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Resonant Synchronization in Heterogeneous Networks of
Inhibitory Neurons
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Brain rhythms arise through the synchronization of neurons and their entrainment in a regular firing pattern. In this process, networks
of reciprocally connected inhibitory neurons are often involved, but what mechanism determines the oscillation frequency is not com-
pletely understood. Analytical studies predict that the emerging frequency band is primarily constrained by the decay rate of the unitary
IPSC. We observed a new phenomenon of resonant synchronization in computer-simulated networks of inhibitory neurons in which the
synaptic current has a delayed onset, reflecting finite spike propagation and synaptic transmission times. At the resonant level of network
excitation, all neurons fire synchronously and rhythmically with a period approximately four times the mean delay of the onset of the
inhibitory synaptic current. The amplitude and decay time constant of the synaptic current have relatively minor effects on the emerging
frequency band. By varying the axonal delay of the inhibitory connections, networks with a realistic synaptic kinetics can be tuned to
frequencies from 40 to >200 Hz. This resonance phenomenon arises in heterogeneous networks with, on average, as few as five connec-
tions per neuron. We conclude that the delay of the synaptic current is the primary parameter controlling the oscillation frequency of
inhibitory networks and propose that delay-induced synchronization is a mechanism for fast brain rhythms that depend on intact

inhibitory synaptic transmission.
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Introduction

Networks of inhibitory neurons with reciprocal synaptic connec-
tions are found from invertebrate retina (Hartline and Ratliff,
1972) up to mammalian hippocampus (Cobb et al., 1997), stria-
tum, thalamus, cerebellum, and neocortex (Kisvarday et al., 1993;
Tamas et al., 1998; Galarreta and Hestrin, 1999; Gibson et al.,
1999; McBain and Fisahn, 2001). In many of these brain regions,
fast-oscillating local field potentials (from 40 to >200 Hz) were
recorded with subclasses of inhibitory neurons firing phase-
locked to, and often thought to generate, the rhythm (Bragin et
al., 1995; Whittington et al., 1995; Kandel and Buzséki, 1997;
Csicsvari et al., 1999, 2003; Grenier et al., 2001). The rhythms are
typically confined within a frequency band characteristic of the
brain area, the experimental procedure, or the associated behav-
ior (for review, see Gray, 1994; Buzsiki and Chrobak, 1995;
Bagar, 1998; Farmer, 1998; Traub et al., 1999).

If networks of inhibitory neurons are responsible for main-
taining the rhythms, then the constancy in frequency in each
particular case requires either that the individual neurons have an
intrinsic resonance around the oscillation frequency or that pop-
ulations of inhibitory neurons preferentially synchronize within
the recorded frequency band.
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Theoretical studies demonstrated that a homogeneous pair of
reciprocally connected inhibitory neurons lacking intrinsic reso-
nance can synchronize their spikes with zero phase lag, provided
a finite delay separates the generation of an action potential by
one of the neurons and the peak of the synaptic response, or
IPSC, in the paired neuron (van Vreeswijk etal., 1994; Ernst et al.,
1995). Most studies of inhibitory networks, analyzing the param-
eter dependency of synchrony, implemented the required delay
as a slow rise time of the IPSC, thereby avoiding the analytical
difficulties imposed by the discrete delays of axonal conduction
and synaptic transmission. The frequency selectivity of the
rhythms, however, is not completely understood and was attrib-
uted to the decay time constant of the synaptic response (Wang
and Rinzel, 1993; Traub et al., 1996; Wang and Buzsaki, 1996).

Here we demonstrate that the discrete delay in the onset of the
IPSC, which is attributable to the finite duration of axonal con-
duction and synaptic transmission, induces a resonance phe-
nomenon in inhibitory networks, and the oscillation period at
resonance is close to four times the combined axonal and synap-
tic delay. A delayed IPSC onset also enables synchrony to develop
in networks with a fast-rising IPSC waveform, in accordance with
recent experimental findings (Bartos et al., 2001, 2002; Carter and
Regehr, 2002).

The present study elaborates on an inhibitory network model
developed for reproducing 160 Hz oscillations recorded in the
cerebellar cortex of transgenic mice deficient for calretinin and
calbindin (Cheron et al., 2001; Maex et al., 2002). The observed
frequency constancy made us search for a mechanism capable of
inducing resonance in spatially organized, heterogeneous inhib-
itory networks.
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Materials and Methods

Model neurons. Fast-spiking model neurons had a spherical soma and an
unbranched dendrite of five cylindrical compartments. All compart-
ments had the same surface area and a passive membrane time constant
of 30 msec. The spike-generating inactivating Na * channel and the de-
layed rectifier were restricted to the soma. All compartments had a high-
voltage-activated Ca®" channel, A-type and combined voltage- and
Ca?*-activated K™ channels, and a weak anomalous inward rectifier.
Rate constants were converted to 37°C, using Q,, = 3 for voltage-gated
and Q,, = 2 for ligand-gated channels (Maex and De Schutter, 1998a).
The reversal potential of the leak current was drawn from a uniform
distribution between —70 and —60 mV. The neurons did not exhibit
subthreshold oscillations or intrinsic membrane resonance, nor did they
fire postinhibitory rebound spikes. Suprathreshold current injection
evoked narrow spikes (0.3 msec width at —40 mV) without firing rate
adaptation (Maex and De Schutter, 1998a, their Fig. 2 A). We selected this
neuron model, which combines the active properties of a model cerebel-
lar granule cell and the passive properties of a Golgi cell, because its firing
rate increased linearly with the intensity of applied current over almost
the entire dynamic range (from 15 Hz at the brisk 65 pA threshold to
1000 Hz, the maximum firing rate imposed by a 1 msec absolute refrac-
tory period; mean slope, 0.65 Hz/pA for an input resistance of 162 M(}).

