed ¢ test was used. For statistical analyses, Prism version
3.00 software was used (GraphPad, San Diego, CA).

Results

Age-dependent CAA and associated microhemorrhage occur
in APPsw and PDAPP mice

Of the numerous APP transgenic mice that have been described
that develop AB deposits in the brain, spontaneous intracerebral
microhemorrhage in association with CAA has been reported pre-
viously in only one type of these APP transgenic models (Winkler et
al., 2001, 2002; Pfeifer et al., 2002). We first set out to determine
whether other mouse models with AB deposition also have evi-
dence of CAA and spontaneous microhemorrhage in association
with CAA. The APPsw model shows a more severe CAA pheno-
type than does the PDAPP model at equivalent ages, despite
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Table 1. Comparison of A3 levels and parenchymal plaque load between APPsw and PDAPP models

AB40pg/ g AB42pg/g AB40 + 42 pg/ g AP 40:42 ratio % Non-CAA AB load

APPsw

3 months 5.8% 53 1na 1.30% 0

11-12 months 115.3* 46.8 162.1 2.34% 2.56*

15-16 months 267.1* 18.7% 385.9% 2.22* 19.37
PDAPP

3 months 1.8 3.72 5.47 0.46 0

11-12 months 274 449.9 4773 0.08 19.67

15-16 months 84.7 920.2 1004.9 0.10 28.88

ABELISA analysis (pg/eq) of hippocampal lysates from both APPsw and PDAPP mice reveals an elevated ratio of A3 40:42 in APPsw mice at all ages examined. PDAPP mice have a higher parenchymal (non-CAA) plaque load than APPsw

mice. *p < 0.05 comparing APPsw with PDAPP mice at the same age (n = 4 per group).

Figure 1.  CAAis present in both the APPsw and PDAPP mouse models of AD. Thioflavine-S
staining of sections from a 12-month-old APPsw mouse ( A) and a 24-month-old PDAPP mouse
(B) demonstrating amyloid in cerebral vessels (arrows). Although the PDAPP model does de-
velop CAA, the pathology is less extensive at equivalent ages when compared with the APPsw
model. Also shown are parenchymal plaques (arrowheads). C, Two-photonimage of CAA vessel
from an 18-month-old APPsw mouse immunostained for smooth muscle actin (green, arrow-
head) surrounded by amyloid (blue, arrow). D, Isolated cerebral vessels from a 27-month-old
PDAPP mouse stained with thioflavine-S demonstrating presence of amyloid (arrows) in ves-
sels. Scale bar: 4, B, 100 pum.

higher A parenchymal plaque load and total A levels in PDAPP
mice at 12 and 15 months of age (Table 1). AB deposition in the
form of both diffuse and fibrillar parenchymal plaques begins at
7-10 months of age in both PDAPP and APPsw mice. CAA occurs
concurrently in APPsw mice. By 12 months of age, CAA is more
prominent in APPsw mice with comparable levels not seen in
PDAPP mice until 24 months of age (Fig. 1A, B). The difference
in CAA severity between the two animal models may be attribut-
able to the fact that at both young and older ages, APPsw mice
have higher brain tissue levels of AB,, and an increased ratio of
AP 40:42 (Table 1). CAA from both models is typical of that seen
in other mouse models and in human CAA cases, with a ring of
amyloid surrounding the vessel wall (Fig. 1C). The presence of
CAA can also be seen in isolated cerebral vessels from APP trans-
genic mice (Fig. 1 D). We found that once CAA was demonstra-
ble, microhemorrhages occurred in association with CAA in both
APPsw and PDAPP mice (Fig. 2). Microhemorrhages were asso-
ciated almost exclusively with amyloid-containing vessels (iden-
tified as thioflavine-S positive). Although more rare, occasional
macrohemorrhages associated with CAA were also seen in APPsw
mice 15 months of age and older.

APPsw
18 month

PDAPP
24 month

Figure 2.
mice. A, B, Prussian Blue staining indicates microhemorrhage in an 18-month-old APPsw
mouse and 24-month-old PDAPP mouse, respectively. , D, Thioflavine-S-positive vessels (ar-
rows) in an 18-month-old APPsw mouse and 24-month-old PDAPP mouse, respectively. £, F,
Merged images of A and Cand B and D showing colocalization of microhemorrhage (red) with
CAA (green). Prussian Blue images were digitally converted to red using Adobe Photoshop.
Scale bar, 100 m.

