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A Two-Stage Unsupervised Learning Algorithm Reproduces
Multisensory Enhancement in a Neural Network Model of
the Corticotectal System

Thomas J. Anastasio’? and Paul E. Patton?
'Department of Molecular and Integrative Physiology and 2Beckman Institute, University of Illinois at Urbana/Champaign, Urbana, Illinois 61801

Multisensory enhancement (MSE) is the augmentation of the response to sensory stimulation of one modality by stimulation of a
different modality. It has been described for multisensory neurons in the deep superior colliculus (DSC) of mammals, which function to
detect, and direct orienting movements toward, the sources of stimulation (targets). MSE would seem to improve the ability of DSC
neurons to detect targets, but many mammalian DSC neurons are unimodal. MSE requires descending input to DSC from certain regions
of parietal cortex. Paradoxically, the descending projections necessary for MSE originate from unimodal cortical neurons. MSE, and the
puzzling findings associated with it, can be simulated using a model of the corticotectal system. In the model, a network of DSC units
receives primary sensory input that can be augmented by modulatory cortical input. Connection weights from primary and modulatory
inputs are trained in stages one (Hebb) and two (Hebb-anti-Hebb), respectively, of an unsupervised two-stage algorithm. Two-stage
training causes DSC units to extract information concerning simulated targets from their inputs. It also causes the DSC to develop a
mixture of unimodal and multisensory units. The percentage of DSC multisensory units is determined by the proportion of cross-modal
targets and by primary input ambiguity. Multisensory DSC units develop MSE, which depends on unimodal modulatory connections.
Removal of the modulatory influence greatly reduces MSE but has little effect on DSC unit responses to stimuli of a single modality. The
correspondence between model and data suggests that two-stage training captures important features of self-organization in the real
corticotectal system.

Key words: superior colliculus; multisensory integration; unsupervised learning; corticotectal system; neural network model; self-orga-
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Introduction

Integration of input from multiple senses is critical to survival in
a complex environment. Research in sensory neurobiology is
shifting from a focus on single sensory systems to consideration
of interactions between sensory systems (Stein and Meredith,
1993; Stein, 1998). The most studied loci of multisensory conver-
gence in mammals are the deep layers of the superior colliculus
(DSC). Findings on DSC neurons raise intriguing questions
about multisensory integration.

The DSC functions to detect sensory targets and initiates ori-
enting movements toward them (Robinson, 1972; Wurtz and
Goldberg, 1972; Sparks and Hartwich-Young, 1989). DSC neu-
rons are organized topographically according to the location of
their receptive fields (Middlebrooks and Knudsen, 1984;
Meredith and Stein, 1990; Meredith et al., 1991). Many DSC
neurons receive sensory input of multiple modalities (Wallace
and Stein, 1996), and the receptive fields of the same neuron for
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different modalities overlap (Meredith and Stein, 1986b, 1996;
Kadunce et al., 2001). Multisensory DSC neurons can exhibit
multisensory enhancement (MSE), which is the augmentation of
the response to stimulation of one modality by stimulation of a
different modality (King and Palmer, 1985; Meredith and Stein,
1986a; Wallace et al., 1996, 1998).

The DSC receives visual, auditory, and somatosensory input
from a variety of subcortical and extraprimary cortical sources
(Sparks and Hartwich-Young, 1989; Wallace et al., 1993). MSE de-
pends on input from specific regions of parietal cortex. Inactivation
of these regions reduces MSE, while often only minimally affecting
the responses of DSC neurons to stimulation of a single modality
(Wallace and Stein, 1994; Jiang et al., 2001). It would be parsimoni-
ous to suppose that the cortical signal required for MSE is multisen-
sory. Paradoxically, the parietal projections necessary for MSE orig-
inate from unimodal neurons (Wallace et al., 1993). The question of
how unimodal cortical projections could produce multisensory en-
hancement in the DSC remains unanswered.

Multisensory integration apparently improves the ability of
DSC neurons to detect targets (Stein et al., 1988, 1989; Wilkinson
etal., 1996; Jiang et al., 2002). However, not all DSC neurons are
multisensory. In the cat, approximately one-half of DSC neurons
are multisensory, and, in the monkey, only approximately one-
quarter, despite the availability of input of multiple modalities
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(Wallace and Stein, 1996). The question of why some DSC neu-
rons are multisensory while others are not also remains open.

This paper describes a model of the corticotectal system that
simulates MSE and provides possible answers to these questions.
It consists of an array of DSC units receiving unimodal primary
and modulatory inputs and is trained in two stages that are un-
supervised, local, and neurobiologically plausible. Primary in-
puts are trained first using the (Hebbian) self-organizing map
algorithm. Modulatory inputs are trained second, using a novel
Hebb-anti-Hebb rule. Training produces a mixture of unimodal
and multisensory DSC units and causes the DSC to extract infor-
mation concerning simulated targets from its inputs. The trained
network can simulate MSE, with unimodal modulatory inputs
preferentially augmenting DSC unit responses to stimulation of
multiple modalities. The correspondence between model and
data suggests that the self-organization of the real corticotectal
system may involve mechanisms analogous to the two-stage
algorithm.

Materials and Methods

The corticotectal network model represents neurons in the DSC and the
sensory inputs they receive from subcortical and cortical sources (see
Introduction). Inputs to DSC units are of two types, primary and mod-
ulatory. Primary inputs provide weighted connections to DSC units, and
modulatory inputs augment the values of primary weights. Primary and
modulatory inputs are specific for visual, auditory, or somatosensory
modalities and can be activated by targets having the corresponding
sensory attributes. Primary and modulatory input weights are trained in
two separate stages of unsupervised learning. Training of primary con-
nections produces a mixture of unimodal and multisensory DSC units,
whereas training of modulatory connections produces MSE. Two-stage
training causes the DSC to extract information from its sensory inputs
concerning targets. The two sequential stages of training are inspired by
DSC development, in which multisensory neurons first appear and later
become capable of MSE, with onset of MSE corresponding to onset of
parietal cortical influence (Wallace and Stein, 1997, 2000, 2001). A dia-
gram of the corticotectal model is shown in Figure 1. Pseudocode for the
two-stage algorithm is given in Table 1. A list of all variables and mathe-
matical notation used in the paper is given in Table 2.

Architecture and activation of the network
The DSC units (17, = 100) are arranged in a square 10 X 10 grid repre-
senting a small patch in the DSC. Neurons in the DSC have large over-
lapping receptive fields (Middlebrooks and Knudsen, 1984; Meredith
and Stein, 1986b, 1990, 1996; Meredith et al., 1991; Wallace et al., 1996;
Kadunce et al., 2001). We therefore assume that the units in the model
patch have overlapping receptive fields and that the entire DSC patch
receives input from the same small region of external space. Primary and
modulatory inputs can be driven by targets appearing in this region.
Characterization of the target. The target T is arbitrarily assumed to be
present one-half of the time and absent one-half of the time. When
present, a target can exhibit any combination of visual (V), auditory (A),
and somatosensory (S) attributes. The target has eight states t (t = 0, 1,
2, ..., 7), corresponding to the target-absent state of no sensory at-
tributes plus the seven possible attribute combinations. The target-
absent state (V = 0, A = 0, S = 0) has probability P(T = 0) = /. For
simplicity, all modality-specific (single modality) targets are assigned the
same probability p, whereas all cross-modal (multiple modality) targets
are assigned probability p.., where p, + p. = V2. For present targets, the
three modality-specific states (V=1,A=0,5S=0),(V=0,A=1,S=

0),and (V=0,A =0,S = 1) have probabilities P(T = 1) = P(T =2) =
P(T = 3) = p,/3, and the four cross-modal states (V=1,A =1,S = 0),
(V=1L,A=0,S=1),(V=0,A=1,S=1),and(V=1,A=1,S=1)
have probabilities P(T = 4) = P(T=5) =P(T=6) =P(T=7) =

p./4. The eight target-state probabilities sum to one.
Activation of primary and modulatory inputs. Primary inputs are rep-
resented by asetof n, = 3 random variables X;(j = 1, 2, 3). Modulatory
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Figure1.  Schematic of the corticotectal model that produces multisensory enhancement in
the DSC. A, The DSCis represented as a 10 X 10 grid of units. Primary inputs represent unimo-
dal, excitatory projections from the visual (V), auditory (A), or somatosensory (S) systems.
Modulatory inputs represent unimodal visual, auditory, or somatosensory projections from
parietal cortex. Before stage-one training, each DSC unit receives primary input of all three
modalities. Stage-one training causes DSC units to become specialized for specific modalities or
modality combinations. As an example, a unit that receives primary input from the visual and
auditory systems after stage-one training is shown in B. B, Before stage-two training, each
primary connection may potentially receive modulatory input of all three modalities (solid and
dashed lines), but stage-two training is restricted by the modality-matching and cross-modality
constraints (see Materials and Methods). After stage-two training under these constraints, the
unit shown can receive only visual and auditory modulatory input, with the primary visual
connection modulated by the auditory modulatory input, and the primary auditory connection
modulated by the visual modulatory input (solid lines).
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inputs are represented by a set of n, = 3 random variables Y (k = 1, 2,
3). Each of the three primary or modulatory inputs is specific for one of
the three sensory modalities: visual, auditory, or somatosensory. Vari-
ables x;and y, denote specific instances of X;and Y. The variables X; and
Y, represent whole populations of sensory neurons.

For simplicity, each discrete random variable X or Y} is the sum r over
adifferent set of n = 20 binary random variables. Each of the binary variables
in a set is specific for the same sensory modality as the random variable X; or
Y, that represents it. The individual binary variables take value zero or one
depending only on their activation probabilities. Activation probabilities
are either driven or spontaneous, depending on whether or not the target
presents the modality specific to the set. For simplicity, all 60 binary
variables represented by the three primary inputs X; have the same driven
and spontaneous activation probabilities of p,; and p,, (where p,; >
Pxo)- Likewise, all 60 binary variables represented by the three modula-
tory inputs Y, have the same driven and spontaneous activation proba-
bilities of p,,, and p,,, (wherep,, > p ).

