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Neural Noise and Movement-Related Codes in the Macaque
Supplementary Motor Area
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We analyzed the variability of spike counts and the coding capacity of simultaneously recorded pairs of neurons in the macaque supple-
mentary motor area (SMA). We analyzed the mean-variance functions for single neurons, as well as signal and noise correlations between
pairs of neurons. All three statistics showed a strong dependence on the bin width chosen for analysis. Changes in the correlation
structure of single neuron spike trains over different bin sizes affected the mean-variance function, and signal and noise correlations
between pairs of neurons were much smaller at small bin widths, increasing monotonically with the width of the bin. Analyses in the
frequency domain showed that the noise between pairs of neurons, on average, was most strongly correlated at low frequencies, which
explained the increase in noise correlation with increasing bin width.

The coding performance was analyzed to determine whether the temporal precision of spike arrival times and the interactions within
and between neurons could improve the prediction of the upcoming movement. We found thatin ~62% of neuron pairs, the arrival times
of spikes at a resolution between 66 and 40 msec carried more information than spike counts in a 200 msec bin. In addition, in 19% of
neuron pairs, inclusion of within (11%)- or between-neuron (8%) correlations in spike trains improved decoding accuracy. These results

suggest that in some SMA neurons elements of the spatiotemporal pattern of activity may be relevant for neural coding.

Key words: spike count variability; correlated noise; monkey; decoding; temporal code; rate code

Introduction

Behavioral performance is constrained by the information pro-
cessing capacity of the nervous system. For many tasks, this pro-
cessing capacity can be understood by studying the coding prop-
erties of cortical neural networks. A first step in the study of these
networks is to understand the way in which individual neurons or
ensembles of neurons encode information. The number of pos-
sible codes that neurons may be using, independently or as en-
sembles, is immense (Perkel and Bullock, 1969), and therefore a
systematic approach to the investigation of putative neural codes
is important. One can approach this question by assessing
whether patterns in neural responses within or between neurons
are correlated with behavioral variables. After having identified a
potential code, one can then ask whether the code is behaviorally
relevant. The total information in the code can be considered an
upper limit with respect to behavior, because the networks me-
diating the behavior may extract only a portion of the informa-
tion available.

The question of which parameters of the neuronal signal carry
information has an extensive theoretical and empirical history.
Early theoretical papers often considered the limit of the infor-
mation content of various neural codes (MacKay and McCul-
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loch, 1952; Barlow, 1963), whereas early empirical work by
Mountcastle and colleagues (Mountcastle et al., 1968; Talbot et
al., 1968) initiated the study of the neuronal basis of psychophys-
ical performance and explicitly explored the question of which
parameter of the neural signal accounted for sensory detection
thresholds (Mountcastle et al., 1968, 1990). Other empirical stud-
ies have estimated the amount of information that neurons can
carry about stimulus or behavioral parameters (Heggelund and
Albus, 1978; Parker and Hawken, 1985; Bradley et al., 1987; Her-
nandez et al., 2000) and compared the coding performance of
single neurons with the psychophysical performance of behaving
animals (Newsome et al., 1989; Vogels and Orban, 1990).

Our main goal in this paper was to explore the information
content of several related neural codes, as well as the statistical
structure of the neural signal. The mean-variance function as well
as the correlation in the signal and the correlation in the noise
were found to depend strongly on the bin width chosen for anal-
ysis. The results of the decoding analyses suggest that information
about upcoming movements is coded in the arrival times of
spikes on a time scale as small as ~40 msec and that using some
form of correlation between pairs of neurons or between differ-
ent time points within a given neuron improved the prediction of
the movement for 19% of the pairs of neurons in our sample.

Materials and Methods

Neurons analyzed in the present study were recorded from the left caudal
supplementary motor area (SMA-proper or F3) in two rhesus macaques
performing a series of visually guided reaching movements. The detailed
methods of recording as well as the behavioral task have been published
previously (Lee and Quessy, 2003). All of the procedures used in this



Averbeck and Lee ¢ Noise and Movement Codes in the SMA

study were approved by the University of Rochester Committee on An-
imal Research and conformed to the principles outlined in the NIH
Guide for the Care and Use of Laboratory Animals (publication no. 85-23,
revised 1985).

Behavioral task

Two animals were trained on a serial reaction time (SRT) task. They sat
facing a computer monitor on which a series of targets was presented.
There were 16 possible target locations defined by a 4 X 4 grid. A touch
screen placed horizontally in front of the animal was used for behavioral
input. The animals indicated acquisition of each target by contacting the
corresponding location on the touch screen. Each subsequent target in
the sequence appeared 250 msec after the previous target had been ac-
quired. A trial consisted of a sequence of 10 target acquisitions. If the 10
targets were acquired successfully, a juice reward was given. Within the
task, four different types of sequences were presented (Lee and Quessy,
2003). In the random condition, the sequence of target locations was
selected pseudorandomly for every trial. In the primary condition, the
monkey executed a repeating sequencing of three targets (i.e., a single
trial was three repeats of the three target sequence), with the first target of
the sequence repeated at the end of the sequence, (for example, ABCAB-
CABCA). In the secondary condition, the monkey executed a different
repeating sequence of three targets. In the final condition, the monkey
began executing the primary sequence and then switched to the second-
ary sequence from seventh target onward. New primary and secondary
sequences were selected pseudorandomly for each day’s session. A block
of trials consisted of five sequences from the primary condition, and one
sequence from each of the remaining conditions. Trial types were pre-
sented in a randomized block design. In this paper, we analyzed only the
data from the primary condition, because trials in this condition pro-
vided alarge amount of data with consistent visual stimuli and behavioral
responses.

Data analysis

Analysis of neuronal variability. The data for each behavioral trial were
split into epochs corresponding to each of the 10 movements, 1 for each
target in the movement. Data from the first movement were not consid-
ered because they followed the intertrial interval and varied from trial to
trial. For the analysis of variability in the neural activity, spikes occurring
during a 600 msec interval from 300 msec before to 300 msec after target
presentation were binned using bin sizes of 5, 10, 20, 25, 33, 40, 50, 66,
100, and 200 msec.