(CAA and associated microhemorrhage occur in both the aged APPsw and PDAPP

CAA load increased with age in both the APPsw and PDAPP
models (Fig. 3 A, C); however, the absolute amount of CAA in the
APPsw model is far greater than in the PDAPP model at the same
age. In 15-month-old mice, the percentage cortical CAA load
(percentage area of the cortex and overlying leptomeninges cov-
ered by CAA) in APPsw mice is 1.46 versus 0.38% in PDAPP mice
(Fig. 3A,C). Cerebral microhemorrhage also increased with age
in the APPsw and PDAPP models (Fig. 3B, D). Although there
was a substantial increase in microhemorrhages between 12 and
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Age-dependent CAA and microhemorrhage in APP transgenic mice is prevented in the absence of apoE. A, CAA load increases with age in the cortex of 12-, 15-, and 18-month-old

APPsw, Apoe 1 mice. APPsw, Apoe—/— mice have a significant reduction ( p < 0.05) in CAA at 15 and 18 months. B, The frequency of microhemorrhage also increases in 12-, 15-, and
18-month-old APPsw, Apoe /™ mice. APPsw, Apoe—/— mice have a significant reduction ( p << 0.05) in microhemorrhage at 15 and 18 months. ¢, CAA load increases in the cortex between 15
and 24 months of age in PDAPP, Apoe */* mice. PDAPP, Apoe—/— mice have a significant reduction ( p < 0.05) in CAA at 15 and 24 months of age as compared with PDAPP, Apoe /™ mice. D,
The frequency of microhemorrhage increases in 15- and 24-month-old mice. PDAPP, Apoe—/ — mice have a significant reduction ( p << 0.05)in microhemorrhage at 15 and 18 months as compared

with PDAPP, Apoe ™/ mice.

15 months of age in APPsw mice, the number of hemorrhages at
15 and 18 months was not statistically different.

ApoE promotes CAA and associated microhemorrhage in
APPsw and PDAPP mice

We sought to determine whether apoE, forms of which are asso-
ciated with altered risk of CAA and hemorrhage, is directly in-
volved in the pathogenesis of CAA. Previous results have shown
that murine apoE promotes parenchymal amyloid deposition as
well as CAA up to 12 months of age in the APPsw model (Holtz-
man et al., 2000a). The effect of apoE on CAA at older ages and
whether it influences CAA-associated hemorrhage is unknown.
We first asked whether apoE directly associates with CAA in
APPsw mice. ApoE immunoreactivity colocalized to many pa-
renchymal and cerebrovascular deposits of AB in the form of
amyloid in APPsw mice (Fig. 4). Similar results were obtained in
PDAPP mice (data not shown). We next examined the develop-
ment of CAA in APPsw and PDAPP mice lacking apoE between
12 and 24 months of age. Strikingly, even up to 18 months of age,

a time when there is otherwise substantial CAA in APPsw mice,
none of the APPsw, Apoe—/— mice (n = 13) developed any de-
tectable CAA (Fig. 3A). The absence of CAA was also associated
with a dramatically reduced number of microhemorrhages up to
18 months of age in APPsw, Apoe—/— mice (Fig. 3B). Similar
effects of apoE were also seen in the PDAPP model. None of the
PDAPP, Apoe—/— mice studied (n = 8) had evidence of CAA in
any brain region up to 24 months of age (minimum of 20 sections
sampled per brain) (Fig. 3C). There was also a decrease in the
number of microhemorrhages in PDAPP, Apoe—/— mice up to
24 months of age (Fig. 3D). This dramatic effect of apoE on CAA
is remarkable given that although there is a delay in thioflavine-
S-positive amyloid deposition in the absence of apoE, AR still
deposits as amyloid in the parenchyma of aged APPsw, Apoe—/—
mice (Fig. 4) as has been reported previously in very old (18-24
months) PDAPP mice (Fagan et al., 2002). PDAPP, Apoe—/—
mice, up to 24 months of age, had no CAA despite the presence of
thioflavine-S-positive amyloid in the brain parenchyma of most
of these animals at old ages (Fagan et al., 2002).
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Figure5. Ratio of AB40:42isincreased in cerebral blood vessels of APPsw and PDAPP mice

shownin Table 2. Shownisimmunoblot of cerebral vessels and parenchymal brain tissue lysates
run on acid-urea polyacrylamide gels to differentiate A3 1—40 and 1-42. Both the 18-month-
old APPsw and 24-month-old PDAPP mice tested revealed an elevated ratio of A3 40:42 in
cerebral vessel lysates as compared with brain parenchyma. Immunoblots were probed with an
anti-AB antibody mixture of 3D6 (N-terminal specific), 21F12 (42 specific), and 266 (central
domain specific). WB, Whole brain; V, vessels; P, parenchyma.

