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In an emerging model, area patterning of the mammalian cerebral cortex is regulated in part by embryonic signaling centers. Two have
been identified: an anterior telencephalic source of fibroblast growth factors and the cortical hem, a medial structure expressing wingless-
int (WNT) and bone morphogenetic proteins. We describe a third signaling source, positioned as a mirror image of the cortical hem, along
the lateral margin of the cortical primordium. The cortical antihem is identified by gene expression for three epidermal growth factor
(EGF) family members, Tgf�, Neuregulin 1, and Neuregulin 3, as well as two other signaling molecules, Fgf7 and the secreted WNT
antagonist Sfrp2. We find that the antihem is lost in mice homozygous for the Small eye (Pax6) mutation and suggest the loss of EGF
signaling at least partially explains defects in cortical patterning and cell migration in Small eye mice.
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Introduction
Recent studies indicate that regional specification and growth
control of the cerebral cortex is initiated by signaling centers
operating on an originally homogeneous embryonic field
(Fukuchi-Shimogori and Grove, 2001; Ragsdale and Grove, 2001;
Hebert et al., 2002; Garel et al., 2003). Anteroposterior position is
conferred by an anterior fibroblast growth factor (FGF) source
(Fukuchi-Shimogori and Grove, 2001), and mediolateral pattern
is regulated by the cortical hem, a medial signaling center en-
riched in bone morphogenetic proteins (BMPs) and wingless-int
(WNT) proteins (Grove et al., 1998; Lee et al., 2000; Ragsdale and
Grove, 2001; Hebert et al., 2002). Given the size and complexity
of the final cortical area map, however, additional cortical signal-
ing sources are almost certain to exist.

We hypothesized that the lateral edge of the cortical primor-
dium, where the dorsal and ventral telencephalon meet, might be
the site of an additional signaling center. The lateral cortical mar-
gin is readily identified by gene expression for a WNT antagonist,
the secreted frizzled-related protein Sfrp2 (see Fig. 1) (Ragsdale et
al., 2000; Kim et al., 2001). Sfrp2 expression is detected in this
territory as early as embryonic day 10.5 (E10.5) (data not shown)
and, by E12.5, describes a curve that laterally mirrors the medial
cortical hem, itself identifiable by the expression of multiple Wnt

genes (see Fig. 1A). Together, these territories mark the lateral
and medial limits of the cortical ventricular zone (VZ) (see Fig.
1C,D). Two-color in situ hybridization experiments suggest a
pincer arrangement between the hem and the Sfrp2-rich antihem;
the two territories are well separated in rostral telencephalon but
approach one another to meet in the caudal telencephalon (see
Fig. 1C).

If the antihem is an important embryonic signaling center, it is
expected from studies of other cortical signaling centers to ex-
press multiple members of at least one secreted signaling mole-
cule family. Two lines of research prompted a survey of epidermal
growth factor (EGF) family members. First, a classic series of in
vitro experiments implicates EGF family members in the devel-
opment of cerebral cortical areas linked to the limbic system
(Ferri and Levitt, 1993; Levitt et al., 1997). The limbic system-
associated membrane protein LAMP is expressed in limbic cor-
tical areas (Levitt et al., 1997) and is upregulated in cells from
non-limbic cortical domains in response to EGF family ligands
(Ferri and Levitt, 1995). Second, EGF receptor-mediated signal-
ing controls dorsoventral neuronal specification in the develop-
ment of the Drosophila ventral nerve cord (Skeath, 1998; von
Ohlen and Doe, 2000). Two EGF ligands are involved in this
dorsoventral signaling: Spitz, a Tgf�-like molecule, and Vein,
which is similar in structure to the Neuregulin proteins, a sub-
family of vertebrate EGF ligands (Golembo et al., 1999).