We calculated the mean and variance of the neural activity for each
neuron in different time bins relative to stimulus onset. We also calcu-
lated the correlation in the mean response and the correlation in the
residual response between pairs of neurons. The correlation in the mean
response, or signal correlation (Gawne and Richmond, 1993; Lee et al.,
1998), was calculated by first concatenating the poststimulus time histo-
gram (PSTH) for each movement for each pair of neurons. This resulted
in a vector with 37 elements for each neuron, where n was the number of
bins into which the 600 msec epoch was divided, and there were three
different movements in the primary condition. Correlations were calcu-
lated between these vectors. Correlation in the residual response, or noise
correlation, was calculated by first subtracting the mean response from
each trial, giving the residual response. The correlation in these vectors
between neurons was calculated separately for each movement as an
estimate of the correlation in the noise (Gawne and Richmond, 1993;
Zohary et al., 1994; Lee et al., 1998).

We also performed three analyses in the frequency domain. Because a
large quantity of data were available, no smoothing in the frequency
domain was necessary (Jarvis and Mitra, 2001). Also, the rectangular
window was used in the time domain, because it has the smallest main
lobe and therefore gives the best frequency resolution, although at the
expense of larger side lobes (Oppenheim and Schafer, 1989). Using other
windowing functions would lead to a broadening of the peaks in the
power and coherence plots. All frequency domain values presented in
this paper were calculated across the 600 msec window beginning 300
msec before target onset, at a 1 msec resolution. Analyses were imple-
mentedinC* ™, using compiled versions of the fft and cohere functions
from Matlab (The Mathworks, Inc., Natick, MA).
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Estimates of the population periodogram of the mean response (sig-
nal) were calculated by averaging across the individual periodograms of
each neuron. The periodogram, P, (k), of the mean response for each
neuron was calculated by taking the fast Fourier transform (FFT) of the
PSTH and normalizing by the length of the signal (Papoulis, 1991):

1
Pol) = X, )

where X(k) is the FFT of the signal, in this case the PSTH, and N is its
length, equal to 600. We also estimated the periodogram of the noise, by
calculating the periodogram of the residual of each trial, with the residual
calculated as defined above, and then averaging across trials for individ-
ual neurons and finally across neurons. In the final frequency domain
analysis, we analyzed the coherence between residuals of neuron pairs.
The coherence is defined as:

C k) = |ny(k)‘2 2

xy( ) - Pxx(k) Pyy(k)’ ( )
where ny( k) is the cross spectrum (Papoulis, 1991). Each trial was treated
as a data segment. These estimates were also averaged across the entire
population to produce the population coherence plots. Because the rectan-
gular window used in the time domain can result in power bleeding between
frequencies (Oppenheim and Schafer, 1989), we also examined perio-
dograms and coherence functions calculated with the mean removed. There
was little difference in the non-DC components, so we show the plots with
the DC information intact, because it is informative. In Results, we will make
comparisons between the frequency domain analyses and the binned analy-
ses in the time domain. Because calculating histograms in the time domain
leads to aliasing in the frequency domain, the time domain analyses could
have been performed by first low-pass filtering the spike trains and then
subsampling at the corresponding bin width; however, binning is a much
more common practice in the analysis of neurophysiological data. Further-
more, we performed many of the decoding and noise analyses by filtering
and then subsampling, and the main results of the paper were not changed.
Therefore, we present the results from the binning analyses to make com-
parisons between studies easier.

Decoding analyses. After we examined the statistical structure of the
neural activity, we developed decoding algorithms that used the neural
activity of pairs of simultaneously recorded neurons to estimate the tar-
get to which the monkey reached. We performed the decoding analyses
using a 200 msec window that began at target onset. We restricted our
decoding analyses to this window so that we could explore relatively
small bin sizes without generating too many degrees of freedom in our
model.

We will discuss our analysis in terms of a Bayesian framework (Oram
et al,, 1998; Zhang et al., 1998). Within our task, however, the prior
probability of each movement was the same, and therefore Bayesian and
maximum likelihood decoding frameworks are equivalent. In the decod-
ing analysis, the target (or corresponding movement) was predicted by
selecting the target with the maximum probability over the joint distri-
bution of neural activity and possible targets. This can be formalized as:

. arg max

0 0 p(6ln, my), (3)

where 8 is the estimated target for the subsequent movement, and
p(0ln,,n,) is the conditional distribution of 6 given the response of two
neurons across several bins. The conditional probability of  is given by
Bayes rule:

p(n[6)p(6)

p(0]n) = o)

> (4)

where p(0) is the prior probability of a given target, n is the vector of
neural responses, and p(n) is a normalizing constant, calculated as:

p(n) = Dp(n|6)p(6). (5)

0
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In pilot studies we explored both Poisson and Gaussian distribution for
the data. We will only discuss results from the Gaussian distribution,
because it generally provided better decoding performance. The multi-
variate Gaussian distribution is given by:

1 1
p(n|6) = p(nlr, X)) = ﬁeXP(_E(ﬂ—r)'E”(n—r)%
2m) D

(6)

where # is a vector of spike counts for each bin and each neuron for a
given trial, r is the corresponding vector of mean spike counts for a given
target, 3 is the covariance matrix of the spike counts for each bin and
each neuron, || indicates the determinant of the matrix, and d is the
dimensionality of the firing rate vector being considered. In the analyses,
we manipulated r by changing the number of bins into which the 200
msec epoch was divided. Thus, r was always a vector of the response
across two neurons, but in the case of 50 msec bins, r had eight elements,
four for each bin for each neuron, whereas in the case of 200 msec bins, r
had only two elements. The covariance matrix was calculated accord-
ingly. A separate version of Equation 6 was estimated for each target.
Thus the decoding procedure was as follows. For a given neural response,
n, the probability of each target was assessed using Equation 6, with the
mean, r, and covariance, 2, which corresponded to each target. The
target with the maximum probability was then selected as the estimate.