Characterization of primary and modulatory inputs. Because they each
represent the sum of n = 20 binary random variables, the X; and Y can
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Table 1. Pseudocode for two-stage, unsupervised training of the corticotectal
model of multisensory enhancement

Set unit numbers, bias, and sensitivity; set input activation and target state probabilities; set
learning rates, neighborhood properties, numbers of iterations, and thresholds; initialize
primary and modulatory weights.

For the required number of stage-one training iterations, do
Determine target modality according to the target state probabilities
Determine primary input activation using input activation probabilities
Compute responses of DSC units to the input
Find the DSC unit with the maximal response (winning DSC unit)

Train primary weights of winning DSC unit and neighbors using Hebb's rule

Eliminate primary weights of any modality with values below the threshold

For the required number of stage-two training iterations, do
Determine target modality according to the target state probabilities
Determine primary and modulatory input activation using activation probabilities
Modulate primary weights according to modulatory inputs and weights
Compute responses of DSC units to primary input with modulation
Find active primary and modulatory inputs and DSC units by thresholding
Train modulatory weights of DSC units using the correlation—anti-correlation rule

If a modulatory input and a DSC unit are both active, then
increase the modulatory input weights to inactive primary inputs
and decrease the modulatory input weights to active primary inputs
If a modulatory input is active but a DSC unit is inactive, then
decrease the modulatory weights to all primary inputs
End algorithm

assume any discrete value between 0 and 20. Because the individual bi-
nary variables in each sum are independent, the X; and Y}, are binomially
distributed. The general formula for the binomial distribution b(#, p) is
as follows (Appelbaum, 1996):

!

P(r) = b(n, p) = o p'(1—p)", (1)

ri(n —
where p is the probability that any binary random variable takes value
one. To use Equation 1 to describe the likelihood distributions of the
primary and modulatory inputs, probability p can be replaced by the
corresponding activation probability. Thus, the target drives primary
input X; when it presents the modality specific to X;, and the driven
likelihood for X; is distributed as b(n, p,, ). Similarly, the spontaneous
likelihood for primary input X; is distributed as b(n, p,,). The driven
and spontaneous likelihoods for modulatory input Y} are distributed as
b(n,p,,)andb(n, p,,), respectively. All of the X; and Y} are distributed
independently of one another given the state of the target. The binomial
distribution affords a simple way to model a sensory input that represents
the combined contribution of many individual inputs. The binomial
approximates the Poisson distribution when 7 is large and p is small
(Hoel et al., 1971). The Poisson distribution has been used to represent
sensory inputs of different modalities in previous models of MSE (Anas-
tasio et al., 2000).

For any given primary input X; or modulatory input Yy, the difference
between the driven and spontaneous likelihoods can be quantified using
the Kullback-Leibler divergence measures D, and D, respectively, as
follows (Cover and Thomas, 1991):

D, = >, b, puo)log,[b(n, pe)/bin, pa)l, )

Dy = ”b(f’l, Pyo)lng[b(”> Pyo)/b("> Pyl)]- (3)

D, or D, is used to quantify the amount of separation between the driven
and spontaneous likelihoods of the primary and modulatory inputs, re-
spectively. When D, or D, is small, the corresponding input is ambigu-
ous with respect to the presence of a target. When D, or D, is large, the
input is better able to indicate the presence of a target. A spontaneous
likelihood and a series of driven likelihoods for the primary input are
illustrated in Figure 2. The divergence measures associated with the
spontaneous and driven activation probabilities used for the primary and
modulatory inputs are enumerated in Table 3.
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Table 2. List of variables and mathematical notation used in this article

X; Discrete random variable representing primary inputj (j = 7,2, 3)
X; Specific activity level of primary input

n, Number of primary inputs (= 3)

X Discrete random vector representing primary input [X; X, X,/

Yy Discrete random variable representing modulatory inputk (k =17, 2, 3)
Vi Specific activity level of modulatory input

n, Number of modulatory inputs (= 3)

Y Discrete random vector representing modulatory input [V, ¥, ¥;]

Z Random variable specifying activity of DSCuniti (i = 1,2,...,100)
z Specific activity level of DSC unit i

n, Number of DSC units (= 100)

T Random variable representing the target

t Targetstate (t=0,1,...., 7)

P, Modality-specific target probability

P. Cross-modal target probability (p, = /2 — p,)

Pros P Spontaneous and driven activation probabilities for primary input X;
Pyor Py1 Spontaneous and driven activation probabilities for modulatory input ¥,
p Probability that a binary random variable takes value 1

n Total number of binary random variables for binomial process

b(n, p) Binomial distribution with parameters n and p

r Number of binary variables taking state 1 for binomial process

Uy Unmodulated weight of primary input j onto DSC unit i

w; Modulated weight of primary input j onto DSC unit i

Vi Weight of the modulatory input k onto the primary input connection u;;
i Dummy variable for accumulating vy

o Learning rate for stage-one training

B Learning rate for stage-two training

0, Primary weight threshold for stage-one training

0, Primary input threshold for stage-two training

0, Modulatory input threshold for stage-two training

0, DSC unit threshold for stage-two training

N4 Sum of active DSC units with activity z; exceeding threshold 6,

0, DSC unit threshold for information gain computation

h Index for DSC units in a neighborhood

P Probability

D, Kullback-Leibler divergence measure for primary input

D, Kullback-Leibler divergence measure for modulatory input

/ Information in bits

H Entropy in bits

) Tonic, bias input (= 10)

y Squashing function sensitivity (= /s)

<« Update symbol

exp Exponential

b Summation

! Factorial

Mutual information between target and primary or modulatory inputs.
The mutual information between the target and the input provides a
measure of the amount of target information contained by the input.
Mutual target-input information can be compared with the information
content of the target alone. The information content of the event T' = tis
definedas I(T = t) = —log,[P(T = t)] (Cover and Thomas, 1991). The
average information content of the target, equal to target entropy H(T),
is given as follows:

H(T) = 2, P(D)log,[P(T)], (4)

where T = t is written simply as T for notational clarity. When the
proportion of modality-specific to cross-modal targets is 2, target en-
tropy H(T) equals 2.32 bits (Table 3).

The DSC receives target information from its primary and modulatory
inputs of all three modalities. The entire primary or modulatory input
can be represented by random vectors X = [X,, X,, X5l or Y = [V,
Y,, Y;]. The ability of the entire primary or modulatory input to convey
target information to the DSC can be quantified as mutual information
I(T; X) or I(T; Y) as follows (Cover and Thomas, 1991):
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Figure2. Inputlikelihoods P(r) modeled as binomial distributions b(n, p) (Eq. 1), where ris
the number of the n = 20 binary variables that are active. The primary input spontaneous
likelihood (solid curve) has activation probability p = p,, = 0.1. The three primary input driven
likelihoods have activation probabilities p = p,, of 0.3, 0.6, or 0.9 (dashed, dot-dashed, or
dotted curves, respectively). For the modulatory input, the driven likelihood has activation
probability p = p,; = 0.1 (solid curve), whereas the spontaneous likelihood has activation
probability p = p,, = 0. Thus, a modulatory input of zero has probability one under sponta-

neous conditions.

Table 3. Information theoretic measures on target and inputs

Primary Peo Py D, I(T: X)
0.1 03 336 1.36
0.1 0.6 15.89 227
0.1 0.9 50.72 232
Modulatory Pyo Py D, nmn
0 0.1 3.04 1.80
Target Unimodal/multimodal proportion = 2/1

Information content [entropy, H(T)] = 2.32

Relationships between spontaneous and driven activation probabilities for primary (p,o, p,;) or modulatory (p,,,
py1) inputs, Kullback-Leibler divergence measures for primary (D,) or modulatory (D, ) inputs, and mutual infor-
mation between target and primary [I(T; X)] or modulatory [/(T; ¥)] inputs. The information content of the target

[target entropy H(T)] is included for comparison.

I(T; X) = >, > P(T, X)log,[P(T, X)/P(T) P(X)], (5)

(T; Y) = >, >, P(T, Y)log,[P(T, Y)/P(T) P(Y)]. (6)

Mutual information measures associated with the spontaneous and
driven activation probabilities used for the primary and modulatory in-
puts are enumerated in Table 3. When the primary input spontaneous
and driven activation probabilities are widely separated, as when p ., =
0.1andp,, = 0.9, D, islarge and I(T; X) = H(T), indicating that the
input contains complete information about the target (Table 3).

Activation of model DSC units. Activities of the n, = 100 DSC units are
represented by random variables Z; (i = 1, 2, ..., 100). Variables z;
denote specific instances of Z,. The activity of a specific DSC unit z; is
computed as the weighted sum of the primary inputs to the DSC unit,
passed through the sigmoidal squashing function:

1
(7)

1+ eXp[y((b - w,-jxj)] .

Z; <
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The < symbol indicates the update that occurs with each new target
presentation. The variable ¢ = 10 is a tonic bias input. It represents
inhibitory influences on the DSC from structures such as the substantia
nigra (see Discussion). The sigmoid squashing function simulates the
threshold and saturation properties of biological neurons. The parame-
ter y = 5 adjusts the sensitivity of the squashing function. The variable
w;; represents the modulated weights of the connections to each DSC
unit z; from each primary input x;. These weights are computed using the

following formula:

Wy g+ D Vi (8)
Each u;; is the unmodulated weight of the connection from primary
input;j to DSC uniti. Each v, is the modulatory weight onto connection
u;;, from modulatory input k with activity y;.