Model GABA, receptor synapses. A GABA, receptor channel with a
reversal potential of —70 mV was inserted on the somatic compartment.
Each afferent action potential triggered a unitary conductance increase
with a fixed, dual-exponential time course:

g(t) = (wGA/n)(exp(—(t — d)/7) — exp(—(t — d)/1,)) for t
> d (and zero otherwise). (1)

The parameters w, 7, and d are the relative peak conductance, decay time
constant and delay of the synaptic response, respectively (see Fig. 2A),
and t denotes time elapsed after the rising phase of the afferent action
potential crossed the —20 mV level. The parameter d encompasses both
axonal conduction and synaptic transmission delays. The normalization
constants A and n (the number of afferent synapses) ensured that the
summed unitary conductances had a peak amplitude equal to wG when 7
or n was varied. The dimensionless parameter w is used only for refer-
ence. For w = 1, the summed peak conductance wG was 3 mS/cm?. The
rise time constant 7, determines the shape of the conductance response
and was taken as 7/27.4 to reproduce the IPSC waveform of hippocampal
pyramidal neurons (Ropert et al., 1990). For 7 = 3 msec, 7, = 0.11 msec,
which is comparable after temperature correction to the mean rise time
constant of 0.16 msec, recorded in basket cells of dentate gyrus at 34°C
(Bartos et al., 2002). In selected simulations (see Fig. 7B), neurons recip-
rocally connected through GABA , receptor synapses also made electrical
synapses on the same compartments (Tamads et al., 2000). These gap
junctions were pure resistors with a conductance expressed as a fraction
of the peak conductance of the associated chemical synapse.

Conversion to physiological data. Because conductances are expressed
as densities over the compartments to which the channels are attached,
the output of this neuron model is primarily invariant over spatial scal-
ing. For a neuron with total membrane area S, the unitary peak conduc-
tance g, iary can be derived as:

wGS
gunitary = H . (2)

The factor 6 in the denominator converts density over the somatic com-
partment to density over the entire model neuron. Hence, taking wG = 3
mS/cm?, the afferent synapses of a neuron with total area S = 12,000
pwm? (Bartos et al., 2001) and # = 60 (Wang and Buzsaki, 1996) have a
unitary peak conductance of 1 nS.

Afferent fibers. The dendritic compartments received AMPA receptor
synapses (rise and decay time constants, 0.03 and 0.5 msec, respectively;
summed peak conductance, G = 16.1 mS/cm 2, Maex and De Schutter,
1998a) from a population of afferent fibers. These fibers were Poisson
processes, all firing at the same constant rate throughout a simulation.
The time histogram of spike counts of the fiber population had a flat
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power spectrum. Because synapses and fibers are computationally ex-
pensive, a diluted population of fibers was simulated. Each fiber repre-
sented the compound spike trains from several tens of excitatory fibers
and fired at a rate varied between simulations from 50 to 12,800
spikes/sec.

Model network configurations. We first examined how the parameters
of the inhibitory synapse affect the oscillation frequency and power in a
network characterized by single values for d, 7, and w. We then proceeded
to validate the derived relationships on networks with distributed delays
and weights and with stochastic connections.

In the one-dimensional network with only nearest neighbor coupling,
100 model neurons were positioned on a one-dimensional array. The
neurons made autapses, with zero delay, and synapses on the closest
neighbor on each side with delay d. This overtly simplified network has
the advantage of being completely characterized by the single delay value
d, the single decay time constant 7, and the single synaptic weight value w.
We varied systematically the values of d, 7, and w (see Figs. 1, 2, 34, 7).

In the one-dimensional network with distributed delays, each neuron
was connected to all neighbors within an axon or connection radius r
(measured in units of interneuron distance) with the delays d set propor-
tional to the interneuron distances. Assuming a spacing of 300 wm be-
tween the neurons and an axonal conduction speed of 0.3 m/sec, the
delay to the nearest neighbor measured 1 msec, and delays to more
distant neurons were an integer multiple of this. The mean delay of the
network connections measured (r + 1)/2. We varied systematically the
values of r and 7 (Figs. 3B, 4).

The two-dimensional network, representing circuits with a predomi-
nantly radial connection pattern, was an array of 30 X 30 neurons. Their
somata were positioned on a triagonal grid so that each neuron had six
equidistant neighbors. Connecting a neuron to all neighbors alike within
aradius r makes the delay distribution very skewed and biased toward the
largest delay values. Either the connection probability or the synaptic
weight, therefore, needed to fall off with distance from the source neu-
ron. In the network documented in Figure 5, synaptic weight decreased
exponentially with a space constant twice the interneuron distance. Us-
ing r = 8 and a constant connection probability of 0.6, each neuron
connected on average to 115 neighbors. The mean delay of the network
was the mean d over all connections, each d weighted by the correspond-
ing synaptic weight w and with the exclusion of autapses, which did not
contribute to synchrony. We used 7 = 3 msec.

For the effects of network size and connectivity (Fig. 6), nontopo-
graphic networks were simulated in which all neurons were stochastically
connected with a variable probability. All synaptic connections had the
same fixed delay, d = 1 msec and 7 = 3 msec.

A population of afferent fibers was evenly distributed over the entire
network space. The fibers had a conduction speed of 0.3 m/sec and radi-
ated 2.5 mm in a plane perpendicular to the dendritic shafts, making en
passant excitatory synapses on the dendritic compartments with a prob-
ability of 0.5. There were 8100 fibers in the two-dimensional network and
4000 fibers in the one-dimensional and nontopographic networks (ex-
cept when stated otherwise), providing each neuron on average with 424
and 320 synapses, respectively.

Boundary conditions. As in our previous studies, normalizing the uni-
tary synaptic conductance over the number of afferent synapses pre-
vented the possibility that the boundary neurons would fire at rates dif-
ferent from the network average. This normalization is justified because
it is shown that our main findings are robust to great variability among
the neurons in the number of synapses (Fig. 6 A). In addition to having
fewer synapses, with consequently stronger weights, neurons positioned
close to the boundaries had a selective deficit of long connections. The
resulting decrease in the mean synaptic delay, which is largest for a neu-
ron positioned at a distance half the connection radius from the bound-
ary, was relatively small. For example, in the one-dimensional network
with r = 16, the mean delay of the inhibitory synapses onto neurons 9 and
92 was 7.2 instead of 8.5 msec. Although these inhomogeneities at the
boundaries did have a desynchronizing effect on the entire network, the
value of the resonance frequency was hardly affected (42.65 Hz in a
100-neuron array, 42.18 Hz for the central 100-neuron segment of a
200-neuron array, and 42.57 Hz in a 100-neuron ring).



Maex and De Schutter ¢ Fast Oscillations in Inhibitory Networks

Noise and heterogeneity. The networks were noisy and heterogeneous,
owing to the randomness of excitation and the randomization of the
resting membrane potentials (see above) and synaptic weights (Maex and
De Schutter, 1998a). This heterogeneity made the neurons in a discon-
nected network fire irregularly and with slightly different rates [coeffi-
cient of variation (CV) of their firing rate, averaged over all excitation
levels, 0.046; CV of their interspike intervals (ISIs), averaged over all
neurons, 0.155]. These values typically increased in connected networks
because lateral inhibition tended to amplify differences in the firing rate
(CV of the firing rate in the one-dimensional network with only nearest
neighbor coupling, 0.072; CV of ISIs, 0.210). Finally, a simulation run
started from random membrane potentials distributed uniformly be-
tween —90 and —20 mV.