Some neurons failed to fire spikes in one or more of their response
bins. This resulted in a column of zeros in the data matrix, which leads to
a noninvertible covariance matrix. We corrected the problem by elimi-
nating those columns from the data matrix and still treating the model as
if it had all of its parameters.

We assessed the ability of specific interaction terms to improve the
prediction of the subsequent target. We restricted our analyses to a set of
specific hypotheses. This was done by setting all or a subset of the off-
diagonal terms of the covariance matrix, 3, in Equation 6 to zero, and, in
the case of the variance equals mean (VEM) model, by restricting the
diagonal terms of the matrix to be equal to the mean. A matrix with all
but the diagonal matrix entries set to zero will be referred to as a diagonal
matrix. For the main analyses, only one covariance matrix was estimated
for each pair of neurons, for all targets. The VEM model had a diagonal
covariance matrix, with the diagonal elements set equal to the mean,
similar to a Poisson distribution. The “independent” model had a diag-
onal covariance matrix, with each variance along the diagonal estimated
from the data. The “between” model included off-diagonal elements
corresponding to interactions between identical time bins between the
neurons in the pair. The “within” model included the off-diagonal ele-
ments of the covariance matrix corresponding to interactions between
adjacent time bins of the neural spike train. Finally, the “full” model
included all off-diagonal elements of the covariance matrix. We also
examined models that had separate covariance matrices for each move-
ment direction. We did this by first selecting the best model from among
the models with a pooled covariance matrix and then testing whether a
model that had a separate covariance matrix for each movement but the
same off-diagonal elements set to zero in each of the separate matrices
performed better. For example, if the model selection procedure chose
the between model as best, we compared the between model that had a
single covariance matrix calculated from the neural response pooled
across movements with a between model that had a separate covariance
matrix for each movement.

Model selection. We used two techniques to decide which of the various
models described above provided the best explanation of the data:
Akaike’s information criterion (AIC) and K-fold cross validation (CV).
AIC uses the likelihood of the model parameters, conditioned on the data
and the model to discriminate between models. The likelihood (X, P,
is the product of the likelihood of all data points, as predicted by the
model,

AP, = [ Ipln. . ), (7)

K
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Figure 1.  Distribution of number of neurons in each ensemble.

where X is the data set, with K samples, the likelihood p(6ln. .. ) is the
probability of sample k, i.e., the probability of the actual target for a given
trial, and P, indicates that the likelihood is calculated using the maxi-
mum likelihood parameters. AIC is then calculated as follows:

AIC(m) = =2In f(X,P,) + 2m, (8)

where m is the number of free parameters of the model under consider-
ation. The model within the family of models that had the minimum AIC
was selected as the best model.

We also used K-fold CV (Efron and Tibshirani, 1998) to assess model
performance. CV has been shown to be asymptotically equivalent to AIC
(Stone, 1977); however, the small sample properties of the two ap-
proaches are less well understood. In CV, the data are split repeatedly into
two non-overlapping sets. The model is estimated with one set, and its
performance is assessed on the other. In our implementation, the data
were split 10 times (we also tried splits of 3, 5, and 20, but the results were
similar). For each split, 1 of every 10 trials was placed in the test data set,
and the other 9 trials were placed in the data set used for estimating the
model. The model was then estimated, and its performance was evalu-
ated using the test data set. This was repeated 10 times, such that all trials
were included in one of the test data sets. Results were compiled across
the 10 runs. The model with the highest percentage correct performance
was selected as the best model.

Finally, the finite impulse response high-pass filter, discussed near the
end of Results, had an order of 2000. The high filter order was necessary
to confine the stop band to a rather small set of frequencies. The cutoff
frequency was 0.5 Hz, and the filter had an almost linear roll-off from 1
Hz to DC, achieving an amplitude response of 0.15 at DC. Thus low
frequencies were strongly suppressed.

Results

Database

The analyses were performed on 19 ensembles of simultaneously
recorded neurons containing a total of 90 single neurons from the
SMA of two monkeys (12 ensembles from monkey 1, 7 ensembles
from monkey 2). The distribution of the number of neurons in
each ensemble is shown in Figure 1. A total of 193 pairs of neu-
rons were available for the analyses. All ensembles were recorded
for at least 152 trials in the task condition that we analyzed (av-
erage number of trials per ensemble = 267). The SRT task made
it possible to collect a large number of examples of each move-
ment, because the animal repeated each movement three times in
every trial. Therefore at least 456 movements were available for
each of the 3 movements, which resulted in at least 1368 total
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Figure 2.

movements (average number of movements = 2402). Figure 2
shows 249 trials, of each of the three movements, for an example
neuron. The rasters are aligned to target onset. The neural re-
sponse to movements one and two shows a reduction in activity
before movement onset, which may be a return to baseline or an
inhibition. For the noise analyses, we analyzed the neural activity
from 300 msec before target onset to 300 msec after target onset.
For the decoding analyses we restricted the time window to the
period from 0 to 200 msec after target onset. The time window
was divided into bins of 5, 10, 20, 25, 33, 40, 50, 66, 100, and 200
msec, which approximately divided the epoch into an integer
number of bins. Individual time bins at a specific time relative to
target onset from a single neuron for a single movement were
considered as separate random variables.

Noise analyses

We began by exploring the variance of the spike count in a bin, as
a function of the mean, for different bin sizes. In Figure 3, the
mean spike count is plotted against the variance of the spike
count for several different bin sizes for the entire population. The
minimum variance possible, given that spikes are discrete events,
is given by f{1 — f) (de Ruyter van Steveninck et al., 1997), where
fis the fraction of the firing rate over the largest integer smaller
than the firing rate. This lower bound is indicated by the “scal-
loped” lines along the bottom of the plots in Figure 3. A line with
a slope of 1 is also plotted. For the small and intermediate bin
sizes it can be seen that some of the data fell near the line given by
the minimum obtainable variance. For large bin sizes, the data
were scattered broadly around the line indicating a linear relation
between mean and variance.