The learning algorithm
Each of the three primary inputs initially projects to every DSC unit. Each

of the three modulatory inputs has a potential connection to every pri-
mary weight. The primary and modulatory weights are trained in two
separate stages of unsupervised learning (Table 1). For both stages, train-
ing occurs only when the target is present.
Stage-one unsupervised learning. In the first stage, the primary weights
u;;are trained using the self-organizing map (SOM) algorithm (Willshaw
and von der Malsburg, 1976; Kohonen, 1982, 1988; Haykin, 1999). First-
stage training causes the model DSC to represent the primary inputs (see
Results). The SOM involves selection of DSC units via competition and
cooperation, followed by Hebbian modification of primary weights. The
SOM is used here in its standard form.
The primary weights u,; are initially set to small random values drawn
from a uniform distribution in the range 0 to 0.1. The modulatory
weights are fixed at v;j; = 0 during stage-one training. At each iteration,
anew target T is chosen according to target-state probabilities P(T = t)
fort=1,2,3,...,7. The target state determines whether each primary
input X; will be spontaneous or driven, and values x; are each drawn
randomly from a binomial distribution with activation probability p,, or
P> respectively. The DSC unit responses z; to the primary inputs are
then computed using Equation 7, where the w;; are unmodulated, so that

ij = ;- The DSC unit with the largest response is identified as the
winner. The index of the winning DSC unit and of each of its 25 neigh-
bors in the 10 X 10 grid forms subset h. The neighborhood z,, is con-
structed such that the winning DSC unit has activity 1, the eight nearest
neighbors have activity 0.3, and the 16 neighbors once removed have
activity 0.1. The neighborhood respects the boundaries of the 10 X 10
grid, so that only DSC units near the center of the grid have the full
compliment of 25 neighbors. The primary weights to each DSC unitin z,,
undergo the following Hebbian update:

Uy < uy + azx; 9)
where « is the learning rate that is decremented after each iteration. The
primary weights to each DSC unit z,, are then normalized so that

3,(uy;)? = 1. Training for 5000 iterations with a learning rate of 0.1

decrementing to 0.01 was found to produce stable results. The primary
connections are pruned after completion of stage-one training. Any
weight u;; < 6, is set to zero, where 6, = 0.4. The weights are renor-
malized after pruning. Primary weight pruning is necessary because the
normalization procedure used does not set weights to zero.

Stage-two unsupervised learning. The modulatory weights v, are
trained in the second stage. The modulatory inputs represent neurons in
parietal cortex that project to the DSC and produce MSE (see Introduc-
tion). Because the parietal inputs are unimodal but only enhance cross-
modal DSC neuron responses (Wallace and Stein, 1994; Jiang et al.,
2001), they are assumed to modulate inputs from other sources rather
than to excite DSC neurons directly (see Results and Discussion). Elec-
trophysiological evidence indicates that the modalities of the parietal
inputs to a given DSC neuron usually match the modalities received by
that neuron from other sources (Wallace et al., 1993). These findings can
be used to infer two constraints on parietal-DSC connectivity: modality-

matching and cross-modality. According to the modality-matching con-
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straint, a DSC neuron may only receive modulatory inputs of the same
modalities as those of its primary inputs. According to the cross-modality
constraint, a modulatory input may only affect primary inputs of modal-
ities different from its own (Fig. 1 B). Stage two is designed to train the
modulatory connections to produce MSE while respecting the con-
straints inferred from corticotectal neurobiology.

In the second stage, the modulatory weights v;;, are trained using a
novel algorithm based on correlation and anti-correlation between mod-
ulatory inputs, primary inputs, and DSC units. The modulatory weights
are initially set to zero. The state of a new target is chosen at each iteration
(t=1,2,3,...,7), and the primary inputs are activated according to
target state as described for stage-one training. During stage two, the
modulatory inputs are also activated according to the sensory attributes
of the chosen target. DSC unit responses to primary and modulatory
input are determined using Equations 7 and 8.

The second-stage training algorithm requires a determination of
whether each primary input, modulatory input, and DSC unit is active or
inactive. A primary input x; is active when x; > 6., a modulatory input
is active when y, > Gy , and a DSC unit is active when z; > 6, where 0.,
6, and 6, are thresholds. Primary and modulatory thresholds 6, and 6,
are set at the integer nearest to the intersection point of the correspond-
ing spontaneous and driven likelihood distributions (Fig. 2). Because the
likelihoods are determined by the spontaneous and driven activation
probabilities, each pair of activation probabilities is associated with a
different threshold. Thresholds for the primary inputs are as follows:
Peo=0.1,p =0.3,0,=4;5p,=0.1,p,, =0.6,0,=6andp, =
0.1, p,y = 0.9, 6, = 10. For the modulatory inputs, where p ,, = 0 and
py1 = 0.1, 6,,is 0. Because the probability distributions for the Z; cannot
be specified, the threshold 6, is set empirically.

The modulatory weights v;;; are trained according to the following
stage-two rules. If a DSC unit and a modulatory input are both active,
then increment the modulation of inactive primary inputs and decre-
ment the modulation of active primary inputs by an amount f. If a
modulatory input is active but a DSC unit is not, then decrement the
modulation of all primary inputs, active and inactive, by 2. The value of
B depends primarily on the number of stage-two iterations. Increments
and decrements are cumulative, but the modulatory weights themselves
are constrained to be positive. Accumulation is accomplished by means
of dummy variables d;; that take positive or negative values. The needed
operations are summarized as follows:

ify,>0,&z>6,&x =6, then dyy < dyy + B, (10)
ify,>0,&z>0,&x>0, thendy < dy — B, (11)
if y, > 0, &z =0, then dijk <~ dijk - 2B, (12)
ify, =0, then djy, < dj. (13)

Although these rules train modulatory rather than direct connection
weights, Rules 10 and 11 are essentially anti-Hebbian (see Discussion).
Rules 10 and 11 enforce the cross-modality constraint, whereas Rule 12
enforces the modality-matching constraint. Rule 13 simply specifies that
amodulatory weight is left unchanged if the associated modulatory input
is inactive. The actual modulatory weights take the values of the corre-
sponding dummy variables if they are positive and take the value zero
otherwise:

ifd; =0

ij then Vijk <~ dijk) (14)

ifdi <0 then v < 0. (15)
Modulatory weights can continue to grow as stage-two training pro-
ceeds, so they are bounded at an upper limit of one.

Assessing the trained model
To assess the effects of training on the model DSC, the responses of DSC
units to their primary and modulatory inputs are measured, and the
amount of target information extracted by DSC units from their inputs is
estimated.

Quantifying MSE in the model. To simulate experiments on multisen-
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sory DSC neurons, the responses of DSC units are examined as the levels
of primary inputs are increased systematically from zero to n = 20 or
held fixed at the mean of their spontaneous likelihood np,,. The modu-
latory input levels are varied in a similar manner, but they are scaled to
reflect their smaller dynamic range. The responses in the bimodal case
can be used to compute percentage multisensory enhancement (%MSE)
values using the following formula (Meredith and Stein, 1986a):

(CM - SMmax)

%MSE = SM

X 100%, (16)

where CM is the cross-modal response and SM, . is the larger of the two
modality-specific responses. By this definition, enhancement occurs
whenever CM > SM, ... Enhancement is subadditive when the cross-
modal response is smaller than the sum of the two modality-specific
responses, and supra-additive when it is greater than the sum. The effects
of the modulatory inputs can be examined by comparing %MSE values at
specific levels of primary input, after various modulatory connections
have been removed. This is intended to simulate the effects of experi-
ments in which cortical input to the DSC from specific regions is selec-
tively inactivated (Wallace and Stein, 1994; Jiang et al., 2001).

Mutual information between target and DSC units. DSC unit responses
vary sigmoidally between zero and one. Even if the n, = 100 DSC units
are binarized by thresholding, they would still have 2'%° different states
potentially available to convey target information. Complete character-
ization of the mutual information between DSC units and the target is
impossible because it would require determination of the joint probabil-
ity of each of these DSC states and each target state. Instead, the infor-
mation gain attributable to training is measured between the target
and the number ¥ of DSC units whose responses z; exceed threshold
0, =0.3:

1ifz; > 6,
v= Et{ 0 otherwise}' (17)

The joint probability between the target and the number of suprath-
reshold DSC unit responses P(T, V) is estimated computationally by
presenting many targets of various states, computing V¥ for each of them,
and binning the W values. The joint probability distribution is estimated
from the resulting histogram by scaling. The marginal distributions P(T)
and P(¥) are computed from the estimated joint distribution. The esti-
mated probabilities are used to calculate an estimate of the target infor-
mation gained by the DSC network:

[T, W) = > >, P(T, ¥)log,[P(T, ¥)/P(T) P(¥)].  (18)

This information gain measure is a crude estimate of the true mutual
information between the target and the DSC network. However, it is
adequate for the purpose of showing that the two-stage, unsupervised
learning algorithm does train the model DSC to extract information
concerning the target from its inputs.

Results

The two-stage learning algorithm is used to train the corticotectal
model in an unsupervised manner as simulated targets are pre-
sented to it. Pseudocode for the training algorithm is given in
Table 1, and a schematic of the model is shown in Figure 1. DSC
units receive two types of random inputs, primary and modula-
tory. Primary inputs make direct, excitatory connections onto
DSC units, whereas modulatory inputs can augment the primary
weights (Eq. 8). Primary and modulatory weights are trained
during stage one and stage two of the algorithm, respectively.
Both stages of training are associated with interesting emergent
properties. A mixture of unimodal and multisensory DSC units
arises spontaneously from stage-one training. Multisensory en-
hancement arises spontaneously from stage-two training, and
removal of modulatory connections has a much greater effect on
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DSC unit responses to cross-modal (combined modality) stimuli
than on responses to modality-specific (single modality) stimuli.