Implementation and simulation. Neuronal activity was calculated nu-
merically with a modified version of the Genesis simulator (http://www.
genesis-sim.org/ GENESIS), using Crank-Nicolson integration in 20
usec steps. We used a random-number generator with two seed variables
to avoid correlations in firing among the afferent fibers.

Analysis of network activity. We monitored network activity as the time
series of spike counts in bins of 0.5 msec width (Fig. 1A,D). The power
spectrum or periodogram was estimated, using the fast Fourier trans-
form algorithm, as the average of 256-point overlapping Hann (cosine
bell) windows (Press et al., 1988). In each window, the mean number of
spikes was calculated first and subtracted from the individual counts (or,
equivalently, power at f = 0 was set at 0) so that the total power almost
equaled the variance of the time signal. Coherent oscillations were quan-
tified by the peak power and the associated center or network frequency.
Network frequency was assessed at higher resolution (512 or 1024 point
windows) for networks with a low resonance frequency.

To derive the resonance frequency of a network, the network was
excited to various levels by incrementing the mean firing rate of the
afferent fibers by a factor of the square root of 2 at each new run. The
obtained average firing rates of the neurons encompassed their entire
dynamic range (10 to >900 spikes/sec). A simulation run produced at
least 1000 spikes for each neuron (500 in two-dimensional networks) and
had a minimum duration of 3 sec. Over such long runs, power spectra
were well reproducible and independent of initial values. From the power
spectra obtained at different levels of excitation, a tuning curve was con-
structed after application of the following normalization procedure. We
first noticed that a disconnected network produced a power spectrum
with a single peak that was located at the mean neuronal firing rate. This
peak had a height almost proportional to the firing rate. In accordance
with this, the variance of the time series of spike counts scaled almost
linearly with the mean spike count. This relationship between power and
firing rate is compatible with a Poisson distribution of spike counts in the
bins of the time signal. We therefore divided the peak power obtained at
each level of excitation by the associated mean neuronal firing rate, cor-
recting in this way for the power already present in the disconnected
network. Finally, peak power scales in a synchronous network quadrati-
cally with the number of neurons N and was therefore normalized to a
network of N = 100. All frequency-tuning curves plot peak power, di-
vided by the mean neuronal firing rate and by (N/100) > and multiplied
by a scaling factor 1000.

Resonance frequency ( fg) is the mean frequency of the tuning curve,
which was constructed from at least eight levels of excitation. Taking this
weighted average reduces errors attributable to sampling of the tuning
curve. If the central peak of the curve was positioned very asymmetri-
cally, the low-power tail was cut to avoid a systematic overestimation and
underestimation of f; in networks with low and high f, respectively.
Some tuning curves had a satellite peak at lower frequencies, and f; may
have been slightly underestimated in these networks (e.g., see Fig. 6 B).
Overall, errors on f;, are judged to be small because of the systematic
attraction of network frequency toward f; (see Fig. 5B).

Peak power is a combined metric of synchrony and rhythmicity and
quantifies the network oscillations in a manner comparable with the
analysis of experimentally recorded local-field potentials. A metric fre-
quently used in the computational literature is the coherence index
(Wang and Buzsédki, 1996; Bartos et al., 2001, 2002) (variations in White
etal., 1998; Tiesinga et al., 2000). The coherence index (CI), taking values
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between 0 and 1, measures exclusively synchrony and assesses, averaged
over all neuron pairs of the network, the fraction of coincident spikes.
The probability of coincidence increases with the bin width of the dis-
cretized spike trains, which by convention is taken in %10 of the oscillation
period. Measuring only the Cl is justified in the above studies because the
neurons being excited by constant-current injection were almost perfect
oscillators, and the inhibitory synapses constituted the only synchroniz-
ing mechanism. In the present study, in contrast, excitation is provided
by afferent fibers, which carry random spike trains that can contribute to
the synchronization of common efferent neurons (Maex et al., 2000). We
mention for each spike raster plot the CI in the figure legend.

Results

We investigated the critical parameters for synchronization and
frequency control in a heterogeneous network of model inhibi-
tory neurons, themselves lacking intrinsic resonance. Randomly
firing afferent fibers excited the neurons by continually activating
AMPA receptor synapses on the dendrites. This noisy but realistic
way of driving the neurons accentuated network-induced rhyth-
micity. Each neuron inhibited its neighbors, within a varying
axon radius, through GABA, receptor synapses located on the
somatic compartment. The delay d, strength w, and decay time
constant 7 of the IPSC (see Fig. 2 A) were varied, and their effects
on network dynamics were compared at various levels of network
excitation.

High-frequency oscillations emerge in networks with axonal
and synaptic delays

For a better understanding of the resonance mechanism, we first
illustrate the results of a one-dimensional array in which a neu-
ron is connected on each side only to the closest neighbor.

Figure 1 B demonstrates waxing and waning high-frequency
oscillations in a network in which the combined synaptic and
conduction delay d was set to 1 msec, which is a typical latency
value for inhibitory synaptic currents evoked from nearby neu-
rons in paired recordings (Bartos et al., 2001). As a control, no
oscillations were observed in the same network if the onset of the
IPSC was instantaneous (delay d = 0; Fig. 1A,C). This latter
finding is in accordance with analytical studies proving that syn-
chronous firing is unstable if the rise time of the synaptic response
is shorter than the duration of the afferent spike (van Vreeswijk et
al., 1994). However, using a synaptic response function with
slower rise time compared with this control, e.g., an a-function
with instantaneous onset and peak conductance at 1 msec, did
not improve synchrony in this sparsely connected network with-
out axonal and synaptic delays.

The oscillation frequency and power were measured at vari-
ous levels of network excitation spanning the entire dynamic
range of the neurons. Figure 1 F shows that the tuning curve of the
delayed network was centered at a resonance frequency f, of 210
Hz, with power falling off steeply at lower and higher levels of
excitation. In the network without delays, no robust oscillations
could be evoked at any frequency (Fig. 1E).