Materials and Methods
Gene expression patterns were studied in CD-1 mice, Small eye (Sey, or
Pax6Sey-Neu) mice maintained on a C3H/He background, and Emx2-
targeted mice maintained on a C57BL/6 background. The day of plug
discovery was designated E0.5. In situ hybridization of E9.5–E18.5 fore-
brains and genotyping of the Sey and Emx2 mice were performed as
described previously (Pellegrini et al., 1996; Xu et al., 1997; Grove et al.,
1998). Antihem marker genes were studied with mouse cDNAs for Areg/
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Amphiregulin (Das et al., 1995), Egf (Pascall and Brown, 1988), Hegfl/
Heparin-binding EGF-like growth factor/Diphtheria toxin receptor (IM-
AGE Consortium, GenBank accession number W80035), Fgf7/
Keratinocyte growth factor (IMAGE Consortium, GenBank accession
number BF159111), Nrg1 (IMAGE Consortium, GenBank accession
number AI197081), Nrg2 (IMAGE Consortium, GenBank accession
number AW476657), Nrg3 (Zhang et al., 1997), Nrg4 (IMAGE Consor-
tium, GenBank accession number AA238077), Sfrp2 (Rattner et al.,
1997), Tgfa/Tgf� (Vaughan et al., 1992; Kornblum et al., 1997), Tmeff1/
Transmembrane protein with EGF-like and two follistatin-like domains 1
(IMAGE Consortium, GenBank accession number BF147745) and
Tmeff2/Tomoregulin (IMAGE Consortium, GenBank accession number
AI098476), and a rat cDNA for Ereg/Epiregulin (Taylor et al., 1999).

Results
We examined mRNA expression of 11 EGF family members: Egf
itself, Tgf�, Neuregulins 1– 4, Amphiregulin, Epiregulin,
Heparin-binding EGF-like growth factor, Tmeff1, and Tmeff2.
Our screen disclosed that the lateral margin of the cortical pri-
mordium is enriched in expression of three Spitz and Vein ho-
mologs, Tgf�, Neuregulin1 (Nrg1), and Nrg3. At E12.5, Tgf� ex-
pression marks the antihem, which appears as a curve of strong
Tgf� expression when viewed from the lateral face of the cortical
primordium (Figs. 1,2A). Coronal sections show that Tgf� ex-
pression is in the VZ of proliferating cells (Fig. 3). Nrg1 and Nrg3
show overlapping high expression in the same curving band (Fig.
2B,C). All three genes display some graded expression in the
cortical VZ, which is most pronounced in Nrg3 preparations. For
both Nrg genes, expression in the cortical primordium increased
as development proceeded (last age examined, E18.5). For all
three genes, however, the cortical antihem is the peak of expres-
sion in the cortical primordium.

Other EGF ligands, including Egf itself, were at least weakly
detected in the embryonic telencephalon (Figs. 2E, 3K,L) (Korn-
blum et al., 1997) but not concentrated in the antihem. At E10.5,

E12.5, and E14.5, Amphiregulin, Egf, Epiregulin, Hegf1, Nrg2,
Nrg4, Tmeff1, and Tmeff2 are expressed in the ventral telenceph-
alon, usually increasing in intensity with age. Most EGF family
members are expressed in the dorsal telencephalon from E12.5
onward, with the exception of Nrg2, which is detectable at E10.5.
No striking patterns of expression were detected except for Epi-
regulin and Tmeff1, which display expression gradients in far lat-
eral and medial embryonic cortex.

In a screen of Fgf gene expression in and near the cortical
primordium, we found that Fgf7 gene expression marks the an-
tihem by E13.5 (Fig. 2D). Transient embryonic expression of Fgf7
was noted previously in a lateral embryonic cortical region (Ma-
son et al., 1994). Thus, together with Sfrp2, five secreted signaling
molecules are expressed along the lateral edge of the cortical
primordium.