Ratio of A340 to Af342 is markedly increased in cerebral

vessels of aged APPsw and PDAPP mice: dependence on apoE
Previous biochemical experiments from human brain as well as
immunohistochemical staining in APP transgenic mouse brain
suggest that, in contrast to parenchymal plaques in which there is
an enrichment of Af,,, there is a relative increase in A3, associ-
ated with CAA (Joachim et al., 1988; Prelli et al., 1988; Suzuki et
al., 1994; Alonzo et al., 1998; McCarron et al., 2000). Because
apoE dramatically influenced both the deposition of amyloid in
cerebral vessels as well as one of its consequences (i.e., micro-
hemorrhage), we sought to determine whether the ratio of AB,,
to AB,, (40:42) was altered in the cerebral blood vessels of aged
PDAPP and APPsw mice in the presence and absence of apoE.
Biochemical assessment of cerebral vessels isolated from 24-
month-old PDAPP mice by acid-urea gel electrophoresis fol-
lowed by Western blotting showed a marked increase in the ratio
of AB 40:42 compared with whole brain or parenchymal lysate
(Fig. 5, Table 2). AB,,- and AB,,-specific ELISA analysis con-
firmed this elevated ratio in vessel preparations (Table 2). Of the
two aged 24-month-old PDAPP mice examined, PDAPP animal
5 showed a 20-fold increase in the ratio of AB 40:42 in cerebral
vessels (40:42 ratio = 6.1) compared with whole brain lysate

Triple-labeling demonstrates apoE colocalization to CAA in vessels (arrows) in APPsw mice. Eighteen-month-old
APPsw mice (A—H) and 18-month-old APPsw, Apoe—/— mice (/-L) were immunostained for apoE (4, £,/) and AB (B, F,J) and
with the Congo red derivative X-34 as a marker of fibrillar amyloid (C, G, K). Although fibrillar AB (arrowheads) begins to deposit
in the parenchyma of old APPsw, Apoe—/— mice at later ages, no evidence for CAA was found in these same mice. Scale bars:
(shown in D for A-D; shown in L for £-L), 100 pm.
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(40:42 ratio = 0.3), whereas animal 6
showed a more modest threefold increase
(ratio of AB 40:42 of 1.1 for vessel vs 0.4 for
whole brain) (Table 2). Of the two aged
PDAPP, Apoe—/— mice examined, both
animals had a very low ratio of A3 40:42 in
cerebral vessels as well as in whole-brain
lysate. Animal 7 had a ratio of AB 40:42 in
cerebral vessels of 0.08, and animal 8 had a
ratio of AB 40:42 of 0.16 (Table 2). In the
one 18-month-old APPsw mouse exam-
ined biochemically, the vessels and brain
parenchyma both had a high ratio of AB
40:42, although this ratio was much higher
in vessels (19.4) versus brain parenchymal
material (5.7). We also examined the ratio
of AB 40:42 in young PDAPP mice in the
presence and absence of apoE. The ratio of
AP 40:42 was similar in both groups (Ta-
ble 2). This suggests that the combination
of apoE together with the levels of AB,, or
ratio of AB 40:42 predispose to CAA.

Discussion

Although there is considerable data on fac-
tors that facilitate parenchymal AB depo-
sition, less is known about mechanisms
leading to CAA. We used two different
mouse models with AB deposition, PDAPP and APPsw trans-
genic mice, to investigate the effects of apoE expression on CAA
and associated microhemorrhage. We demonstrate that both of
these models develop an age-dependent deposition of Af in the
form of amyloid in cerebral vessels, with the APPsw model devel-
oping more severe pathology. We also show that a major conse-
quence of CAA (i.e., hemorrhage) also occurs in an age-
dependent manner in these models. Although the effect of apoE
on parenchymal amyloid deposition has been well studied, much
less is known about its role in CAA. We show here, in both the
PDAPP and APPsw mice, that the age-dependent development of
CAA is prevented completely in the absence of apoE in animals
examined up to 24 months of age. The latter occurs despite dep-
osition of A in the parenchyma in all of these animals, some of
which is fibrillar (thioflavine-S positive) at older ages. Of note,
AP deposition in blood vessels of PDAPP and APPsw mice is all
fibrillar, and there does not appear to be diffuse AB deposits in
vessels. Thus, the effect of removing apoE is not to delay conver-
sion of diffuse deposits to fibrillar deposits; it prevents the con-
version directly from soluble to fibrillar AB. Importantly, and
concomitant with the prevention of CAA, there is an almost com-
plete absence of microhemorrhages in the Apoe—/— mice. Addi-
tionally, as is the case in human patients with CAA, cerebral
vessels isolated from aged PDAPP and APPsw mice with CAA
have an elevated amount of A3, relative to Af,,; however, cere-
bral vessels isolated from aged PDAPP, Apoe—/— mice have a
dramatically reduced ratio of AB 40:42. Taken together, our re-
sults demonstrate that in addition to the levels of AB,, and the
ratio of A3 40:42, apoE plays a critical role in CAA formation and
its consequences.