Simulating modality specialization in the DSC

The simulations in this section use stage one of the two-stage
algorithm to show how the proportion of modality-specific to
cross-modal targets, and the information content of the inputs,
could influence the percentage of multisensory neurons in the
DSC. In the model, the modality selectivity of an individual DSC
unit depends on the weights of its primary input connections. A
visual-auditory DSC unit, for example, would receive nonzero
weights from the visual and auditory primary inputs and zero
weight from the somatosensory primary input (Fig. 1B). The
modality selectivity of individual DSC units in the model is de-
termined entirely by stage one of the two-stage algorithm, be-
cause stage two respects the modality selectivity established by
stage one.

Stage one is based on the SOM algorithm (see Materials and
Methods). The SOM is a neurobiologically plausible and well
established computational tool for modeling the activity-
dependent refinement of sensory maps in the nervous system.
This algorithm naturally produces a mixture of unimodal and
multisensory DSC units. DSC units of similar modality selectivity
are colocalized by the SOM, and it is possible that such an ar-
rangement is superimposed on the broader spatial map in the
DSC. The overall organization of the DSC is beyond the scope of
this study. The focus here is on the percentage of multisensory
DSC units produced by the SOM in a small patch of the DSC. The
proportion of unimodal to multisensory DSC units depends on
several factors, including the primary weight threshold 6,,, the
proportion of modality-specific to cross-modal targets, and the
information content of the primary inputs.

The SOM in stage one causes the primary weight vectors to
represent the primary input vectors by distributing the weight
vectors approximately evenly among the input vectors. There are
100 primary weight vectors [u;,, u;,, 1;3], one vector for each of
the 100 DSC units with activities z;(i = 1, 2, ..., 100). The
primary input vectors X are simply the values [ x;, x,, x;] that
are chosen randomly, on each trial, for the visual, auditory, and
somatosensory primary inputs X, , X,, and X5. Because the pri-
mary weights determine the modality selectivity of DSC units,
factors that influence the distribution of primary input vectors
can affect the modality selectivity of DSC units established by
stage one.

Changing the information content of the primary inputs can
affect the distribution of primary input vectors, even if the pro-
portion of modality-specific to cross-modal targets is held con-
stant. Primary input vectors used to train the model during stage
one and the resulting primary weight vectors are illustrated in
Figure 3. For A—Cin Figure 3, the proportion of modality-specific
to cross-modal targets is two to one (p, = 0.34 and p. = 0.17).
The spontaneous activation probability p,, equals 0.1 in A-C,
and the information content of the primary inputs is altered by
changing only the driven activation probability. The driven acti-
vation probability p ., increases from 0.3 (Fig. 3A) to 0.6 (Fig. 3B)
t0 0.9 (Fig. 3C). Primary input information content increases and
ambiguity decreases as the driven activation probability increases
(Table 3). This affects the clustering of the primary input vectors.

The primary weight vectors, which are normalized as part of
stage-one training, are plotted as plus signs in Figure 3. For com-
parison, the primary input vectors are also normalized before
they are plotted as circles. In Figure 3A, in which the primary
inputs are the most ambiguous and have the lowest information
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Figure 3.  Stage-one training causes primary weight vectors to cluster with primary input
vectors. The distinctiveness of the clusters depends on primary input ambiguity. In A=, there
are twice as many modality-specific as cross-modal targets, and the spontaneous primary input
activation probability p,, equals 0.1. The primary input becomes less ambiguous as the driven
activation probability p,, is increased from 0.3 (A) to 0.6 (B) t0 0.9 () (Table 3). Clusters of
primary input vectors (circles) become progressively more distinct. This causes more primary
weight vectors (plus signs) to adopt a distinctly unimodal pattern. V, Visual; A, auditory; S,
somatosensory.

content, the input vectors are evenly distributed. Predominantly
unimodal inputs are located in the corners, in which primary
input of one of the three modalities is near one, whereas the other
two are near zero. They are rare in Figure 3A. The primary weight
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vectors are scattered approximately evenly among the input vec-
tors, and almost all are located in multisensory regions. As the
primary inputs are made less ambiguous (Fig. 3B,C) and their
information content goes up, the input vectors form distinct
clusters. Clusters of unimodal primary inputs are pushed out
farther into the corners. DSC units with primary weight vectors
drawn into these clusters would have predominantly unimodal
response characteristics. Figure 3 illustrates that stage-one train-
ing produces a greater percentage of predominantly unimodal
DSC units when primary input information content is high.
These results suggest that the percentage of unimodal DSC neu-
rons in a given species could, at least in part, reflect the informa-
tion content of the inputs it receives during the formation and
refinement of its sensory maps.

It is clear from Figure 3 that primary weight vectors fall into
clusters that are predominantly unimodal, bimodal, or trimodal.
Although the primary weights from some inputs may be very
small, none are zero. The DSC units could all be considered tri-
modal, because their weights are nonzero from all three primary
inputs. Designating all DSC units as trimodal, however, would
obscure the fact that primary weights are distributed throughout
the input space in predominantly unimodal, bimodal, and trimo-
dal regions. To alleviate this problem, small weights are pruned
after stage-one training. Pruning is accomplished by setting to
zero all primary weights u;; that are less than the primary weight
threshold 6,. Pruning corresponds to a process of activity-
dependent synapse elimination, such as that described for the
formation of retinotopic maps in the superior colliculus (and
optic tectum) and in other processes (Katz and Shatz, 1996;
Lichtman et al., 1999). As a result of the removal of weak primary
weights, many DSC units become unimodal or bimodal. The
effects of pruning vary depending on both 6, and modality-
specific target probability p, (where p. = V2 — p,). The effect of
changes in these two variables on the percentage of multisensory
(bimodal and trimodal) DSC units produced by stage-one train-
ing is shown in Figure 4. Multisensory DSC units are those that
have nonzero weights from two or three primary inputs after
pruning.

Figure 4 shows that the percentage of multisensory DSC units
decreases as 0, increases. This happens simply because more pri-
mary weights are eliminated as the threshold increases. The DSC
is 100% multisensory for low values of 6,, regardless of
modality-specific target probability. However, the percentage of
multisensory DSC units falls faster with increases in 6, as
modality-specific target probability increases (and as cross-
modal target probability decreases). This result confirms the ex-
pectation that stage one will establish more multisensory connec-
tions when training involves a greater number of cross-modal
targets.

The data in Figure 4 are generated using primary inputs of
intermediate ambiguity ( p,, = 0.1 and p,; = 0.6). The results
are qualitatively similar when the primary inputs are made more
ambiguous by decreasing the driven activation probability p,., to
0.3 or made less ambiguous by increasing it to 0.9 (data not
shown). The main difference is that the decrease in the percent-
age of multisensory DSC units as 6, increases, at all levels of
modality-specific target probability, is somewhat slower with
more ambiguous primary input and faster with less ambiguous
primary input.

The results suggest that the percentage of multisensory DSC
neurons in a particular species may depend on several factors,
including the proportion of cross-modal targets it encounters in
its particular environmental niche. Cats, which hunt at night,
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Figure 4.  The percentage of multisensory DSC units resulting from stage-one training is
plotted as a function of primary weight threshold 6, and the probability of a modality-specific
target p, (where the probability of a cross-modal target p, equals ’/> — p, ). The spontaneous
and driven primary input activation probabilities p,, and p,, are 0.1 and 0.6, respectively. The
modality-specific target probability p, is increased from 0 to 0.5 in steps of 0.025, with 10
networks trained for each p, value. The primary weight threshold 6,,is increased from 0 to 1in
steps of 0.025. Each of the 10 networks are thresholded at each 6, value. The percentage of
multisensory units shown is the mean for the 10 networks. The percentage of multisensory DSC
units falls as 6, increases. The fall is more rapid when modality-specific targets are more prob-
able (and cross-modal targets are less probable). Any desired percentage of multisensory DSC
units can be obtained through appropriate choice of 6, and p;.

may encounter more cross-modal targets than monkeys, which
forage during the day. This likely difference in the proportion of
cross-modal targets between cats and monkeys may explain why
cats have a higher percentage of multisensory DSC neurons than
monkeys (Wallace and Stein, 1996; Wallace et al., 1996, 1998).

It is also possible that sensory systems are noisier in cats than
in monkeys. As such, sensory input to the DSC would be more
ambiguous, and carry less target information, in cats than in
monkeys. The model suggests that such a difference, if present,
could contribute to the difference in the percentage of multisen-
sory DSC neurons between cats and monkeys. In the model, any
relative proportion of unimodal to multisensory DSC units can
be obtained by appropriate choice of primary weight threshold,
primary input activation probabilities, and proportion of
modality-specific to cross-modal targets. In the brain, self-
organization of the corticotectal network probably involves
activity-independent, genetically prespecified molecular mecha-
nisms, as well as the activity-dependent processes modeled here.
Presumably, the percentage of multisensory DSC neurons pro-
duced by these combined processes confers behavioral advantage
to a species, considering such factors as its environmental niche
and the properties of its sensory systems.

Simulating the parietal projection to the DSC
The corticotectal circuitry that gives rise to MSE in the model is
consequent on model architecture and on training during stage
two of the two-stage algorithm. Stage two is based on a novel
correlation—anti-correlation rule. Experimental observations on
MSE guided the design of the model and of the correlation—anti-
correlation rule.