In Figure 4A we plot the matrix of correlation coefficients
among 1 msec time bins for an example cell from our population,
for the period from 0 to 200 msec after stimulus onset. This cell
shows strong negative correlation near the main diagonal and
positive correlation over larger intervals, violating the indepen-
dence assumption of a Poisson process. This structure in the
correlation matrix can also be seen in the interspike interval his-
togram, which is plotted in Figure 4 B. We can see how correla-

Single-cell raster for 249 trials of each of the three movements. These example movements were the first three of each behavioral trial. Rasters are aligned to target onset (0 msec).

tions affect the measured variance for a large bin of neural activ-
ity, by separating the variance into terms attributable to the mean
of a time bin and correlations between events within a bin. To do
this we divide a large bin into 1 msec bins and calculate the means
of and correlations among the 1 msec bins. The total variance of
the large bin is given by:

n 2 n
o’ = Eo-t + E P00y, 9)
t=1

tt'#t

where p,, is the correlation coefficient between the 1 msec time
bins and o, ” is the variance of the 1 msec bin at time ¢. From this,
it can be seen that if a large bin of neural activity covers an interval
over which the correlation coefficients are negative, the variance
of the bin will decrease below the mean, attributable to the second
sum in Equation 9, and if the bin extends over an interval during
which the balance of the correlation is positive, the variance of the
bin will increase. The plot in Figure 4C shows the variance caused
by each component of Equation 9, as a function of bin width, for
the cell with its correlation matrix plotted in Figure 4 A. The line
labeled “Total” (Fig. 4C) corresponds to o* on the left-hand side
of Equation 9. The line labeled “Independent” is the variance
attributable to the first sum of Equation 9, which is the sum of the
variances of each separate 1 msec bin, and the line labeled “Cor-
related” is the variance attributable to the correlation between
bins, given by the second sum in Equation 9. For this example the
effect of the correlations between bins increased the variance for
bin widths >60 msec. Therefore, the scatter in the mean-variance
plots shown in Figure 3 can be accounted for by correlations
between 1 msec bins that make up a larger bin. This implies that
if there are correlations in the spike trains, the size of the bin
chosen to estimate the variance will affect the estimate of the
variance, a fact that has been shown previously (Oram et al.,
2001). This is important for measures of neuronal variability and
models that try to account for variability in neuronal responses
(Salinas and Sejnowski, 2000), because these measures may de-
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Figure 3.  Mean-variance relation for spike counts across the population for several bin

widths. The left column shows the relation in log—log coordinates; the right column shows the
relation in linear coordinates. Bin widths of 5, 40, and 200 msec are shown, as indicated by the
number in each panel of the left column. The mean for each bin is plotted on the abscissa, and
the variance is plotted on the ordinate. The scalloped line that defines the bottom of each
distribution is the minimum obtainable variance, given that spikes are discrete events. The line
with aslope of 1defines the mean-variance function expected of a Poisson process, in which the
mean equals the variance. For small bin sizes, most data fell below the unity line, and many data
points actually had the minimum variance obtainable. For larger bin sizes, the mean-variance
relation was distributed about unity. The data plotted included all bins, before and after target
onset. When the analysis was restricted to the period after target onset, the results were similar.
The slope of the best fit line (data not shown) was assessed using the following equation:
log(var) = a + b*log(mean). The coefficients a and b were as follows:a = —0.21,b =
0.96;0 = —0.58,b = 0.83;a = —0.05, b = 0.87 for the 5, 40, and 200 msec bin sizes,
respectively.

pend strongly on correlations in the neuronal response within the
large time bin being considered.

We also explored the covariance structure of the noise be-
tween pairs of neurons in our data set. The question of correlated
responses has been approached from two perspectives. If the total
response of the neurons is considered, the total correlation in
their responses can be calculated (Kruger and Aiple, 1988). If the
mean response of the neurons to a behavioral event is estimated,
however, the correlation can be split into a signal and a noise
component, with the correlation in the mean response taken as
the correlation in the signal, and the correlation in the trial to trial
residual taken as the correlation in the noise (Gawne and Rich-
mond, 1993; Zohary et al., 1994; Lee et al., 1998). Subtracting the
mean response removes the effect of first-order nonstationarity
on the correlation between neurons. Residual correlation, there-
fore, cannot be accounted for by the interval histogram or corre-
lations in the mean responses of the two neurons. In our case, the
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correlation in the mean was calculated as the correlation in the
PSTHs across neurons, and the correlation in the noise was cal-
culated as the correlation in the residual after the PSTH was
subtracted, with both measures being pooled across bins (see
Materials and Methods). The correlation in the residual was cal-
culated separately for each movement. In Figure 5 we show the
distribution of the correlation in the noise (residual) as a function
of bin size, and in Figure 6 we show the distribution of the corre-
lation in the signal (PSTH) as a function of bin size for the pop-
ulation. The width of the distribution of correlations at each bin
size was measured and plotted as the variance of the distribution
(Figs. 5D, 6 D). This measures the amount of correlation in the
population, because wider distributions imply larger absolute
values of correlation. It can be seen that the correlation in the
noise changed considerably as a function of bin size. The corre-
lation in the signal changed as well, although less. This suggests
that the noise correlation among the neurons was not broadband
but was stronger at low frequencies (see below).

In Figure 7, we plot the function that relates the correlation in
the noise to the correlation in the signal. There was a positive
correlation between these two measures, such that neurons with a
more strongly correlated mean response also tended to have a
more strongly correlated noise response. Thus there was some
tendency for correlations to be stronger locally (in tuning func-
tion space, not in the space of the cortical surface), which in
general is deleterious to information coding (see Discussion);
however, it was not a strong relationship. The strength of this
correlation also tended to increase as a function of bin width as
shown in Figure 7D.