At the resonant level of network excitation, the mean firing
rate of the neurons was close to the oscillation frequency of the
network because each neuron fired a single spike at almost every
cycle (Fig. 1 D). At nonoptimal levels of excitation, the neurons
changed their firing pattern to maintain a network frequency
deviating from their firing rate but closer to f,. In particular, at
low excitation levels, neurons skipped cycles of the oscillation. As
a consequence, adjacent neurons could fire in alternate order
(antiphase synchrony) at a rate half the network frequency (Fig.
1F, open data points). At high excitation levels, neurons fired
multiple spikes at each single cycle, without affecting much the



10506 - J. Neurosci., November 19, 2003 - 23(33):10503-10514

A Delay d =0 ms B Delay d =1ms
‘ 10 spikes \ ”
m IMHH i \1! \ W
J'W hﬁ‘ J/'N,M"“.U’\WI' “ HV t“ .JN M"W I }h JJ\ .(M ‘ \". !\M“ \lu ¥
Time (s 55 51
) ‘) ;\,é \\.‘,\' v ,‘n
SF5, SR FX!
SIANEAS
: '«"<(“5‘J;'-"§5? "'
i '}’:f;(é/"é\?"‘
perse
-
3 g
3 < 8
B 0 1000 0 1000
= 4 4
E VAN A
S
Z0 0
10 100 1000 10 100 1000
Frequency (Hz) Frequency (Hz)
Figure 1.  Resonance in a delayed inhibitory network. The activity of a one-dimensional,

nearest neighbor-coupled network of 100 neurons is illustrated for two delay values of the
synaptic response: d = 0 msec (4, G, £) and d = 1 msec (B, D, F). The synaptic decay time
constant Twas 3 msec. 4, B, Time histograms of the number of spikes generated by the entire
population of neurons (bin width, 0.5 msec). Horizontal bars indicates zero level. C, D, Raster
plots of spikes fired during the time interval indicated by the horizontal barsin A and B. Each dot
represents a spike (x-axis, time; y-axis, position of the neuron along the array). In the network
with d = 1 msec (D; (I = 0.110), most neurons fired at each oscillation cycle; hence, the
network frequency (187 Hz) was close to the mean neuronal firing rate (181 = 10 spikes/sec).
Inthe network with zero delay (C; Cl = 0.087), spikes were produced atasimilar rate (172 = 16
spikes/sec), but their spatiotemporal patterning was lost. £, , Insets show periodograms [units
1(0.5 msec)?] of the spike count histograms shown in A and B averaged over 7 sec. Tuning
curves plot peak power and network frequency obtained at various levels of network excitation
(filled circle in each tuning curve: data from A, B). In the simulations represented by open points,
adjacent neurons fired in antisynchrony (van Vreeswijk et al., 1994); hence, network frequency
was twice the mean neuronal firing frequency.

cycle duration. This doublet or burst firing was most prominent
in networks with delays larger than the present 1 msec value (data
not shown).

The delay parameter determines the resonance frequency
Several studies of inhibitory networks demonstrated that the os-
cillation frequency decreases when the strength, decay time con-
stant, or delay of the inhibitory synaptic response are increased
(Bush and Sejnowski, 1996; Traub et al., 1996; Wang and Buzséki,
1996; Pauluis et al., 1999; Bartos et al., 2002; Liley et al., 2002).
Figure 2 illustrates the complementary effects of these parame-
ters, i.e., the effects on the frequency-tuning curve of a network.
The frequency tuning was almost invariant over the value w of
the synaptic strength (Fig. 2 B). In the network with a resonance
frequency fy of 210 Hz, illustrated above, a variation in peak
conductance by a factor of 8 suppressed the mean firing rate on
average by 51%, but f;; decreased only 14% (from 225 to 183 Hz).
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Figure2. Dependence of resonance frequency on the parameters of the inhibitory synaptic
response. A, The unitary inhibitory synaptic response, which is a transient conductance increase
of the GABA, receptor channel (bold curve), follows an action potential of the presynaptic
neuron after a delay d, reaches (relative) peak conductance w, and decays exponentially with
time constant 7. The middle trace is the (vertically offset) somatic postsynaptic potential. B-D,
Tuning curves of a network with only nearest neighbor coupling for various values of w, 7, and
d. For each parameter set, the resonance frequency is indicated by the corresponding symbol at
the top. B, Tuning curves for four values of w (d = 1 msec; 7= 3 msec; w = 1 corresponds to
a synaptic peak conductance density 6 = 3 mS/cm?). C, Tuning curves for five values of 7,
indicated in milliseconds (¢ = 1 msec; w = 1, except for 7 = 12 msec, for which w = 0.5). D,
Tuning curves for five values of d indicated in milliseconds (w = 1; 7= 3 msec, except ford =
4 msec, for which 7 = 6 msec).
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Figure 3. Predicted versus measured resonance frequency. The resonance frequency f; de-
rived from the tuning curves (x-axis) is compared with 1/(4d) ( y-axis). The diagonal lines are
the identity curves, indicating perfect prediction. A, Network with only nearest neighbor cou-
pling for various delays d of the synaptic response (0.25—16 msec). Symbols represent different
values of the decay time constant 7, indicated in milliseconds. For each d, 7 pair, the network
with weight w producing maximal power was selected. The effect of varying w, which is not
illustrated, was always smaller than the effect of varying 7. B, Network with d = T msec from A
for increasing degrees of connectivity (axon connection radii r, 1-16) and hence for increasing
values of the mean delay d (1- 8.5 msec). At the highest connectivity (r = 16), resonance was
clustered between 34 Hz (7 = 24 msec) and 44 Hz (7 = 1.5 msec).

We disregard this weight parameter further and present the tun-
ing curve with largest power for networks simulated at various
weight values. Increasing or decreasing the exponential decay
time constant 7 of the postsynaptic current displaced the tuning
curve to lower and higher frequencies, respectively (Fig. 2C). The
resonance frequency f;; decreased from 338 Hz at 7 = 0.75 msec
to 149 Hz at 7 = 12 msec. This effect was small, however, com-
pared with the inverse relationship obtained between f and the
delay d of the synaptic response (Fig. 2 D). Varying d from 0.25 to
4 msec decreased f; from 536 to 65 Hz.