The parietal neurons that produce MSE in the DSC are them-
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The abundance of correct modulatory weights resulting from stage-two training depends sensitively on DSCunit threshold 6,and on modality-specific target probability p, . In A-C, the

spontaneous primary input activation probability p,, equals 0.1. The primary input becomes less ambiguous as driven activation probability p,, is increased from 0.3 (A) t0 0.6 (8) t0 0.9 (C) (Table
3).The primary input threshold 6, is increased from 4 (A) to 6 (B) to 10 (). In A=C, the modulatory input spontaneous and driven activation probabilities p,, and p, , are 0 and 0.1, respectively, and
the modulatory input threshold 6, is 0. Modality-specific target probability p is varied from 0 to 0.5 in steps of 0.025. Ten networks receive stage-one training for 5000 iterations at each p, value.
Primary weights are pruned at 6, = 0.4. DSCunit activity threshold 6, is varied from 0 to 11in steps of 0.05. Each of the 10 stage-one trained networks, at each p, value, receives stage-two training
for 5000 iterations at each 6, value. This yields 10 trained networks for each combination of p, and 6,. Sets of 10 containing any misdirected modulatory weights (i.e., modulatory weights not
respecting the modality-matching and cross-modality constraints) are excluded. For sets of 10 containing no such errors, the mean number of DSC units receiving modulatory connections is
computed. Each panel plots the number of units, in error-free networks, that receive modulatory input. For p,, = 0.3 (A) stage-two works best when 0.2 < 6, = 0.3 and p, = 0.15, for p,, = 0.6 (B) when
0.2=6,=0.55andp, = 0.23,and forp,; = 0.9(C) when 0.2 = 6, = 0.8 and p, = 0.23. The number of error-free networks is greater for unambiguous than for ambiguous primary inputs.

selves unimodal (Wallace et al., 1993). If unimodal parietal neu-
rons directly excited DSC neurons, then inactivation of the rele-
vant parietal neurons should substantially reduce modality-
specific as well as cross-modal DSC neuron responses. For many
DSC neurons, however, parietal inactivation reduces MSE with
little or no effect on modality-specific responses (Wallace and
Stein, 1994; Jiang et al., 2001). The model therefore postulates an
indirect, modulatory mechanism whereby inputs representing
unimodal parietal projections could produce enhancement of
cross-modal but not modality-specific responses. In the model,
primary inputs directly excite DSC units and represent inputs
from a variety of subcortical and cortical structures. Modulatory
inputs, representing parietal projections only, do not directly ex-
cite DSC units but act by augmenting primary inputs. In some
studies, parietal inactivation was found to reduce modality-
specific responses in some DSC neurons (Clemo and Stein, 1986;
Meredith and Clemo, 1989; Wallace and Stein, 1994). This can
easily be accounted for by postulating that parietal cortex is a
source of primary, as well as modulatory, input to some DSC
units.

Constraints on learning, in addition to constraints imposed
by model architecture, ensure that the performance of the trained
model conforms to experimental observation. For modulatory
inputs to enhance cross-modal but not modality-specific DSC
unit responses, modulatory connections should be made only
when a modulatory input and a primary input are of different
modalities. This is the cross-modality constraint. Imposing the
cross-modality constraint alone would not be sufficient to ensure
that modulatory connections in the model are consistent with
experimental observations on parietal projections to DSC. Under
the cross-modality constraint, all DSC units could still receive
every one of the three modalities, either as primary or modula-
tory input. All DSC units would be trimodal, which is inconsis-
tent with observation. Maintenance of the DSC unit modality
selectivities established during stage-one training requires that
the modalities of the modulatory connections received by a DSC
unit should match the modalities of the primary inputs received
by that unit. This is the modality-matching constraint, which is

supported by orthodromic activation studies (Wallace et al.,
1993). Together, the cross-modality and the modality-matching
constraints ensure that a primary input connection onto a mul-
tisensory DSC unit will receive a modulatory connection only if
the modality of the modulatory input is different from that of the
primary input but the same as that of another primary input
connection onto the DSC unit (Fig. 1B). Modulatory connec-
tions, established by the correlation—anti-correlation rule as de-
signed, are successfully restricted by these constraints over broad
ranges of model parameters.

The correlation—anti-correlation rule (see Materials and
Methods) can be summarized as follows. If a DSC unit and a
modulatory input are both active, then decrease the modulation
of active primary inputs and increase the modulation of inactive
primary inputs. If a modulatory input is active but a DSC unit is
inactive, then decrease the modulation of all primary inputs. The
critical parameters for stage-two training include the threshold
6, for the primary inputs, 6, for the modulatory inputs, and 6,
for the DSC units. These thresholds are needed for the algorithm
to decide whether or not the associated model elements are ac-
tive. For the primary and modulatory inputs, thresholds are set at
the integer nearest the intersection points of the corresponding
spontaneous and driven likelihoods (see Materials and Meth-
ods). Stage-two training depends on the spontaneous and driven
activation probabilities of the primary (p.,, P ) and modula-
tory (p,o, p,1) inputs, both because they determine input like-
lihoods and because they affect correlations among inputs and
DSC units that in turn affect the behavior of the correlation—anti-
correlation rule. The DSC unit threshold 6, cannot be set on the
basis of likelihoods because the likelihood distributions of DSC
unit responses are not known. Stage two also depends on
modality-specific target probability p.. These factors interactin a
complex way, but certain regularities in the operation of stage
two can be identified.

Figure 5 plots numbers of DSC units receiving nonzero mod-
ulatory weights for those trained networks in which all modula-
tory connections respect the cross-modality and modality-
matching constraints. The primary input spontaneous activation
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Table 4. Comparison of modulatory (model) and descending (experimental) connectivity

J. Neurosci., July 30, 2003 - 23(17):6713—6727 « 6721

Vv A S V-A V-§ A-S V-A-S Total
Model results after 5000 iterations
None 14.80 13.70 11.90 0.00 0.00 0.00 0.00 40.40
v 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
V,A 0.00 0.00 0.00 17.40 0.00 0.00 0.00 17.40
V,S 0.00 0.00 0.00 0.00 15.60 0.00 0.00 15.60
AS 0.00 0.00 0.00 0.00 0.00 14.40 0.00 14.40
V,AS 0.00 0.00 0.00 0.00 0.00 0.00 12.20 12.20
Total 14.80 13.70 11.90 17.40 15.60 14.40 12.20 100.00
Model results after 50 iterations
None 14.00 14.40 13.00 1.70 2.10 0.00 0.00 45.20
Vv 0.00 0.00 0.00 2.70 1.20 0.00 0.00 3.90
A 0.00 0.00 0.00 1.80 0.00 3.10 0.00 4.90
S 0.00 0.00 0.00 0.00 0.20 1.40 0.00 1.60
V,A 0.00 0.00 0.00 9.20 0.00 0.00 1.00 10.20
V,S 0.00 0.00 0.00 0.00 11.50 0.00 1.40 12.90
AS 0.00 0.00 0.00 0.00 0.00 10.20 0.00 10.20
V,AS 0.00 0.00 0.00 0.00 0.00 0.00 11.10 11.10
Total 14.00 14.40 13.00 15.40 15.00 14.70 13.50 100.00
Experimental results adapted from Wallace et al., 1993, their Table 1
None 11.76 1.47 2.94 2.94 2.94 0.37 0.37 22.79
Vv 18.01 0.00 0.00 12.50 1.84 0.00 0.00 32.35
A 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.37
S 0.74 0.00 4.04 0.00 5.15 0.74 0.00 10.66
V,A 0.74 0.00 0.00 5.88 0.00 0.00 0.37 6.99
V,S 0.37 0.00 0.00 0.74 16.18 0.00 2.57 19.85
AS 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.74
V,AS 0.00 0.00 0.00 1.84 0.74 0.00 3.68 6.25
Total 31.62 1.84 6.99 23.90 26.84 1.84 6.99 100.00

V, Visual; A, auditory; S, somatosensory; V-A, visual—-auditory; V-S, visual-somatosensory; A-S, auditory—somatosensory; V-A-S, trimodal.

probability p,,, is fixed at 0.1 in A—C. The primary input is made less
ambiguous by increasing the driven activation probability p,, from
0.3 (Fig. 5A) to 0.6 (Fig. 5B) to 0.9 (Fig. 5C). The primary input
threshold 6, is correspondingly increased from 4 to 6 to 10. Stage two
produces large numbers of allowed modulatory connections for 6,
values ~0.2, regardless of primary input ambiguity. For the less am-
biguous primary inputs (p,; = 0.6 and p,, = 0.9), allowed modula-
tory connections fail to develop when modality-specific target prob-
ability p, is lower than ~0.2. The dependency on p, is not as critical
for the most ambiguous primary input ( p,; = 0.3). The unavoidable
errors in deciding primary input activation in the ambiguous case
may actually work to advantage, but only for values of 6, ~0.2. The
region over which stage two produces large numbers of allowed
modulatory weights (those that respect the constraints) grows larger
as the ambiguity of the primary input decreases. This is attributable
to an improved ability to decide DSC unit activation in the less am-
biguous networks.

In Fig. 5A-C, the spontaneous and driven activation proba-
bilities for the modulatory inputs are p ,, = 0 and p,,; = 0.1, and
the modulatory input threshold is 6, = 0. The ability of stage two
to produce allowed modulatory connections is insensitive to the
actual values of the modulatory input spontaneous and driven
activation probabilities, so long as the modulatory likelihoods are
well separated and decisions concerning modulatory input acti-
vation are reliable. These results demonstrate that the production
of allowed modulatory connections using the correlation—anti-
correlation rule depends on reliable decisions concerning input
and DSC unit activation. The correlation—anti-correlation rule is
robust when reliable activation decisions can be made.