In Figure 8, we plot the population average periodograms for
the signal, the noise, and the coherence between the residuals for
pairs of neurons. It can be seen that the signal power and coher-
ence were strongest at low frequencies. The noise power dis-
played a dip at low frequencies, which has been described previ-
ously (Bair et al., 1994). This dip may be the result of the neural
refractory period or a network level inhibitory mechanism (Mar
et al., 1999). The fact that the coherence was strongest at low
frequencies accounts for the change in correlation between neu-
rons as a function of bin width. Larger bins filter more of the
high-frequency variability in the neural response, leaving only
the low-frequency variability, which is more strongly correlated.

Spike count distributions

In the decoding analyses we assumed a multivariate Gaussian
distribution as an approximation to the distribution of spike
counts (Oram et al., 1998). Other studies have assumed a Poisson
distribution (Zhang et al., 1998). We characterized the empirical
distributions by assessing the fit of Gaussian and Poisson distri-
butions to all samples in our data set. An example is shown in
Figure 9. Figure 9A shows the distributions fit to the data for a 20
msec bin, and Figure 9B shows the distributions fit to the data for
a 100 msec bin. In the example shown in Figure 94, the Poisson
distribution could not be rejected [Kolmogorov—Smirnor (KS)
test; p > 0.05], whereas for the example shown in Figure 9B, the
Gaussian distribution could not be rejected (KS test; p > 0.05).
Figure 10 shows the proportion of individual bins (each cell con-
tributed multiple bins to this plot) as a function of bin size, which
was fit by each parametric distribution. For small bin sizes the
Poisson distribution fit most bins; however, for larger bin sizes,
the ability of the Poisson distribution to fit the data decreased to
the level of the Gaussian distribution. The Gaussian distribution
fit the data better for intermediate bin sizes. For the largest bin
sizes the distributions did about equally well.
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by Equation 9 when p, is zero between all bins. The line labeled “Correlated” shows the variance component attributable to the correlation, which s given by the second sumin Equation 9. The total

variance is given by the line labeled “Total.”

A B
%_ 1 %_ 1
£ o8 5ms £ 08 40 ms
7] w
5 0.6 s 0.6
S 04 S 04
= €
8 02 g 0.2
< e
a O o
-04 0 04 04 0 04
Correlation Correlation
D
o 4C _ 002 .
£ 200 ms o T
o 0.8 9 N
5 0.6 £ 4
o U. &5 M ¥
5§04 2001 v
5 52 |/
s 0.2 oo Ie
j - E
a O 0
04 O 0.4 0 50 100150200
Correlation Bin width (ms)
Figure5.  Correlation in residual (noise correlation) as a function of bin size. A—C show the distri-

bution of correlation coefficients for the population of pairs of neurons analyzed for three different bin
widths: 5,40, and 200 msec. D, Mean and the variance of the distribution of correlation coefficients as
afunction of bin size. Dashed line is mean (M); solid line is variance (V).

Decoding models

The noise analyses suggested that most of the mean responses, as
well as the correlation between neurons, were concentrated atlow
frequencies. Conversely, the noise was stronger at high frequen-
cies. The next question that we addressed was whether any of this
variability carried information about the target for movement.
We approached this problem directly, by comparing models that
decoded information using different parameters of the neural
signal. For these analyses, we used data in the 200 msec window
beginning at target onset to predict the subsequent target toward
which the monkey would move. The sequence of movements was
deterministic; therefore, increasing the data window backward or
forward in time would have allowed us to achieve better decoding
performance, because the previous and subsequent targets were
perfectly correlated with the current target. We were not directly
interested in the absolute performance of the models, however,
but rather in the relative performance of different models. We
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Figure6.  Correlation in PSTH (signal correlation). Conventions are as in Figure 5. There was
little systematic effect of bin size on the mean of the distribution of correlations in the mean
response (data not shown). The variance of the distribution of correlations in the mean is
plotted in D. As with the correlation in the noise, increasing the bin size increases the variance of
the signal correlation.

chose the 200 msec window for several reasons. First, pilot anal-
yses showed that many of the pairs of neurons reached their peak
predictive capacity at the end of this window. Second, the reac-
tion time in the task was on average ~240 msec (Lee and Quessy,
2003), so the neural activity during this window is preparatory.
Third, the 200 msec window allowed us to construct a series of
models of increasing complexity yet limited the number of model
parameters (NMPs).

We characterized the models using two heuristic dimensions.
The first dimension was the size of the bin used in the analysis.
The bin widths considered were the same as those used in the
noise analyses, except we did not consider the 5 or 10 msec bin
size, because the models became too complex (i.e., too many free
parameters for our data set size), and pilot analyses had shown
that there was little information to be gained by using bin widths
this small. By increasing the bin width we reduced the temporal
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Figure7.  Correlation between signal correlation and noise correlation for pairs of neurons.

Conventions are as in Figure 5. The signal and noise correlation were positively correlated.
Furthermore, the correlation increased as a function of bin size. Note the difference in the scale
for the vertical axes in A-, reflecting the narrower distribution of correlated noise for smaller
bin sizes.

precision of the neural signal. If information was not lost by
eliminating the temporal information, one would conclude that
the temporal structure of the spike arrival times was not
important.

The second dimension was the structure of the covariance
within and between neurons. We constructed several model
structures, all on the basis of the multivariate Gaussian distribu-
tion. We used the multivariate Gaussian for two reasons: (1) the
univariate Gaussian distribution provided a reasonable fit to the
data over a range of relevant bin sizes, and (2) it was straightfor-
ward to test the hypotheses that we were interested in by manip-
ulating the covariance matrix. The VEM model had a diagonal
covariance matrix (i.e., all off-diagonal elements were set to
zero), with the variance equal to the mean as in an independent
Poisson model. The independent model had a diagonal covari-
ance matrix with the variance estimated from the data instead of
being set equal to the mean. The between model included only
off-diagonal elements of the covariance matrix that corre-
sponded to interactions between neurons at the same time point.
The within model included only off-diagonal elements that cor-
responded to interactions between adjacent time bins within
neurons, and the full model used a full covariance matrix.