CAA is a major cause of often fatal lobar cerebral hemorrhage
(Vinters, 1987). Although mutations in APP outside of the A
coding region result in rare forms of familial AD (Goate et al.,
1991; Tanzi and Bertram, 2001), it has also been found that fa-
milial mutations within the A coding region itself give rise to
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Table 2. Ratio of A3 40:42 is increased in vessels from aged mice with CAA and is
dependent on apoE

Ratio of A3 40:42

Whole brain Parenchyma Vessel
3 month APPsw ND 2.65 1.48
18 month APPsw ND 5.7 19.4
4 month PDAPP #1 0.27 0.28 0.19
4 month PDAPP #2 0.29 0.32 0.2
4 month PDAPP, E—/— #3 0.24 0.33 0.18
4 month PDAPP, E—/— #4 0.32 0.34 0.07
24 month PDAPP #5 0.3 0.3 6.1
24 month PDAPP #6 0.4 0.5 11
22 month PDAPP, E—/— #7 0.05 0.01 0.08
21 month PDAPP, E—/— #8 0.07 0.05 0.16

A ELISA analysis of brain and vessel lysates confirms an elevated ratio of A3 40:42 in cerebral vessels of aged
APPsw and PDAPP mice. Cerebral vessel lysates from aged PDAPP, Apoe—/— mice have an extremely low ratio of
AB40:42. The A3 40:42 ratio in young PDAPP, Apoe —/— mice is similar to that in young PDAPP mice. The levels of
AB4o and AB,; in blood vessels could not be normalized to vessel protein because of the small amount of vessel
tissue. In these young PDAPP and APPsw mice, ~0.5-1% of brain A3 is associated with vessels. In old mice,
~1-5% of brain A3 is associated with vessels in PDAPP mice and ~10—30% in APPsw mice. ND, Not determined.

severe forms of CAA, including hereditary cerebral hemorrhage
with amyloidosis Dutch-type (Levy et al., 1990; Revesz et al.,
2002) and Italian-type (Tagliavini et al., 1999). Other clinically
relevant effects of CAA, such as ischemia, are just now beginning
to be investigated (Greenberg, 2002). A recently described muta-
tion within the AB region in an Iowa family is associated with
dementia and severe CAA but not cerebral hemorrhage
(Grabowski et al., 2001). Interestingly, many of the mutations
that result in familial AD appear to result from an increase in
production of AfB,,, a particularly amyloidogenic form of A
(Citron et al., 1992, 1997; Cai et al., 1993; Haass et al., 1994;
Borchelt et al., 1996, 1997; Eckman et al., 1997). Mutations in
APP that lead to CAA do not appear to increase A3 production,
but in some way alter its fibrillogenic properties, toxicity, and
clearance (Levy et al., 1990; Davis and Van Nostrand, 1996;
Miravalle et al., 2000; Grabowski et al., 2001; Nilsberth et al.,
2001; Van Nostrand et al., 2001; Monro et al., 2002).

Characterization of suitable animal models is necessary to
study the pathogenesis of and potential treatment strategies for
CAA as well as AD. Recently, Jucker and colleagues (Winkler et
al., 2001) demonstrated that the APP23 mouse model of AD, in
which the neuron-specific thy-1 promoter is used to drive expres-
sion of APPsw, also develops extensive CAA and has an age-
dependent increase in microhemorrhages. Our data show that
hemorrhage associated with CAA occurs in two other commonly
used APP transgenic mice and that the APPsw mutation favors
the formation of CAA and hemorrhage as compared with the
APPY7'F mutation. Recently, Jucker and colleagues (Pfeifer et
al., 2002) showed that a passively administered N-terminal A3
antibody resulted in an increase in CAA-associated hemorrhage.
The exact cause of this effect has yet to be delineated, although it
may have been caused by the antibody recognizing AB in an
amyloid conformation in the vessel wall. Our results presented
here indicate that the PDAPP and APPsw models also display this
hemorrhage phenotype and may be useful in examining and de-
fining future immunization strategies.