The ability of the correlation—anti-correlation rule to produce
modulatory connections that are consistent with experimental
observations on the projection from parietal cortex to DSC is
illustrated in Table 4. This table presents the modulatory connec-
tivity produced by the model under two conditions (Table 4, top,
middle) and compares it with experimental results on descending
parietal connections to DSC neurons (Table 4, bottom) from an
orthodromic activation study (Wallace et al., 1993). The columns
of each section, labeled at the top, indicate the seven possible
modality selectivities of DSC units (or neurons), as classified by
the modalities of their primary inputs (or by the modalities to
which the neuron responds, for the experimental data). The rows
of each section, labeled at the left side, indicate the eight possible
sets of unimodal modulatory inputs (or descending parietal in-
puts, for the experimental data). The number of units (or neu-
rons) receiving the designated combinations of input are indi-
cated as a percentage of the total number of DSC units in the
model (or of the total number of neurons recorded, for the ex-
perimental data). For the model, DSC unit numbers are deter-
mined on the basis of 10 runs. The total percentage of units (or
neurons) of each modality selectivity is indicated in the last row of
each section. The total number of units (or neurons) receiving
each set of modulatory (or descending) inputs is indicated in the
rightmost column of each section. Wallace et al. (1993) reported
the descending projections to DSC from two visual parietal struc-
tures: the lateral suprasylvian sulcus (LS) and the anterior ecto-
sylvian visual area (AEV). To facilitate comparison with model
results, data from these two structures have been grouped to-
gether as visual in Table 4, bottom.
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For the model results (Table 4, top, middle), the primary in-
put activation probabilities are p,, = 0.1 and p,.; = 0.6, and the
modulatory input activation probabilities are p,, = 0 and p,,; =
0.1. The modality-specific target probability is set at p, = 0.34
(p.= 0.17). The stage-one pruning threshold is setat 6, = 0.4,
and the stage-two thresholds are setat 6, = 6, 6, = 0, and 0, =
0.2. In the first network (Table 4, top), stage-two training is run
for 5000 iterations and produces all of the allowed modulatory
connections with no errors. In the second network (Table 4, mid-
dle), stage-two is run for only 50 iterations, and not all of the
allowed modulatory connections are made. In some cases, bi-
modal DSC units receive a modulatory connection from only one
or the other of the modulatory inputs that could connect to them
or receive no modulatory connection at all. Likewise, trimodal
DSC units sometimes receive modulatory connections from only
two of the three modulatory inputs that could connect to them.
This pattern of absent connections is consistent with experimen-
tal observation (Table 4, bottom). There is one notable difference
between the modeling results of Table 4, middle, and the exper-
imental results of Table 4, bottom. Some unimodal DSC neurons
apparently receive input of the same modality from parietal cor-
tex. As suggested above, it is possible that these inputs would be
primary rather than modulatory.

In the model, a modulatory input that fails to provide an
allowed modulatory connection is often associated with a weak
primary input of the corresponding modality. This results be-
cause the weak primary input usually fails to activate the DSC
unit (i.e., bring its activity over threshold 6,) when it alone is
activated by a modality-specific target. The consequence is that
the DSC unit and the modulatory input of that modality are not
consistently active together, and that modulatory input cannot
establish connections to inactive primary inputs of other modal-
ities. Bimodal DSC neurons have been studied that cannot be
activated by input of one modality but show enhancement if
input of that modality is presented with input of a different mo-
dality (Meredith and Stein, 1986a; Stein and Meredith, 1993).
The presumption might be that the weaker modality provides the
modulatory input. The model does not exclude this possibility.
Instead, it predicts the existence of bimodal DSC neurons for
which the stronger modality provides both strong primary and
strong modulatory input, and enhancement occurs as a result of
strong modulation of the weaker primary input in the event of a
cross-modal stimulus. This prediction should be testable using
available experimental techniques.

Information gain attributable to stage-one and

stage-two training

It has been shown theoretically that the SOM algorithm not only
forms maps but also causes output units to extract information
from their inputs (Linsker, 1988a,b). Training with stage one (the
SOM), and to a lesser extent stage two, causes the DSC to extract
asubstantial amount of target information from its inputs. Infor-
mation gain by the DSC depends on the percentage of multisen-
sory DSC units and actually decreases as the percentage of mul-
tisensory DSC units increases past a certain level.

The DSC response to a target is characterized simply as the
number ¥ of DSC units that, on target presentation, show activ-
ity exceeding threshold 6, (see Materials and Methods). A value
of 6; = 0.3 is chosen, although the results are similar over a range
of 0. The target information gain, or the mutual information
I(T; W) between the target and the number of suprathreshold
DSC unit activities, is computed (Eq. 18) and compared for var-
ious network configurations.
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Figure 6.  Two-stage training causes the DSC to extract most of the target information con-

tent of the primary inputs, especially when the DSC contains a mixture of unimodal and multi-
sensory units. The percentage of multisensory DSC units is varied by manipulating the primary
weight threshold 6, . Ten networks receive stage-one training for 5000 iterations (p,, = 0.1,
Py = 0.6,p, = 0.34,and p, = 0.17). Each network is then pruned using 6, varying from 0 to
1 in steps of 0.005. This produces mean percentages of multisensory DSC units over the 10
networks ranging from 0 to 100%. Each pruned network receives stage-two training for 5000
iterations (pyo =0p,=0106,=606,=0, and 6, = 0.2). For each of the 10 networks
associated with each 6, value, both before and after stage-two training, the mutual informa-
tion between the target and the number of suprathreshold DSC unit responses is computed
(Egs. 17 and 18; 6, = 0.3). The mean information gain after stage-one and stage-two training
is plotted against the mean percentages of multisensory units. The mutual information be-
tween the target and the primary inputs (2.27 bits; dashed line; Eq. 5) is nearly as high as the
information content of the target (2.32 bits; dot-dashed line; Eq. 4). Stage-one training causes
the DSCto extract alarge amount of target information (triangles), and stage-two (stars) causes
asmallincrease in this amount. The increase is significant when the percentage of multisensory
units is 60% or larger (t test, 0.05 significance level). The mutual information between target
and DSC s nearly as large as the mutual information between target and primary inputs, but
only for percentages of multisensory DSCunits between ~10and 50%. The mutual information
between target and DSC decreases steadily as the percentage of multisensory DSC units in-
creases above 50%. This decrease in mutual information between target and DSC approaches
that of a uniformly trimodal DSC, with (0.80 bits; square) and without (0.77 bits; circle) modu-
latory connections. Variability in the DSC response after two-stage training keeps DSCinforma-
tion content above that of the uniformly trimodal DSC.

The corticotectal model can be used to explore the relation-
ship between target information gain and the relative proportion
of unimodal to multisensory DSC units. The model is retrained
10 times from a random initial condition. Manipulating the pri-
mary weight threshold 6, varies the percentage of multisensory
DSC units as a result of stage-one training. The threshold 6, is
increased in steps of 0.05 to produce percentages of multisensory
DSC units ranging from 0 to 100%. Stage-two training follows
but does not alter the modality selectivity established for DSC
units during stage-one (see above). Target information gain at
the DSC is computed before and after stage-two training. The
results are plotted in Figure 6.

For more than one-half of the range of percentage multisen-
sory DSC units, target information gain is almost as high as the
information content of the primary inputs. For the example ex-
plored in Figure 6, the primary inputs are of intermediate ambi-
guity, with spontaneous and driven activation probabilities of
Pxo = 0.1 and p,; = 0.6, respectively. The mutual information
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trimodal units and best convey informa-
tion concerning the target in its various

2 2
| — v
15 15) = — A

DSC unit responses

states.

The results shown in Figure 6 are repre-
sentative of those obtained with different
primary input ambiguities and proportions
of modality-specific to cross-modal targets.
As suggested above, the actual percentage of
multisensory DSC neurons found in a spe-
cies may reflect the combined effects of sen-
sory input ambiguity and the proportion of
cross-modal targets encountered in its envi-
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primary input level

Figure 7.

10 15
primary input level

Responses of a bimodal, visual—auditory DSC unit over the full range of primary input levels. The responses were
determined after the network containing this unit was trained using the two-stage algorithm with the following parameters:

20 ronmental niche. As the results in this sec-
tion suggest, the proportions of unimodal,
bimodal, and trimodal DSC neurons may
also reflect the needs of an organism for tar-
get information gain by the DSC.

ps=034,p,=0.17,p,,=0.1,p,, = 0.6, 6, = 04,p,, = 0,p,, = 0.1, 6, = 6, 6, = 0,and 6, = 0.2. The solid and dashed

curves show the visual and auditory modality-specific responses, respectively. The curves with XX symbols show the cross-modal
response, and the curves with + symbols show the sum of the modality-specific responses. Responses with and without modu-
latory connections are shown in A and B, respectively. Responses at all input levels are subadditive without modulatory connec-
tions ( B) but can be supra-additive over a narrow range with modulatory connections ( A). V, Visual; A, auditory; S, somatosensory.

between the primary inputs and the target is 2.27 bits (Table 3).
The information content of the target is 2.32 bits. Thus, the pri-
mary input in this case contains almost complete target informa-
tion. The modulatory inputs have spontaneous and driven acti-
vation probabilities of p , = 0 and p,,, = 0.1, respectively. The
mutual information between the modulatory inputs and the tar-
get (1.74 bits) is lower than that of the primary inputs in this case.
Modulatory inputs can increase the estimate of DSC information
gain by producing MSE and helping DSC unit activities exceed
threshold 6,. Stage two provides a small increase in information
gain that is significant when the percentage of multisensory DSC
units is 60% or larger (¢ test, 0.05 significance level).

The most striking feature of the plot in Figure 6 is that target
information gain at the DSC is highest for percentages of multi-
sensory DSC units between 10 and 50% and falls steadily as the
percentage of multisensory DSC units rises above 50%. Insight
into this result can be obtained through comparison with a DSC
network in which all of the units are trimodal and receive primary
connections of identical weight of all three modalities. To make a
uniformly trimodal DSC, all primary weights are set to V''/3
(u; = V/1/5 for all i and j). This sets the lengths of the primary
weight vectors to one, to match the lengths of the normalized
primary weight vectors produced by stage one. Stage-two train-
ing can start from the uniform, trimodal primary weight config-
uration. The target information gain of the uniformly trimodal
DSC network is only 0.77 bits without modulatory input. It in-
creases to only 0.80 bits with modulatory input. The target infor-
mation gain of the DSC network trained from a random state
with the two-stage algorithm approaches this low level as the
percentage of multisensory DSC units increases.