In Figure 11 A, we plot the average decoding performance of
the models, as a function of bin width, for all pairs of neurons. It
can be seen that the performance of the
models decreased relatively linearly as a A
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performance of the models is a useful benchmark, we would like
to know the generalization performance of the models, that is,
how they would perform on an unseen data set. We approached
this problem using two model selection procedures: K-fold CV
and AIC. We performed CV by splitting the data set 10 times, in
each case using 1 of every 10 trials for the test set and the other
trials for estimating the model.

In Figure 12 we plot the population average percentage correct
performance of the models, assessed by CV. This population av-
erage was compiled by computing the percentage correct for each
pair of neurons, then averaging across all pairs, for each model. It
can be seen that cross validation corrects for model complexity,
because the most complex model no longer has the best perfor-
mance (compare with Fig. 11 A). At the population level, using
the percentage correct as a measure of model performance, the
CV analysis suggests that either the independent or between
model, at a bin width of 33—40 msec, has the best performance. In
Figure 13, we plot the population average of AIC, as a function of
bin width for each covariance structure. The AIC measure is a
composite of the likelihood of the data under the model and the
model complexity (see Eq. 8). The model that has the minimum
AIC s selected as the best model within this framework. From the
population data, the independent model would be selected as the
best at a bin width of 50 msec. The between model, which con-
sidered interactions between neurons, did almost as well. On the
other hand, the full model did rather poorly, which is in contrast
to its raw percentage correct performance (Fig. 11A). In Figure
14, the population average AIC is plotted as a function of the
NMPs. It can be seen that the AIC first decreased quickly as a
function of NMPs and then increased more slowly with model
complexity. If the AIC decreased and then increased again before
finally decreasing, we would have been within a regimen of the
criteria within which we were ineffectively penalizing overly
complex models. Furthermore, the AIC decreased quickly and
then increased with a more gradual slope. In general terms, this
indicates that the model family is reasonably well matched to the
data.

The AIC and CV methods make slightly different predictions
about the optimal model at the population level. We compared
the performance of these two criteria by testing them on a surro-
gate data set. The surrogate data set was generated by indepen-
dently shuffling individual bins across trials. This preserved the
mean and variance of each bin of the original data set but de-
stroyed all real correlations. We selected the best model, for each
pair of neurons, using the surrogate data set. A conservative
model selection criterion should not select between, within, or full
models because the correlations have been destroyed in the surro-
gate data set. In Tables 1 and 2, we show the performance of AIC and
CV. It can be seen that AIC selected no spurious models, whereas CV

function of the bin width (decreasing 01 0.03 B ¢

number of bins). Of the various models ‘ Signal] _ Noise 0.02 Coherence
considered, the model with a full covari- £ (.06 £0.02

ance matrix gave the best prediction, al- & € 0.01 0.01

though it was only marginally better than 0.02

the other models. There was a wide distri- 0
bution of performance across pairs of
neurons, as can be seen from Figure 115,
which shows the distribution of percent-
age correct performance across the popu-
lation at a bin width of 40 msec for the
independent model. Although the raw

Figure 8.
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Frequency domain representation of the neural signal in single and pairs of neurons. A, Population averaged period-
ogram of the PSTH. B, Population averaged periodogram of residual neural activity after the subtraction of the PSTH. , Population
averaged coherence plot between the residuals of neuron pairs. There is a bump at ~12 Hz, which corresponds to 3 frequency
oscillation, and a smaller bump centered around 30 Hz, which corresponds to -y frequency oscillation (Lee, 2003).
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selected spurious models 98 of 193 (51%) times. We obtained simi-
lar results when the likelihood, instead of the percentage correct, was
used as a selection statistic for the CV analysis. These results are
consistent with the fact that CV can select overly complex models
(Larsen and Goutte, 1999). Furthermore, the performance of CV is
always limited by the fact that the sample sizes used to estimate and
test the models are smaller than those available to other model selec-
tion procedures (Kearns et al., 1995). Because AIC seems to be a
more conservative criterion, the remaining results will be on the
basis of model selection using AIC.

We performed the AIC model selection analysis on all pairs of
neurons, selecting the best model for each pair. Table 3 shows the
number of times each model was selected as best for all neuron
pairs. There are several relevant points. (1) The simplest model
(bin width = 200 msec; VEM) was selected in only 22 cases
(11%). (2) Many pairs of neurons (62%) had their best perfor-

Bin width = 40 ms
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Figure 10.  Proportion of times that a Gaussian or Poisson distribution successfully fit the
empirical distribution of spike counts as a function of bin size. Each neuron contributed several
bins. For example, for a single neuron at a bin width of 10 msec there were 60 bins (600 msec, 10
msec bins) for each of three movements. Thus the parametric distributions considered were fit
to 180 separate empirical distributions for each neuron, at the 10 msec bin width. Bins with a
mean spike rate of 0 were not considered.

mance at bin sizes between 40 and 66 msec. (3) Many pairs of
neurons (19%) also preferred covariance structures more com-
plex than the independent model, including interactions between
neurons (between, 8%) or between time bins for a single neuron
(within, 11%). (4) Overall, 92% of the neuron pairs could be
treated as independent without a loss of information.

We also considered which model was best, within one dimen-
sion of the analysis, while holding the other dimension constant.
For example, at a bin width of 200 msec, what was the best co-
variance structure for each neuron? Table 4, which shows the best
bin size for each covariance structure, shows that for many neu-
ron pairs temporal precision down to 40 msec improved the de-
coding performance, for all models except for the full model.
Furthermore, the within model showed a slightly greater prefer-
ence for the 20 msec bin size (eight pairs) than the other models,
consistent with the fact that the noise power was stronger at
higher frequencies. Table 5 shows that when the best covariance
structure for a given bin size was considered, the between and
within models were often significant (93 and 108 neuron pairs,
respectively), but the full model was almost never significant. The
profile of the within model, in Table 5, followed the profile of the
noise power relatively well: there was a tendency for the within
model to be selected for large bins, which dropped off for the
intermediate-sized bins (40— 66 msec) but
then became strong again for smaller bins.