The cortical hem is part of the true cortical primordium as
characterized by progenitor cell behavior and gene expression
(Grove et al., 1998). Tgf� expression at the antihem also lies
within cortical primordium, defined by expression of Neuroge-
nin2 (Ngn2) (Fig. 3A,B; two-color in situ data not shown). Sfrp2
expression is within the Tgf� domain and marks the extreme
margin of the cortical primordium (Fig. 3G; Ngn2/Sfrp2 two-
color in situ data not shown). Fgf7 expression, which is strongest
in the posterior antihem, overlaps that of Sfrp2 (Fig. 3J). In con-
trast, expression of Nrg1 and Nrg3 is not restricted to the cortical
VZ but stretches into the VZ of the basal forebrain (Fig. 3C,H, I).

Figure 1. Location of the cortical hem and antihem. A–C, E12.5 cerebral hemispheres, pro-
cessed with one- or two-color in situ hybridization and viewed from the medial ( A) or lateral (B,
C) faces. Anterior to the left. D, Coronal section through E12.5 cerebral hemisphere processed
with two-color in situ hybridization. A, B, The “swoosh” of the medial cortical hem (A, blue
arrow) is mirrored by the lateral antihem (B, red arrow). Together, they form a pincer arrange-
ment around the cortical primordium ( C). The cortical hem is marked by strong Wnt3a expres-
sion (purple in A, C,D), and the antihem is identified by expression of Sfrp2 (purple in B; reddish-
brown in C, D). Arrowhead ( C) indicates meeting of the hem and antihem in the caudal cerebral
hemisphere.

Figure 2. EGF family members are expressed in the cortical antihem. A–E, Embryonic cere-
bral hemispheres viewed from the lateral face; anterior to the left (A–C, E, E12.5; D, E13.5). F,
E18.5 hemisphere viewed from the inside looking laterally. A–C, Peaks of expression of Tgf�,
Nrg1, and Nrg3 mark the curving longitudinal lateral band of the antihem (arrows in A–C). Tgf�
expression is maintained for several days in this position (arrow, F ). D, Fgf7 is also expressed in
the antihem at E13.5. E, The founding member of the EGF family, Egf itself, is expressed in the
ventral telencephalon and in the cortical primordium without a peak of expression at the anti-
hem. Asterisks mark expression in ventral telencephalon (C, E, F ).
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The transcription factor genes Emx1 and Dlx2 are differen-
tially expressed in dorsal and ventral telencephalon. At E12.5, the
boundaries of expression of Emx1 and Dlx2 leave an intermediate
wedge clear of expression of either gene in the VZ of the lateral
margin of the cortical primordium (Fig. 3E) (Fernandez et al.,
1998). Two-color in situ hybridization shows that this wedge-
shaped zone is antihem territory: it is filled by dense expression of
Tgf�, and Sfrp2 expression marks its ventral limit (Fig. 3D–G).
Although the cells that compose the antihem do not express
Emx1 at E12.5, they appear to do so at a later stage of development
(Fernandez et al., 1998). Genetic fate mapping of Emx1-
expressing cells suggests that cells in this region give rise to por-
tions of the amygdala and lateral cortex (Gorski et al., 2002).

The antihem shows both similarities and differences with
other cortical signaling sources. For example, expression of EGF
family genes are not detectable in the antihem at E10.5, an age at
which Fgf, Wnt, and Bmp expression is prominent at other corti-

cal signaling sources. Nrg1 and Tgf� are only barely detectable in
the lateral cortical primordium at E11.5. Moreover, EGF gene
expression does not overlap as neatly as the expression of multi-
ple Wnt genes in the cortical hem or even of Fgf genes at the
anterior pole. Particularly for the Nrg genes, mRNA expression
extends as a gradient from the antihem into the more dorsolateral
cortical VZ. Nonetheless, the antihem is similar to other signaling
sources in representing a peak of expression of several members
of a single signaling molecule family.