These results demonstrate that a uniformly trimodal DSC net-
work, in which all units respond identically to all targets, is very
uninformative. Target information gain in trained DSC networks
with 100% multisensory units is somewhat higher, because pri-
mary weight vectors in trained networks are non-uniform, and
units may vary in their activation by different targets. Still, the
results clearly indicate that target information gain is highest
when the DSC contains between 10 and 50% multisensory units.
Networks in this range have a mixture of unimodal, bimodal, and

Simulating multisensory enhancement
in the DSC

MSE requires input from unimodal re-
gions of parietal cortex. Inactivation of
these regions can drastically reduce MSE
but may have little effect on the modality-
specific responses of DSC neurons (Wallace and Stein, 1994;
Jiang et al., 2001). Stage two is designed to produce MSE at the
DSC using unimodal modulatory inputs (see Materials and
Methods). The result is that cross-modal responses can be signif-
icantly larger than modality-specific responses and that MSE de-
pends on modulatory connections. MSE is examined in a net-
work trained with primary input of intermediate ambiguity
(activation probabilities are p., = 0.1 and p,,; = 0.6) and targets
that are twice as likely to be modality-specific as cross-modal
(p,=0.34 and p_. = 0.17). After training, the responses of DSC
units to two-modality targets show MSE (Fig. 7).

DSC unit responses are determined for modality-specific or
two-modality targets (target states t = 1 to t = 6; see Materials
and Methods). If the target presents the modality specific to pri-
mary input X;, then the activity of that primary input is increased
from 0 to 20 in steps of 1 (n = 20 is the number of binary
variables in the binomial processes that define the input likeli-
hoods; see Materials and Methods). If the target does not present
the modality specific to X;, then the activity of that primary input
is fixed at the mean of its spontaneous likelihood, which is 2 (i.e.,
20 times the primary input spontaneous activation probability
Pxo)- If the target presents the modality specific to modulatory
input Y, then the activity of that modulatory input is increased
from 0 to 4 in steps of 0.2. The smaller range of the modulatory
compared with the primary inputs is meant to reflect the five
times greater dynamic range of primary compared with modula-
tory inputs (p,, = 0.1 and p,; = 0.6, whereas p , = 0 and
py1 = 0.1). Modulatory input Y, takes value zero if the target
does not present its specific modality, because the modulatory
input spontaneous activation probability p , is zero. With the
input specified, the DSC unit responses z; are found by applica-
tion of Equations 7 and 8.

DSC unit responses z; are computed with and without mod-
ulatory connections. To find the responses without modulatory
connections, the modulatory weights are simply set to zero. The
results with and without modulatory connections are shown in
Figure 7, A and B, respectively, for a bimodal visual-auditory
DSC unit that is typical of the other multisensory DSC units in the
network. Without modulatory connections (Fig. 7B), the cross-
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modal responses (X symbols) can be larger than either of the two
modality-specific responses (visual, solid line; or auditory,
dashed line) but are smaller than the sum of the modality-specific
responses (+ symbols) over the entire range. Thus, cross-modal
responses are subadditive without modulatory connections.
With modulatory connections (Fig. 7A) there is a range of input
in which cross-modal responses are supra-additive.

DSC unit responses can be used to compute percentage MSE
(%MSE) values according to Equation 16. For the responses of
the bimodal, visual-auditory (V=A) DSC unit shown in Figure 7,
maximal %MSE occurs when the visual and/or auditory primary
inputs take the value of six. Responses at this level are detailed in
Figure 8 A—D, in which primary inputs take value six when they
are driven by a target with the appropriate sensory attribute.
When the appropriate target sensory attribute is absent, primary
inputs are considered spontaneously active and take value two.
Modulatory inputs take driven and spontaneous values of 6/5 =
1.2 or 0, respectively. Responses are shown with all modulatory
connections intact (Fig. 8 A) or with visual modulatory connec-
tions cut (Fig. 8 B), auditory modulatory connections cut (Fig.
8C), or all modulatory connections cut (Fig. 8 D).

For a two-modality target (V, A), both the visual and auditory
primary and modulatory inputs are driven. For a modality-
specific target (V only or A only), one primary and one modula-
tory input are driven while the others are spontaneous. With all
modulatory connections intact (Fig. 8A), the cross-modal DSC
unit response (V, A) is substantially larger than either of the two
modality-specific responses (V only or A only), and %MSE
equals 123%. Cutting modulatory connections reduces the
amount of MSE. Cutting the visual or auditory modulatory con-
nections alone reduces %MSE to 86 and 75%, respectively. Cut-
ting both sets of modulatory connections reduces %MSE to 39%.
Thus, MSE for DSC units in the corticotectal model depends on
unimodal modulatory connections, which correspond to de-
scending projections from neurons in unimodal regions of pari-
etal cortex. Individual DSC units in the model can be modulated
by more than one cortical region, and the reduction in cross-
modal responses is greater when modulatory connections from
multiple regions are interrupted. These effects, which are ob-
served for all other multisensory DSC units in this network, are
consistent with experimental findings (Wallace and Stein, 1994).

Cortical cooling experiments show that inactivation of multi-
ple regions of parietal cortex can not only reduce MSE but, in
some cases, can eliminate MSE entirely (Wallace and Stein, 1994;
Jiang et al., 2001). Elimination of enhancement brings cross-
modal responses to the level of the largest modality-specific re-
sponse. In rare cases, inactivation of regions of parietal cortex can
produce negative enhancement, in which the cross-modal re-
sponse is actually smaller than the largest modality-specific re-
sponse (Jiang et al., 2001). Complex single-neuron models, in-
volving multiplicative nodes and inhibitory connections, can
simulate MSE at any level whether positive, negative, or zero
(Patton and Anastasio, 2003). Modified versions of these com-
plex neural elements could be used as DSC units and would allow

the corticotectal model to simulate zero or negative enhancement
after removal of modulatory connections. For simplicity in this
initial presentation, only simple neural elements are used in the
corticotectal model (Eq. 7). For that reason, the model can sim-
ulate the reduction in MSE brought about by cortical inactivation
but cannot currently simulate zero or negative enhancement.
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Figure 8.  MSE in the corticotectal model depends on unimodal modulatory inputs. Re-
sponses of the bimodal, visual—auditory DSC unit from Figure 7 are computed, to targets of
visual (V), auditory (A), both (V, A), or neither (spont) modality. Active primary inputs were
assigned a value of six, because this value was found to produce maximal MSE for this DSC unit.
Responses are shown for the intact model (A) and after interruption of modulatory connections
of the visual (B), auditory ( (), or both (D) modalities. Interruption of modulatory connections
has little effect on modality-specific responses but greatly decreases cross-modal responses and
reduces MSE. The reduction in MSE is greatest when modulatory connections of both modalities
are interrupted (D). This result is a consequence of training with the correlation—anti-
correlation rulein stage two, which produces cross-modal but not modality-specific modulatory
connections. The amount of MSE in the model i affected by both the magnitude of modulatory
weights and the primary input spontaneous activation probability. In £~H, the modulatory
weights have been increased by seven times (v large), and the spontaneous activation proba-
bility for the primary inputs has been reduced to zero (p,, = 0). Active primary inputs are
assigned a value of three, because this value now produces maximum MSE. Responses are
shown for the intact model (£) and after interruption of the modulatory connections of the
visual (F), auditory (), or both (H) modalities. The effect of the modulatory connections is
qualitatively the same as before (p,, = 0.1, v normal), but maximal percentage enhancement
is higher. Also, the effect of removal of modulatory connections is greater than before for
cross-modal responses and nil for modality-specific responses.

Spontaneous activity may limit multisensory enhancement in

the DSC

MSE occurs whenever the cross-modal response is larger than the
maximal modality-specific response (Meredith and Stein, 1986a;
Stein and Meredith, 1993). While percentage MSE in excess of
1000 has been observed, most reported enhancements are con-
siderably smaller than that (Meredith and Stein, 1986a; Wallace
and Stein, 1997; Jiang et al., 2001). The model suggests that the
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spontaneous activity of direct, excitatory inputs to the DSC,
which would be considered primary in the model, limits the
amount of MSE. Descending inputs from parietal cortex would
modulate the spontaneous as well as the driven activity of pri-
mary inputs, and this could affect the ability of descending inputs
to produce large cross-modal enhancements.

This effect can be seen in the simulated responses of Figure 8.
Although the main effect of modulation is on cross-modal re-
sponses, small effects can be discerned on modality-specific re-
sponses. In the modality-specific case, an active modulatory in-
put of one modality can modulate the spontaneous activity of
primary inputs of a different modality. For example, cutting the
visual modulatory connection (Fig. 8 B) causes a slight reduction
in the response to a unimodal visual target (V only). This is not
attributable to removal of visual modulation of the visual pri-
mary input, because the cross-modality constraint already ex-
cludes the visual-modulatory to visual-primary connection. The
reduction occurs because the cut visual-modulatory connection
no longer modulates the spontaneous activity of the auditory
primary input. As the spontaneous activity is increased toward
the driven activity of the primary input, the effect of modulatory
input on modality-specific responses gets bigger, and the amount
of MSE gets smaller.

Very large enhancements can be produced when there is very
low spontaneous primary input activity in the corticotectal
model. To illustrate this, the same bimodal, visual-auditory DSC
unit shown in Figure 8 A-D is examined again in Figure 8 E-H,
but the spontaneous activation probability of the primary inputs
(pxo = 0.1) is reduced to zero (p,, = 0). The modulatory
weights, deliberately kept small during stage-two training by im-
posing an upper bound (v normal), are increased by seven times
(v large). Now maximal enhancement is observed at a primary
input level of three. As before, MSE depends on unimodal mod-
ulatory input from multiple sources, but now the magnitude of
enhancement is much greater, and the effect of modulation on
modality-specific responses is nil. In principal, with zero sponta-
neous activity, the modulatory weights and the amount of MSE
could be increased without bound. Contrariwise, limitations im-
posed by the presence of primary input spontaneous activity may
explain the typically low percentage enhancements observed for
most DSC neurons (Wallace and Stein, 1997; Jiang et al., 2001).