A B Model = Independent Analyses of the between model in Table 5

64 —VEM 30 - - - also followed the profile of the coherence
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= 60 b Opverall the simplest models (VEM and in-
8 € 10} dependent) were preferred most often.

L 58 = All of the models that we have consid-

ered thus far have assumed that the neu-

56 L - x 2 0 ronal variability and interneuronal corre-

50_ 1 00 st 200 40 60 80 100 Jationare const};nt across different targets.

Bin width (ms) Percent Correct Itis possible, however, that either the vari-

Figure 11.  Percentage correct for all analyzed pairs of neurons. A, Mean percentage correct as a function of bin width and ability or the correlation may have

covariance model considered. VEM (solid black line) indicates the model with the variance set equal to mean, independent (dashed
black line) is the model with the variance estimated from the data, between (dotted black line) considers interaction between
neurons, within (solid gray line) considers interactions between time bins for a single neuron, and full (dashed gray line) is the full
covariance matrix. B, An example distribution of percentage correct across the population at a bin width of 40 msec for the

independent model.

changed across different targets, and tak-
ing this change into account could im-
prove our results. We assessed this possi-
bility by performing an analysis in which
we compared, for each pair of neurons,
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models are indicated using the same conventions as in Figure 11A.

the performance of the model selected as best above (i.e., with a
pooled covariance matrix) with the performance of a model that
used the same interactions, but estimated them separately for
each movement. We found that these more complex models were
selected as best only four times. Thus, for our data set, the model
with a pooled covariance matrix performed better than the mod-
els that used separate covariance matrices for each target, a result
that has been shown previously (Averbeck et al., 2003).

Neural activity shows variation across multiple time scales
(Bair et al., 2001). We have also shown this with our coherence
analysis (Fig. 8) because the coherence values at different fre-
quencies imply correlation at different time scales; low-frequency
coherence is long time scale correlation. We repeated the decod-
ing analysis on neural signals that had their low-frequency com-
ponents removed, because these are the components that are
assumed to be unimportant for the purposes of neural informa-
tion transmission and are probably more related to slow changes
in neuronal responsiveness (Bair et al., 2001; Lee and Quessy,

2003). We performed the analysis by high-pass filtering the spike
trains (see Materials and Methods) before the binning process.
Interestingly, the decoding performance averaged over all models
(compared with Fig. 11A) improved by ~3% for bin sizes <200
msec (e.g., from ~0.60 to ~0.63 at a bin size of 100 msec). The
VEM model did poorly; because most of the mean response was
removed by the filter, the variance would be set to a very small
value. Thus the lowest frequencies were carrying more noise than
signal.

In the final analysis, we considered whether the presence of
correlation between neurons would be related to the best model
selected for pairs of neurons. If the AIC criterion is selecting
models properly, it should select the between model for neurons
that are correlated more strongly. The absolute value of the cor-
relation, calculated as the integral of the coherence curve, is 0.085
(SEM = 0.016; n = 67), 0.085 (SEM = 0.009; n = 88), 0.257
(SEM = 0.048; n = 16),and 0.108 (SEM = 0.032; n = 22) for the
VEM, independent, between, and within models, respectively.
The difference in the correlation between neurons as a function
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Table 3. Best model selected from entire parameter space using AIC test
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Cov/Bin 200 100 66 50 40 33 25 20 Total
VEM 22 9 24 3 6 3 0 0 67/0.35
Independent 9 9 21 29 18 0 2 0 88/0.46
Between 1 3 4 7 1 0 0 0 16/0.08
Within 0 14 6 1 1 0 0 0 22/0m
Full 0 0 0 0 0 0 0 0 0/0
Total 32/0.17 35/0.18 55/0.28 40/0.21 26/0.13 3/0.02 2/0.01 0/0.00 193
Cov/Bin, Covariance/bin.

Table 4. Best bin size for each covariance structure using AlC test

Cov/Bin 200 100 66 50 40 33 25 20 Total
VEM 44 26 65 29 26 3 0 0 193
Independent 19 39 51 4 30 7 3 2 193
Between 22 38 54 [y} 26 6 5 0 193
Within 38 35 43 30 27 6 6 8 193
Full 49 64 76 4 0 0 0 0 193
Total 172 202 289 147 109 22 14 10

Cov/Bin, Covariance/bin.

Table 5. Best covariance structure for each bin size using AIC test

Cov/Bin 200 100 66 50 40 33 25 20 Total
VEM 103 67 74 77 81 85 105 121 713
Independent 75 83 87 90 89 84 69 51 628
Between 15 13 20 17 10 10 4 4 93
Within 0 28 12 9 13 14 15 17 108
Full 0 2 0 0 0 0 0 0 2
Total 193 193 193 193 193 193 193 193

Cov/Bin, Covariance/bin.

of the covariance model selected was highly significant (ANOVA;
F =10.276; n = 192; p < 0.0005). Post hoc tests confirmed that
pairs of neurons that had a best model structure of between had
significantly more correlation than neurons that had a best model
structure of VEM (Tukey’s HSD; p < 0.0005) or independent
(Tukey’s HSD; p < 0.0005). Thus, the model selected as best used
the covariance structure between the neurons.

Discussion

Noise analyses

The function relating the mean spike count to its trial-to-trial
variance has been investigated in the visual (Schiller et al., 1976;
Tolhurst et al., 1983; Gur et al., 1997; Wiener et al., 2001), so-
matosensory (Werner and Mountcastle, 1963), auditory (Teich
and Khanna, 1985), and motor (Lee et al., 1998) systems. Most of
these studies used static stimuli and relatively large bin sizes.
These studies found a roughly linear mean-variance relation in
log-log coordinates with a slope near 1, which would be expected
of a Poisson process. In our data, the variance was often less than
the mean for small bin sizes, likely because of negative correla-
tions over small time scales. Several authors have recently re-
ported very small variances in the visual system of various species
(Bair and Koch, 1996; Berry et al., 1997; de Ruyter van Steveninck
et al,, 1997). Our results do not show the extreme consistency
demonstrated in these studies, perhaps because of the fact that
the movements in our task are less consistent than the stimuli
used in studies of the visual system.