The Small eye (Sey) homozygote mutant mouse lacks function
of the transcription factor Pax6 and displays impaired cortical
neurogenesis, cell migration, and patterning (Chapouton et al.,
1999; Bishop et al., 2000; Stoykova et al., 2000), as well as localized
defects in the antihem region, losing Sfrp2 expression (Wawersik
et al., 1999; Ragsdale et al., 2000; Kim et al., 2001). Tgf� and Nrg1
expression is also lost in the antihem (Fig. 4A,B,E–H), suggesting
a complete absence of this signaling center in the homozygote
mutant. Because of a possible general developmental delay in the
mutant, these mice and littermate controls were analyzed for
gene expression from E12.5 to E16.5 for Sfrp2 (n � 9 homozy-
gotes; n � 18 controls), Nrg1 (n � 6 homozygotes; n � 10 con-
trols), and Tgf� (n � 12 homozygotes; n � 21 controls). At E14.5,
Tgf� expression marks the antihem in controls but is eliminated
in homozygote mutants (Fig. 4A,B,E,F). Expression of Nrg1 in
the lateral cortical VZ is almost undetectable in the homozygote
Sey mouse, with the result that the gradient of expression is re-
versed, medial to lateral, with highest Nrg1 expression in the
hippocampal primordium (Fig. 4H, asterisk). Dense expression
of Nrg1 appears at the antihem region in littermate mice at E14.5
(Fig. 4E), with a stronger gradient in the rest of the cortical pri-
mordium than in CD-1 mice (compare with Fig. 2B).

Mice lacking the transcription factor Emx2 also show wide-
spread defects in neurogenesis and patterning (Bishop et al.,
2000; Mallamaci et al., 2000) with concomitant defects in signal-
ing sources (Muzio et al., 2002). WNT signaling in the cortical
hem region is affected, as is anteroposterior gene expression of
the FGF receptor Fgfr3 (Muzio et al., 2002), suggesting that sig-
naling along both mediolateral and anteroposterior axes is ab-
normal. We found that the antihem, marked by Tgf� expression,
is retained in the Emx2 homozygote mutant but appears dorsally
displaced (Fig. 4C,D; data not shown).

Discussion
Several roles can be hypothesized for the cortical antihem. A
likely possibility is that the antihem serves as a barrier between the
dorsal and ventral telencephalon, in both pattern formation and
cell migration. Localized Sfrp2 may limit the spread of WNT
signaling between dorsal and ventral telencephalon (Ragsdale et
al., 2000; Kim et al., 2001). More broadly, both at the antihem and
within the cortical primordium, EGFs may antagonize BMP and
WNT signaling. Genetic studies of Drosophila development show
that EGF receptor-mediated signaling attenuates both Decapen-
taplegic (BMP) and Wingless (WNT) signals (O’Keefe et al.,
1997; Szuts et al., 1997; Kubota et al., 2000). Thus, the lateral EGF
source may assist in maintaining a distinction between the dorsal
and ventral telencephalon and in regional patterning of the cere-
bral cortex. The latter role is supported by the ability of Tgf� to
convert nonlimbic to limbic cortex in vitro (Ferri and Levitt,
1995).

EGFs may also regulate cortical cell migration. In rodents, a
large proportion of cortical interneurons derived from the ven-
tral telencephalon migrate past the region of the antihem to pop-
ulate the cortical primordium (Anderson et al., 2001). During fly