Even without increasing the modulatory weights, simply re-
moving the spontaneous input to the DSC unit of Figure 8 dou-
bles its maximal %MSE (data not shown). The model predicts
that MSE should be increased by factors that decrease the spon-
taneous activity of primary inputs. Anesthesia may be one such
factor. Experiments that uncovered large enhancements were
conducted on anesthetized cats (Meredith and Stein, 1986a,b,
1996; Wallace and Stein, 1997; Kadunce et al., 2001). In contrast,
experiments in alert, behaving cats failed to reveal large enhance-
ments (Populin and Yin, 2002). The model opens the possibility
that the larger enhancements seen in anesthetized animals may be
attributable, in part, to a reduction by anesthetic of the sponta-
neous rate of primary inputs. This possibility could be explored
experimentally.

The spontaneous activity of the modulatory inputs could also
limit the amount of MSE. Spontaneous firing of the modulatory
inputs would enhance the ongoing spontaneous activity of the
primary inputs and produce potentially large DSC unit activa-
tions in the absence of targets. Limits on the strength of modula-
tory connections would reduce the magnitude of such spurious
enhancements but would also reduce appropriate enhancements.
This trade-off is avoided entirely in the model by setting the
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spontaneous activity of the modulatory inputs to zero. This so-
lution is based on findings from anesthetized cats showing that
AES neurons have very low spontaneous rates (1-8 Hz) (Mucke
etal., 1982). Data from alert animals on the spontaneous rates of
neurons in AES, and other parietal areas projecting to DSC, are
currently lacking. Presumptive excitatory pyramidal neurons in
other cortical areas are known to exhibit low spontaneous rates in
alert cats (9.4 = 1.7 Hz) (Steriade et al., 2001).

Discussion

The two-stage algorithm works in alocal, unsupervised, and neu-
robiologically plausible way. Training the corticotectal model us-
ing the two-stage algorithm causes the tectal component, which
represents the DSC, to extract a substantial amount of target
information from its inputs. The model offers possible answers to
two of the most pressing questions concerning multisensory in-
tegration in the DSC: why some but not all DSC neurons are
multisensory, and how MSE exhibited by multisensory DSC neu-
rons could be produced through descending input from unimo-
dal parietal cortical neurons. The corticotectal model provides
insight into how MSE might be produced in the actual nervous
system.

Information gain and modality specialization

The DSC receives input of three sensory modalities. Despite the
potential availability of trimodal input, most DSC neurons only
respond to stimuli of one or two sensory modalities (cat, 43%
unimodal, 45% bimodal; monkey, 73% unimodal, 21% bimodal)
(Wallace and Stein, 1996). Trimodal neurons are rarely observed
in the DSC (cat 9%; monkey 6%) (Wallace and Stein, 1996). A
principle result of the corticotectal model is the demonstration
that a DSC composed of a mixture of unimodal, bimodal, and
trimodal units extracts substantially more target information
from its inputs than a uniformly trimodal DSC. The model also
demonstrates how such a mixture of modality selectivities could
emerge automatically from an unsupervised learning process.

That process, used in stage one of the two-stage algorithm, is
the SOM algorithm (Willshaw and von der Malsburg, 1976; Ko-
honen, 1982, 1988; Haykin, 1999). The SOM is neurobiologically
plausible because it is based on a local Hebb rule. The process of
selection of the winner and its neighborhood in the DSC could
occur through the type of burst production that is involved in the
generation of saccadic commands (Wurtz and Goldberg, 1972;
Munoz and Wurtz, 1995). Lateral connectivity profiles, consist-
ing of short-range excitation and long-range inhibition, have
been identified in this structure (Mcllwain, 1982; Meredith and
Ramoa, 1998; Munoz and Istvan, 1998). This connectivity could
mediate a winners-take-all process in the DSC.

The SOM has been widely applied in modeling map formation
in the brain (Udin, 1988). Whereas findings in molecular neuro-
science underscore the importance of activity-independent pro-
cesses in map formation (Flanagan and Vanderhaeghen, 1998),
the SOM remains an important model of the activity-dependent
processes that refine those maps (Katz and Shatz, 1996; Cline,
1998; Zhang et al., 1998). Activity-dependent refinement may
have as much to do with information extraction as with map
formation. Linsker (1988a, b) has shown that the SOM, by essen-
tially creating a neighborhood of specialists, causes a network to
extract information from its inputs.

Ambiguous inputs carry less target information than do un-
ambiguous inputs (Table 3). Previous theoretical work sug-
gested, on that basis, that unimodal DSC units receive unambig-
uous input of one modality, but that multisensory DSC units
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integrate ambiguous inputs of multiple modalities to increase the
amount of target information they receive (Patton et al., 2002).
That view, which considers DSC units individually rather than
collectively, should be broadened in light of the results of the
corticotectal model. Input ambiguity can increase the percentage
of multisensory DSC units produced in the model during train-
ing, and this is consistent with the previous theory. The percent-
age of multisensory DSC units in the model also increases with
the proportion of cross-modal targets presented during training.
However, the model DSC as a whole extracts the most target
information from its inputs when the percentage of multisensory
DSC units falls between 10 and 50%. In the model, the tendency
for ambiguous inputs and cross-modal targets to increase the
percentage of multisensory DSC units would have to be balanced
by the need for the model DSC as a whole to extract target infor-
mation. The percentage of multisensory DSC neurons in the
brain similarly may be determined by multiple factors.

Descending modulation and multisensory enhancement

The other principle result of the corticotectal model is that it
reproduces findings on MSE in the DSC, which requires descend-
ing input from parietal cortex. Inactivation of parietal cortical
neurons, in the AES or LS area of the cat, reduces MSE but may
have little effect on the responses of DSC neurons to modality-
specific stimulation (Wallace and Stein, 1994; Jiang et al., 2001).
Paradoxically, the parietal projections critical for MSE originate
from unimodal, not multisensory, neurons (Wallace et al., 1993).
These data argue against a direct excitatory effect of descending
parietal projections onto DSC neurons.

The paradox is resolved in the corticotectal model by treating
the relevant descending projections from parietal cortex as mod-
ulatory. There are a variety of neural mechanisms that might
mediate the proposed modulation of excitatory input. Experi-
mental evidence suggests that NMDA-sensitive receptors may be
involved in amplifying the responses of DSC neurons (Binns and
Salt, 1996; Binns, 1999). Presynaptic enhancement by metabo-
trophic glutamate receptors (Anwyl, 1999) is another possible
way in which descending parietal projections could modulate
DSC neuron responses. Ultrastructural studies of somatosensory
terminals in the DSC (Harting et al., 1997) suggest a possible
neuroanatomical substrate for modulation. Ascending trigemi-
nal somatosensory inputs terminate on small, presumably distal
dendrites of DSC neurons, whereas descending cortical somato-
sensory inputs terminate on proximal dendrites. This synaptol-
ogy suggests a gating role for descending projections. These data
lend support to the idea that many cortical descending projec-
tions to DSC are modulatory rather than directly excitatory.

Many DSC neurons are activated at short latencies by electri-
cal stimulation of corticotectal regions of parietal cortex (Wallace
et al., 1993). This observation could be taken parsimoniously as
evidence for monosynaptic excitation. It could instead result
from activation of a modulatory input as postulated here, given a
constant subthreshold level of excitation at the primary inputs.
Activation of modulatory input attributable to electrical stimula-
tion of the cortex could augment otherwise subthreshold primary
input activity, thereby activating DSC neurons at short latency.

The main features of MSE, as observed for multisensory DSC
neurons, are that the cross-modal response is larger than the maxi-
mal modality-specific response (in many cases, even larger than the
sum of the modality-specific responses), and the amount of en-
hancement is magnitude dependent, decreasing as the magnitudes
of the modality-specific responses increase (Meredith and Stein,
1986a). Previous theoretical work showed that these features are
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consistent with the hypothesis that DSC neurons use their sensory
inputs to compute the probability that a target has appeared (Anas-
tasio et al., 2000; Patton and Anastasio, 2003). That theory does not
explain findings regarding the cortical role in MSE, but the cortico-
tectal model presented here does. The corticotectal model also sim-
ulates MSE and the magnitude dependency of MSE (Fig. 7A), but it
does not compute target probabilities.

As the output nodes of a neural network, DSC units could be
trained using supervised learning to estimate target probabilities
to arbitrary accuracy (Bishop, 1995). The unsupervised two-stage
algorithm does not endow DSC units with that capability, and it
is not clear that any unsupervised scheme could do so. It is pos-
sible that something like the two-stage algorithm sets up the basic
corticotectal circuitry, but that some form of supervised learning
must tune that circuitry to accurately compute target probabili-
ties. Although the modulatory inputs that produce MSE provide
little in the way of information gain (Fig. 6), they can produce
augmentation of cross-modal responses that could easily cause
DSC units to overestimate target probabilities. This raises the
intriguing possibility that the corticotectal circuit may be tuned
by inhibition. Such inhibition could arise from a number of
sources, including the well studied projection to DSC from sub-
stantia nigra (Hikosaka and Wurtz, 1983, 1985a,b; Mize, 1992).

Although the two-stage algorithm does not endow DSC units
with the ability to compute target probabilities, the correlation—anti-
correlation rule in stage two of the algorithm is based on a probabi-
listic argument. If primary and modulatory inputs are consistently
active together, then their coactivation does not indicate a higher
target probability and descending cortical modulation should be re-
duced. However, if primary and modulatory inputs are not consis-
tently active together, then their coactivation does indicate a higher
target probability and descending cortical modulation should be in-
creased. The rule also depends on the coactivation of DSC and cor-
tical units and on the modality selectivity of DSC units established in
stage one of the algorithm. The correlation—anti-correlation rule is
local and neurobiologically plausible, especially given recent evi-
dence for anti-Hebbian forms of synaptic plasticity (Linden, 1995).
The correlation—anti-correlation rule and the corticotectal model
provide a new view of top-down organization and processing in the
corticotectal system.
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