Over a broad range of values of the delay d and the decay time
constant 7, f; approximated 1/(4d) (Fig. 3A). At the lowest delay
values (0.25 and 0.5 msec), the measured f was <1/(4d) as the
network frequency approached 1000 Hz, the maximal neuronal
firing rate. Networks with a (single) large delay value, on the
other hand, could have multimodal tuning curves because at high
excitation levels, the neurons started firing bursts, in particular
when 7 was much less than 4d (the oscillation period at reso-
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Figure4. Inverse relationship between the connection radius r of the one-dimensional net-
work and the resonance frequency f;. A, Spike raster plots compared for various axonal connec-
tion radii r (in units of interneuron distance; 7 = 3 msec; w = 1). The raster plots (width, 100
msec) were obtained at firing rates close to resonance for r = 16 (a; 47 Hz oscillations; (I =
0.303),r = 8(b; 70 Hz; (1 = 0.302), r = 4 (c; 125 Hz; (1 = 0.234) and r = 2 (d; 172 Hz; (| =
0.153). The format is the same as in Figure 1D, which shows the raster plot for r = 1. B,
Frequency-tuning curves of networks with the indicated connection radii r. Tuning curves for
r = 4 were obtained with a 100-neuron array. The tuning curves for r = 8 and 16 were
calculated from the central 100-neuron segment of a 200-neuron array.

nance). Such unrealistic networks did not always have a clear
optimal frequency, and their data were not included in Figure 3A
(but see next section).

A different value of 7was optimal for different values of d (Fig.
3A), a nonoptimal 7 driving f; off the predicted frequency of
1/(4d) with a considerable loss of power (Fig. 2C). For example,
oscillations of ~250 Hz (obtained with d = 1 msec) were optimal
with 7 = 0.75-3 msec. Oscillations of ~62.5 Hz (d = 4 msec)
required a T of 6—12 msec, a value comparable with the recorded
10 msec decay of (probably compound) IPSCs during hippocam-
pal gamma oscillations (Traub et al., 1996). With 7 =3 msec,
networks with only nearest neighbor coupling were unable to
generate oscillations <100 Hz.

Distributed delays increase the robustness of
frequency control
Increasing the connection radius r of the one-dimensional net-
work, with each neuron now connected on each side to its r
nearest neighbors, improved the synchronization process as as-
sessed from arise in the CI from 0.11 to >0.3 (Fig.4A). Networks
with larger connection radii produced oscillations of greater am-
plitude and lower frequency (Fig. 4 B). The period at resonance
was equal to approximately four times the mean delay d of the
synaptic response (Fig. 3B).

Increasing the connection radius made the oscillations more
robust at nonoptimal values of 7. As each neuron was connected
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to neighbors positioned at various dis-
tances, within a fixed axon radius r and
with delays proportional to distance, a
rectangular distribution of delays was
formed. Inhibition through synapses with
distributed delays made resonance less de-
pendent on the appropriate value of 7 be-
cause synchronously firing neurons at in-
creasing distances activated their synapses
with staggered delays. More particularly,
in a linear array, the most distant afferent
neuron would activate its synapse with a
delay almost twice the mean delay, i.e.,
halfway in the oscillation cycle. This tem-
poral summation of IPSCs induced a more
lasting inhibition in the postsynaptic neu-
ron, comparable with that induced by the
activation of a single slowly decaying syn-
apse. As a consequence, with a realistic de-
cay time constant as small as 1.5-3 msec
(Bartos et al., 2001; Carter and Regehr,
2002), resonance could be induced in the
entire gamma frequency range and beyond
by varying only the size of the axonal con-
nection radius r (Figs. 3B, 4B).

The same relationship between mean
delay and resonance was observed in two-
dimensional networks, provided the con-
nection probability between two neurons,
or the connection weight, tapered off with
distance to obtain a uniform distribution
of synaptic delays or weighted delays. For
example, the tuning curve in Figure 5A
peaked at 78 Hz, i.e., at a period four times
the mean weighted delay of network con-
nections (3.2 msec). The tuning was sharp,
oscillations being produced only within a
narrow frequency band around f; for lev-
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Figure 5.  Resonance in a two-dimensional network. A, Tuning curve of a triagonal network of 900 neurons, with mean

weighted delay d = 3.2 msec (decay time constant 7= 3 msec). B, Frequency range of the emerging network oscillations. Over
the various levels of excitation, the mean neuronal firing rate varied from 12 to 598 spikes/sec (x-axis). The resulting network
oscillations were clustered on the frequency axis ( y-axis) around the resonance frequency ( f; = 83 Hz; range, 47-149 Hz),
except at the two strongest levels of excitation, at which power was almost zero. The arrows labeled Cand D indicate the levels of
network excitation illustrated further in plots C and D, respectively. (, Description of the firing pattern at approximately the
resonant level of excitation (mean firing rate, 73.4 spikes/sec). a, Periodogram of network activity over a simulation run of 8 sec
duration. b, Mean ISI histogram averaged over all 900 neurons. ¢, Time histogram of population spike counts (bin width, 0.5 msec;
first peak truncated at 200 spikes) and raster plot of the individual spikes fired during the first 200 msec of the simulation (Cl =
0.287). d, Membrane potential traces of nine randomly selected neurons (the neurons with array indices 100, 200, . . . 900).
Horizontal linesindicate the zeroand —60 mV levels. Unequal spike heights are a graphical sampling artifact. D, Description of the
firing pattern at the next lower level of excitation (mean firing rate, 45.0 spikes/sec). a, Periodogram, multiplied by a factor of 10,
overasimulation run of 12 sec duration. b, Mean ISI histogram. ¢, Time histogram of population spike counts and raster plot of the
individual spikes fired during the first 200 msec of the simulation (Cl = 0.142). d, Population spike count histogram and raster plot
of the individual spikes fired between 8.2 and 8.4 sec after the start of the simulation (CI = 0.092 or 0.147 after correction for the

els of excitation ranging from 12 to 375
spikes/sec, i.e., for all but the two right-
most excitation levels plotted in Figure 5B. Hence, although res-
onance was achieved when the neuronal firing rate equaled the
oscillation frequency, oscillations at frequencies close to f; were
generated over a broad domain of firing rates, encompassing
almost the entire dynamic range of the neurons. Indeed, levels of
excitation that produced average firing rates from 22 to 913
spikes/sec in a disconnected network evoked oscillations in the
connected network restricted to a 47-149 Hz band (Fig. 5B).
Figure 5, C and D, illustrates in greater detail some observa-
tions already mentioned for the one-dimensional network. At
resonance (Fig. 5C), the mean neuronal firing rate (73.4 spikes/
sec) was close to the network frequency on the periodogram (78
Hz; Fig. 5C, a). The neurons fired a single spike at each cycle,
producing a single peak at 13 msec on the averaged interspike
interval histogram (Fig. 5C, b). The raster plot (Fig. 5C, ¢) and
action potential trajectories (Fig. 5C, d) further demonstrate that
synchrony was very robust though not very precise (CI = 0.287).
At the next lower level of excitation (Fig. 5D), network frequency
(72 Hz; Fig. 5D, a) was higher than the average firing rate (45
spikes/sec) and close to f (83 Hz). The interspike interval histo-
gram (Fig. 5D,b) showed a main peak at 25 msec, i.e., approxi-
mately twice the period at resonance. The synchrony induced at
the onset of excitation rapidly faded away (Fig. 5D, ¢), but 72 Hz

mismatch between firing rate and network frequency; Tiesinga and José, 2000).

oscillations kept waxing and waning throughout the simulation
(Fig. 5D, d).