In 1993 the €4 allele of APOE was shown to be a genetic risk
factor for developing AD (Corder et al., 1993; Rebeck et al., 1993;
Strittmatter et al., 1993) and subsequently also found to be a risk
factor for CAA (Schmechel et al., 1993; Greenberg et al., 1995;
Nicoll et al., 1997). Additionally, in patients who have sustained
brain hemorrhage attributable to CAA, there is an overrepresen-
tation of €2 allele of APOE (Greenberg et al., 1996, 1998; Nicoll et
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al., 1996). Several lines of evidence demonstrate that apoE inter-
acts with AB both in vitro (Strittmatter et al., 1993; Wisniewski et
al., 1993; LaDu et al., 1994; Munson et al., 2000) and in vivo
(Naslund et al., 1995; Wisniewski et al., 1995; Permanne et al.,
1997; Russo et al., 1998). Previously it has been shown that mu-
rine apoE markedly facilitates the fibrillogenesis of AS in brain
parenchyma in vivo in the PDAPP model (Bales et al., 1997, 1999;
Holtzman et al., 1999, 2000b) as well as parenchymal and cere-
brovascular amyloid in the APPsw model up to 12 months of age
(Holtzman et al., 2000a).

Murine apoE has a profound effect on the development of
CAA and its consequences. Furthermore, the effect of apoE is
even more profound on the deposition of AB in cerebral vessels
than it is on deposition of AB in brain parenchyma. The reason
for this difference is unknown. Clearance of AB,, from the brain
has been suggested to occur via active transport across the blood—
brain barrier (Ghersi-Egea et al., 1996; Shibata et al., 2000; Ji et al.,
2001) as well as along peri-arterial interstitial fluid drainage path-
ways into cervical lymph nodes and then into peripheral circula-
tion (Weller et al., 1998). The basement membrane along peri-
arterial drainage pathways contains an abundance of molecules
known to bind apoE, such as heparin sulfate proteoglycans
(Strittmatter and Bova Hill, 2002). In addition, endothelial cells
that make up the blood—brain barrier express apoE receptors
such as low-density lipoprotein receptor family members (Zlok-
ovic et al., 1996; Shibata et al., 2000). If apoE-AB complexes
remain bound to these molecules, it could provide a different
environment attributable to factors such as charge and surface
structure that facilitates AB fibrillogenesis. Whether apoE de-
rived from different species (i.e., rodent versus human) and dif-
ferent human apoE isoforms will have similar effects on A ac-
cumulation in the form of CAA is not known. Previous studies
suggest that human apoE, in addition to playing a role in A
fibrillogenesis, may also play an important role in AB clearance
from brain parenchyma (Holtzman et al., 1999; Fagan et al.,
2002). Whether it also plays a role in influencing A clearance in
relation to CAA remains to be defined.

Our findings also support the hypothesis that alterations in
AB metabolism, such as the ratio of AB 40:42, may be a key
pathologic event in the development of CAA. The increase in
ratio of A 40:42 in cerebral vessels with CAA is in close agree-
ment with previous observations in humans with CAA (Joachim
et al., 1988; Prelli et al., 1988; Suzuki et al., 1994; Alonzo et al.,
1998; McCarron et al., 2000). A biochemical analysis of one
mouse model of AD with a significant CAA component, the
APP/Ld model, found that the vessels isolated from these aged
mice had an eightfold increase in the ratio of Af 40:42 as com-
pared with brain parenchyma (Van Dorpe et al., 2000). The
APPY7"F mutation results in a low ratio of A 40:42 compared
with the APP®%¢7! Swedish mutation (Hsiao et al., 1996;
Johnson-Wood et al., 1997). Humans and mice with the
APPY7'F ‘mutation have little CAA (Murrell et al., 1991),
whereas humans and mice with the APP *”%*”! Swedish mutation
have substantial CAA (Lannfelt et al., 1994). Despite developing
greater overall levels of parenchymal A load, PDAPP mice have
less CAA than APPsw mice. This may be attributable to the fact
that APPsw mice have higher levels of AB,, and an increase in the
ratio of AB 40:42 compared with PDAPP mice at young and older
ages. Although the ratio of AB 40:42 does not appear to be altered
by apoE at young ages, there is a further reduction in this ratio in
older PDAPP mice lacking apoE. Taken together, this suggests
that levels of AB,, and the ratio of A3 40:42 combined with apoE
influence the probability of CAA formation. Determining how
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apoE influences the development of CAA and its consequences
such as cerebral hemorrhage may lead to new insights into the
pathogenesis and treatment of CAA.
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