Our analyses of correlation in the mean and variability of
neuronal responses in pairs of neurons have shown that their
estimates are affected by the time scale over which they are mea-
sured, a finding that has also been reported in V1 (Reich et al.,
2001a). Because most of the coherence between neurons is at low

frequencies, correlations are higher between neural responses for
larger bin widths. Thus, it is important when considering neural
coding in ensembles of neurons to explicitly consider the time
scale at which the information is being represented, because the
noise characteristics of the ensemble will be dependent on the
time scale.

There is an important difference between the question of
whether a model (or a downstream neuron) that takes into ac-
count covariance can outperform a model that does not (Niren-
berg et al., 2001; Wu et al., 2001), a question that we addressed
with the decoding analyses and the question of which covariance
structures can carry the most information, (Johnson, 1980; Zo-
hary et al., 1994; Abbott and Dayan, 1999; Wilke and Eurich,
2002; Pola et al., 2003). Uniform noise correlation improves the
ability of a population of neurons to carry information, if there is
an inverse relation between the correlated signal and the corre-
lated noise. Conversely, if the correlation in the signal and noise
are both either positive or negative, the correlation will be dele-
terious. Local noise correlation, in tuning function space, is del-
eterious in general. We found that noise correlation tended to be
stronger locally, which suggests that the correlations in our data
affect information encoding deleteriously. This analysis has lim-
itations, however, because variations in the kinematics of the
movement from trial to trial may cause neurons that have similar
tuning functions to have more strongly correlated noise. A simi-
lar problem in the visual system is caused by small eye move-
ments; however, it has been shown previously that there was no
difference in noise correlation between a center hold epoch and a
movement epoch (Lee et al., 1998). Also, the data that we ana-
lyzed came mostly from a time period when the monkey’s hand
was stationary, which should have minimized the effect of corre-



7640 - ). Neurosci., August 20, 2003 - 23(20):7630 7641

lation attributable to kinematic variability. Similarly, correlated
noise in the prefrontal cortex has been shown to be relatively
independent of small eye movements (Constantinidis and
Goldman-Rakic, 2002).

Decoding analyses

We explored a hierarchy of decoding models with respect to two
questions. First, did the times at which spikes occurred within a
200 msec window matter? Second, which interactions between
bins within a neuron or across neurons should be accounted for
to optimize decoding? At the population level, we found that
spike arrival times at a resolution of ~50 msec were optimal. The
findings for individual pairs of neurons were similar, except that
the best model for the largest number of pairs was 66 msec. There
was little evidence for signal in bin sizes below 40 msec. The
preferred bin size of 50 msec corresponds to an upper cutoff
frequency of 10 Hz. Including frequencies above 10 Hz did not
add significant information about the subsequent movement.
This is consistent with the results of the noise analysis, given that
the signal-to-noise ratio was highest at low frequencies, and the
coherence was also strongest below 10 Hz (Fig. 8). Thus, the
model that used a bin size of 50 msec might represent a useful
tradeoff between signal and noise, because at >10 Hz there was
little signal power but the noise power remained larger.

We found evidence that some form of correlation was impor-
tant for 19% of the pairs of neurons; however, correlations be-
tween neurons in our study improved decoding performance in
only 8% of the individual pairs of neurons. Previous results have
been split on the question of whether there is information in
correlations between neurons. Some studies have found that in-
teractions can improve decoding performance (Dan et al., 1998;
Maynard et al., 1999), whereas others have found that neurons
could be treated independently without losing much information
(Nirenbergetal., 2001; Petersen et al., 2001; Averbeck et al., 2003;
Rolls et al., 2003). Our results support the claim that ignoring
correlation between neurons, in some systems, does not dramat-
ically affect the information extracted from the neural code.

The question of whether spike arrival times can carry infor-
mation has been approached with several analytical techniques.
One approach is to assume that the cross-correlation between a
pair of neurons carries information (Vaadia et al., 1995; Riehle et
al., 1997). It is important, however, to control for the effect of
spike rate when looking for information in cross-correlations
(Oram et al., 2001), which our analytical approach has done.
Many other studies in the visual system (Buracas et al., 1998;
Reinagel and Reid, 2000; Reich et al., 2001b) and the somatosen-
sory system (Panzeri et al., 2001; Petersen etal., 2001) have shown
that the arrival times of spikes within single neurons can carry
information. Studies using static visual stimuli have shown that
the arrival times of spikes add additional information, down to a
temporal resolution on the order of 30—-50 msec (Heller et al.,
1995; Victor and Purpura, 1998), whereas other studies, using
dynamic visual stimuli, have shown that spike arrival times in the
submillisecond range can carry information (Dan et al., 1998;
Strong et al., 1998; Reinagel and Reid, 2000).

An additional question is whether we have modeled the be-
havior appropriately, because we have treated the movement as a
categorical variable. It seems likely that the underlying behavioral
process is dynamic, in which case the temporal properties of the
code that we have identified could be linear representations of a
dynamically evolving behavior (Golomb et al., 1994). This con-
sideration effectively places a limit on studies of the neural coding
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of cognitive factors or decisions, because one cannot directly
measure the dynamics of cognitive processes.

An important question is whether the cortex is decoding neu-
ral responses optimally. Theoretical work has shown that biolog-
ically plausible networks can optimally decode neural responses,
when the noise is uncorrelated across neurons (Deneve et al.,
1999). As stated in Introduction, the information present in the
neural response is an upper bound on the information actually
used by the cortical networks mediating behavior. The decoding
approach cannot address the question of whether downstream
neurons are capable of extracting the same patterns as the decod-
ing algorithm, but the analysis does set a lower limit on the so-
phistication of a downstream neuron if it is to extract all the
information in the neural response.
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