Resonance arises in networks with sparse,
asymmetrical connections
To determine the critical synaptic number for resonance, the
mean number of connections per neuron was varied, whereas
total synaptic weight was kept constant, in a network without
topographic ordering, i.e., with each neuron able to connect to
each other neuron with a single delay d = 1 msec. A network with
a mean number of five synapses per neuron produced at reso-
nance a power close to that achieved in the fully connected net-
work (Fig. 6 A, open circles). This threshold did not depend on
the connection rule because power hardly increased when the
network was randomly connected using the restriction that all
neurons received the same number of synapses (Fig. 64, filled
diamonds). This absolute threshold for synchronization was fur-
ther independent of the size of the network and the summed
synaptic weight, and it was always less than the number of syn-
apses needed to obtain synchrony in a network without delays
(Fig. 6 A, dashed curve).

The tuning curves (Fig. 6 B) of the sparsely connected network
(5 synapses per neuron; open squares; f, = 225 Hz) and the fully
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Figure 6.  The threshold number of synapses for resonance is small. A, The power at approx-
imately the resonant level of network excitation (see B, arrow) is compared for two stochastic
connection rules in a network of 100 neurons with varying degrees of connectivity (open circles,
filled diamonds; delay d = 1 msec; decay time constant 7 = 3 msec). Either each neuron was
connected with a fixed probability to each other neuron, producing a binomial distribution of
synaptic numbers (filled diamonds; the x-axis gives mean number of synapses per neuron), or,
alternatively, for each neuron, a fixed number of afferents was randomly selected (open circles).
In the control simulations (dashed curve), the synaptic response was modeled as an « function
with zero delay and a time constant of 1 msec, producing a peak conductance at 1 msec and a
resonance frequency at 300 Hz. B, Frequency-tuning curve of the sparsely connected network
with, on average, five synapses per neuron (open squares; see A, left arrow) and of the fully
connected network (filled squares; 100 synapses; see A, right arrow). G, Raster plots of spikes in
the sparsely connected network (mean number, 5 synapses per neuron). Note that neurons 11
and 53 were not connected to by any other neurons using this stochastic connection rule. The
neurons were excited either by afferent fibers (a; (I = 0.178) or by the intrasomatic injection of
the equivalent constant current (b; CI = 0.381). D, Raster plots for the fully connected network
excited by afferent fibers (a; CI = 0.237) and current injection (b; (I = 0.465).

connected network (100 synapses; filled squares; f, = 214 Hz)
were centered at approximately the same resonance frequency as
the tuning curve of the network with only nearest neighbor cou-
pling, shown in Figure 1 F ( f; = 210 Hz). The sparsely connected
network was the more narrowly tuned (Fig. 6B) because an-
tiphase synchronization produced a broader falloff at low fre-
quencies in the fully connected network.

Effects of noise and heterogeneity
The randomization of synaptic weights and resting membrane
potentials and the randomness in the activation of excitatory
synapses made the present network heterogeneous and noisy.
We excited the nontopographic network in a noiseless man-
ner by injecting a constant current into each neuron. The raster
plots in Figure 6, C and D, compare the firing patterns of the
sparsely (Fig. 6C) and fully connected (Fig. 6 D) network during
excitation by randomly firing fibers (Fig 6C, a, D, a) or an equiv-
alent constant current (Fig. 6C, b, D, b). Removing the noise
improved synchrony, as assessed from the increase in CI from
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Figure 7.  Noise, heterogeneity, and gap junctions modulate the power over more than an

order of magnitude without affecting the resonance frequency. Tuning curves were calculated
by simulating the one-dimensional network with only nearest neighbor coupling (d = 1msec;
7 = 3 msec); plain curves are the tuning curves from Figure 1F. All tuning curves yield a
resonance frequency between 205 and 210 Hz. A, Effect of varying the size of the population of
afferent fibers (from 1000 to 8000). B, Tuning curve constructed by incrementing the intensity
of a fixed constant current injected into the soma of each neuron (filled squares) and tuning
curve obtained during fiber excitation after the addition of electrical synapses between mutu-
ally inhibitory neurons (open diamonds). Electrical synapses were pure conductors, with a con-
ductance 0.4 times the unitary peak conductance of the chemical synapses between the same
compartments.

0.178 (Fig. 6C, a) to 0.381 (Fig 6C, b) and from 0.237 (Fig 6 D, a)
to 0.465 (Fig. 6D, b).

The residual asynchrony of the fully connected network (Fig.
6D, b) must be attributed to the heterogeneity of neurons and
synapses. The homogeneous network produced a CI of 0.98 (data
not shown). We quantified in an indirect way the present degree
of heterogeneity by increasing the variability of current intensity
among the neurons of the homogeneous network. Distributed
currents drawn from a Gaussian distribution with a CV equal to
0.02 reduced the CI from 0.98 to 0.453, a value comparable with
the CI of 0.465 in the raster plot of Figure 6 D, b.

The noise level can also be changed by varying the number of
afferent fibers. Because the membrane potential has a lower vari-
ance when large numbers of afferents excite a neuron through
weak synapses, disconnected neurons fire more regularly when
the number of fibers increases, whereas smaller numbers of fi-
bers, activating stronger synapses, synchronize the disconnected
neurons more precisely (Maex and De Schutter, 1998a,b; Maex et
al., 2000). We examined which effect predominates in the gener-
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ation of network oscillations and always observed that power
increased with the size of the fiber population (Fig. 7A). In the
limit of an infinite number of fibers, excitation by fibers is iden-
tical to the injection of a constant current. The tuning curve
constructed by current injection did not differ in shape from that
obtained with afferent fibers (Fig. 7B, filled squares; f = 209 Hz).

Varying the degree of heterogeneity altered the peak power
over almost two orders of magnitude without affecting much fg,
although there was a tendency for low-frequency oscillations to
be more robust than high-frequency oscillations.