Figure 3. Location of the antihem relative to the transition between dorsal and ventral
telencephalon. A–L, Coronal sections through E12.5 and E13.5 ( J ) cerebral hemispheres pro-
cessed for one- or two-color in situ hybridization. A, Ngn2 expression marks the boundaries of
cortical neuroepithelium. B, The Tgf�-expressing domain lies within the cortical primordium
(compare A, B). C, Nrg1 expression peaks in the Tgf�-rich domain but extends as a decreasing
gradient into dorsolateral cortical neuroepithelium, with an additional zone of expression in the
medial cortical primordium. D–F, At E12.5, a wedge-shaped territory lacks expression of Emx1
or Dlx2 (between arrows). This territory is filled by Tgf� expression ( D), with Sfrp2 and Fgf7
expression nested in the Tgf� domain (F, G, J ). Tgf�, Fgf7, and Sfrp2 expression remain within
cortical neuroepithelium at this site (D, F, J ), but Nrg1 and Nrg3 extend into the VZ of the basal
telencephalon (H, I ). Asterisks ( G–J) mark the Sfrp2-expressing zone, the most lateral margin
of the cortical neuroepithelium. K, L, At E12.5, Egf ( K) and Tmeff1 ( L), like other EGF family
members, do not show gene expression peaks in the cortical antihem. Arrow ( L) notes increased
Tmeff1 expression in medial embryonic cortex, as seen in Nrg1-labeled sections ( C).
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oogenesis, the Tgf�-like ligand Gurken guides dorsal migration
of border cells (Duchek and Rorth, 2001). Both overexpression of
EGF family ligands and misexpression of a constitutively acti-
vated form of the EGF receptor inhibit border cell migration
(Duchek and Rorth, 2001). Therefore, by analogy with fly devel-
opmental mechanisms, the antihem region in mouse, rich in EGF
family members, could promote migration of the correct ventral
telencephalic cells or inhibit the migration of incorrect cells. In
retroviral studies of rodent telencephalic development, Caric et

al. (2001) have found that increasing the EGF receptor levels in
VZ cells promotes their radial migration away from the VZ. Thus,
neurons born in the antihem region, which are thought to mi-
grate toward ventrolateral cortical areas (Bayer et al., 1991), could
be guided in part by the EGF ligands of the antihem.

Each of the above hypotheses receives support from analysis of
the Sey/Sey mutant mouse, which lacks functional Pax6 and also
appears to lack an antihem. First, patterning defects in the pre-
sumptive area map are seen in Sey/Sey cerebral cortex just before
birth, with shrinkage of lateral and rostral cortical domains (Bish-
op et al., 2000). Second, gene expression patterns normally con-
fined to the ventral or dorsal telencephalon transgress their usual
boundaries in the Sey/Sey mutant; thus, the dorsoventral identity
of the region around the antihem becomes ambiguous (Stoykova
et al., 2000; Toresson et al., 2000; Yun et al., 2001). Third, ventral
to dorsal cell migration is enhanced in the mutant, suggesting
that incorrect cells are crossing the ventrodorsal telencephalic
boundary and that Pax6 is essential to allow the correct cells to
immigrate (Chapouton et al., 1999). We propose that Pax6 reg-
ulates development of the antihem and associated EGF ligand
gradients and that the patterning and migration defects in the
Sey/Sey mutant are at least in part mediated by the loss of the
antihem. Finally, mice that lack Emx2 show a subtler, but consis-
tent, abnormality in this region. The antihem is present but
shifted dorsally (this report), and LAMP expression, marking
limbic cortex, is dorsally displaced in parallel (Mallamaci et al.,
2000).

The antihem differs from other signaling centers by express-
ing signaling molecules later than other centers and in a more
graded manner. However, these features may be significant to its
potential cortical patterning function. As the cortical primor-
dium grows larger, it becomes more difficult to explain how pat-
terning could occur according to the classic model of a morpho-
gen diffusing over an embryonic field with a width of 0.5 mm or
less (Wolpert, 1969; Gurdon et al., 1994). Yet, cortical pattern
remains labile relatively late in corticogenesis, when the embry-
onic cortex is larger than a typical embryonic field (Ragsdale and
Grove, 2001). One way to prolong cortical patterning would be to
introduce secondary signaling sources that generate a gradient of
signaling protein directly. Thus, a gradient of EGF mRNA expres-
sion with a peak at the antihem may directly set up a patterning
gradient of EGF proteins in the older and larger cortical primor-
dium without a need for long-distance protein diffusion.
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