Adding gap junctions stabilizes the oscillations but does not
change f;,

Closely spaced inhibitory neurons form dendritic gap junctions [>60%
of neuron pairs separated <50 um (Galarreta and Hestrin, 1999; Gibson
etal., 1999) and all reciprocally connected pairs (Galarreta and Hestrin,
2002)]. In accordance with previous modeling studies (Traub etal., 2001;
Bartos et al., 2002), the power of the network oscillations increased in a
non-frequency-selective manner when adjacent neurons were connected
by purely resistive electrical synapses (Fig. 7B, open diamonds). Hence,
although the electrotonically transmitted afferent spike conceals the ini-
tial phase of the IPSP (see Tamds et al., 2000), this apparent increase in
delay of the IPSP onset does not decrease the resonance frequency of the
network ( fy = 210 Hz).

Mechanism of synchronization and frequency tuning

Pairs of reciprocally connected inhibitory neurons tend to fire synchro-
nously if each neuron, on firing, resets in an appropriate way the firing
cycle of the paired neuron. In the present model neuron, activation of an
inhibitory synapse delayed the generation of a spike, and the resulting
increase of the interspike interval was greater the later in the firing cycle
the synapse was activated (Fig. 8 A, phase-response curve in B). As a
consequence, of a pair of neurons reciprocally connected through inhib-
itory synapses, the neuron firing earlier received inhibition later and
postponed its next spike more (Fig. 8C). Repetition of this mechanism
progressively leads to a more precise synchronization of successive pairs
of spikes (Ernst et al., 1995).

More precisely, let two mutually inhibitory neurons, denoted by su-
perscripts 1 and 2, fire regularly with the same period T'in a disconnected
network. If the neurons generated their most recent spikes, indicated by
subscript i, at ' and > = ' + A; with A; < d, then they receive
inhibition in a connected network at time:

tt+d=t+A+dandt +d, (3)
i.e., with a phase equal to:
o'=(t+A+d—t)/T=(d+ A)/Tand
=t +d—6)T=d—-A)T. (4)
If the phase—response curve has a linear form:
(tis1 — = DIT=b + ap,
then the neurons will generate their next spikes at time:
th, =t + T+ T(b + a(d + A)/T) and
£,=8+T+TOb+ald—A)/T), (5
giving:
Ay =t =t = A1 — 2a). (6)

The neurons synchronize asymptotically if |A; . ;| < |4, which
requires a <1 (assuming a > 0). Figure 8C depicts the sequence
of events for phase—response curves with slope a <0.5. For 0.5 <
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Figure8. Mechanism of synchronization and frequency tuning. 4, Activation of aninhibitory
synapse resets the firing cycle of the model neuron. The synapse is activated after 15 (top
membrane potential trace), 27 (middle trace), and 35 (bottom trace) msec in a 36 msec firing
cycle. Dotsindicate times of synaptic activation, and the vertical dashed line indicates the end of
the cycle in the absence of inhibition. B, Phase—response curve, plotting the delay in spike
generation after the activation of an inhibitory synapse at varying time instants (Rinzel and
Ermentrout, 1999). The x- and y-axis variables are expressed as fractions of the duration of the
firing cycle. The strength of the activated synapse was 1 or 3 mS/cm? (filled, open symbols,
respectively). A phase-resetting curve parallel to the diagonal line corresponds to a fixed delay
elapsing between the activation of the inhibitory synapse and the generation of the next spike.
(, Heuristic diagram of the synchronization mechanism. In one cycle, the interval between a pair
of spikes from mutually inhibitory neurons (vertical bars) decreases from At, < d'to At; ,, , (see
Results). The broken vertical bars represent the expected spike times in the absence of inhibi-
tion. D, Relative timing of spikes from two adjacent neurons in the simulated network of Figure
1(d = Tmsec). Each spike of the reference neuron is represented as a dot, positioned according
to the absolute time interval made with the previous (At *; x-axis) and next (At ~; y-axis)
spikes of a neighbor neuron. Most spikes led or lagged the neighbor neuron by an interval less
than the delay d of the synaptic response (shaded areas).
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a < 1.0, the paired neurons still converge to synchrony, but the
order of their spikes reverses at each cycle.

The frequency tuning of the network oscillations and, more
particularly, the 1/(4d) frequency observed for resonance can be
understood from the effect of inhibition on the instantaneous
firing probability of a neuron. When the first neuron of a pair has
fired, the second neuron lowers its firing rate after the onset of
inhibition, i.e., after an interval equal to the delay d. Alternatively,
the second neuron may have fired first, preceding the first neuron
within an interval of the same duration, so that the second neu-
ron will preferentially fire in an interval [—d, d] around each
spike of the first neuron (Fig. 8 D). The sine wave best covering
this 2d window of increased firing has a 4d period, and resonance
occurs when both neurons, driven by the appropriate amount of
excitatory input, fire on average with 4d intervals. In addition, for
4d to be the optimal period, inhibition must ensure that the 2d
windows of increased firing alternate with 2d intervals of sup-
pression of firing. This effect of the duration of inhibition ex-
plains the existence of an optimal decay time constant for each
delay in Figure 3A.

Discussion
Delayed reciprocal inhibition is able to synchronize, with zero
phase lag, homogeneous networks of pulse-coupled oscillators
and was proposed to be a mechanism of neuronal synchroniza-
tion (van Vreeswijk et al., 1994; Ernst et al., 1995). Simulating
heterogeneous hippocampal interneuron networks, Bartos et al.
(2002) concluded that “a rapid inhibitory signal generated with a
certain delay is a very effective synchronization signal.” The
present study demonstrates that the resulting oscillations in net-
work activity are limited to a narrow frequency band constrained
by the IPSC latency but rather insensitive to the IPSC strength
and decay time constant. Small, realistic axonal and synaptic de-
lays, considered negligible compared with the low-pass time con-
stant of the neuronal membrane (Manor et al., 1991), have a
dramatic effect on the frequency spectrum (Fig. 1). The induced
synchrony may be less precise than the synchrony that was
achieved without explicit delays in more homogeneous networks
(Wang and Buzséki, 1996), but the robustness of the oscillations,
their sharp tuning and frequency constancy, and their emergence
in sparsely connected networks favor a model of delay-induced
synchrony for fast brain rhythms. The extreme frequency control
in these networks can be appreciated from the fact that variations
in network heterogeneity did not affect the resonance frequency
even when power changed by almost two orders of magnitude.
Oscillations obeying a 1/(4d) rule are observed in many bio-
logical systems (May, 1976; Glass and Mackey, 1988; MacDonald,
1989). In previous analytical models of oscillatory behavior in
populations of neurons, delays attributable to signal propagation
along axons and dendrites were lumped into the time constants
of linear or nonlinear differential equations (Wilson and Cowan,
1972; Freeman, 1975). However, the incorporation of discrete
delay variables can profoundly alter the dynamics of a system
(MacDonald, 1989). Linear first-order delay systems can oscillate
with a 4d period, and nonlinear delay differential equations can
exhibit, at a critical delay value, a bifurcation from a steady state
to alimit cycle solution with a period approximately equal to four
times the delay period. In Appendix, we derive a formal explana-
tion for our present findings.

Sources of delays in neural networks
The present results hold irrespective of the source of the delay
between the timing of the action potential of an inhibitory neu-
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ron and the onset of the current response in the paired postsyn-
aptic neuron. Because the range of the delays that neural circuits
are able to produce constrains the frequency range of the oscilla-
tions to which the present model may apply, we briefly discuss
some prevalent mechanisms of delayed inhibition.

Although inhibitory neurons are fast-processing units, with
an axon tree often confined within 600 wm from the soma (Buhl
etal., 1994; Sik et al., 1995), some (partly myelinated) axons can
extend several millimeters in hippocampus (Sik et al., 1994) and
neocortex (Kisvarday et al., 1993; Gupta et al., 2000). Salin and
Prince (1996) electrically evoked monosynaptic IPSCs with la-
tencies of 1 to >6 msec in neocortical pyramidal cells in vitro and
derived slow speeds for spike propagation (0.06—0.2 m/sec;
mean, 0.1 m/sec). From our simulation data, a mean latency of 4
msec induces resonance at 62.5 Hz (Fig. 3), which is within the
frequency range of the oscillations recorded in visual (Gray and
Viana Di Prisco, 1997) and auditory neocortex (Brosch et al.,
2002).

The reported latencies of unitary IPSCs, evoked by firing an
impaled presynaptic neuron, are usually much shorter (mean, 0.8
msec for pairs <200 wm apart in dentate gyrus; Bartos et al.,
2001), but paired recordings may be biased to small interelec-
trode distances at which the probability of finding connected
neurons is highest. IPSP latencies of 3.2—-8.6 msec (mean, 5.4
msec) were measured for pairs 153—445 um apart in striatum
(Tunstall et al., 2002), and in hippocampus, unitary IPSCs be-
tween lacunosum-moleculare interneurons and pyramidal cells
showed latencies, albeit at room temperature, of 2.4-7.2 msec
(mean, 4.2 msec; Bertrand and Lacaille, 2001).

In addition, it is the mean distance to the entire set of postsyn-
aptic neurons that determines the resonance frequency. This
mean distance can be estimated from the experimentally derived
connection probability function, provided the probability at each
distance is corrected for the varying numbers of neurons avail-
able. For axons with a disk- or sphere-like arborization, the num-
ber of candidate target neurons increases linearly or quadratically
with distance from the source neuron. Hence, if the connection
probability is observed to fall off according to an exponential
function with space constant §, the actual mean distance in-
creases from & to 26 and 36 for axons branching in two and three
dimensions, respectively.

The present mechanism is not restricted to purely inhibitory
networks. The 1/(4d) rule generalizes to circuits with intercalated
excitatory neurons (for example I, — E; — I, — E, — I, instead
of I, = I, — I,). Here resonance is predicted to arise at an oscil-
lation period equal to four times the delay of the disynaptic re-
sponse I, — E, — L, If the response delay is much greater for
excitatory than for inhibitory connections, then the circuit will
resonate with a period approximately four times the delay of
excitation, and, consequently, the excitatory neurons will lead the
inhibitory neurons by one-fourth of a cycle. Such a phase rela-
tionship has been observed in olfactory systems (Freeman, 1975;
Bazhenov et al., 2001) and hippocampus (Csicsvari et al., 2003).

Finally, circuits with excitatory feedback can generate trains of
spikes with delays of tens to hundreds of milliseconds. In visual
cortex, feedback excitation was proposed to provide the long
delays of inhibition needed to generate directionally selective re-
sponses to slowly moving stimuli (down to <1 Hz; Maex and
Orban, 1996). It is noteworthy in this respect that the property of
directional selectivity, which can be implemented in a circuit with
lateral inhibition, exhibits the same f = 1/(4d) relationship, f
being the temporal frequency of the moving stimulus evoking
maximally selective responses (van Santen and Sperling, 1985).
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Predictions

The present results and the above arguments lead to the following
predictions, some of which are substantiated by recent findings.
The delay of monosynaptic or polysynaptic inhibition is the crit-
ical parameter determining the resonance frequency of an inhib-
itory network. Hence, oscillations with different characteristic
frequencies are expected to be generated by microcircuits involv-
ing different types of interneurons (Klausberger et al., 2003). In
these interneurons and in their target projection neurons, IPSCs
are predicted to be evoked with variable latencies, centered at
approximately one-fourth of the oscillation period (Traub et al.,
1996). Because the multitude of microcircuits in the brain could
generate a continuum of delays, probably with slight differences
emerging between different areas or developmental stages, oscil-
lations in the nervous system could form a continuum rather
than being divided into a few discrete frequency bands (Csicsvari
etal., 1999; Grenier et al., 2001). Interneurons involved in circuits
with low characteristic frequencies are predicted to fire multi-
spike bursts during each cycle. Finally, although the delay of re-
ciprocal inhibition might not be very amenable to experimental
manipulation, changing the size of the stimulus would vary the
effective mean delay. Stimuli exciting a focus smaller than the
connection radius of an inhibitory network do not recruit long-
distance neuron pairs, leading to faster oscillations than pre-
dicted from the mean delay of the circuit (Bartos etal., 2002, their
Fig. 4E). Fast synchronous oscillations are therefore predicted to
be more narrowly localized than low-frequency oscillations, al-
though long-distance excitatory connections may contribute to
this difference (Ermentrout and Kopell, 1998; Pauluis et al., 1999;
Kopell et al., 2000).

Conclusions

We propose that resonant synchronization induced by the delay
of (monosynaptic or polysynaptic) inhibitory connections con-
tributes to the emergence and frequency tuning of all types of
oscillations in which inhibitory synapses are involved, and that
delay-induced synchronization should be considered for fast os-
cillations in particular (>40 Hz). Some types of fast oscillations
appear to persist, however, in the absence of synaptic transmis-
sion (200 Hz “ripples”), and axoaxonal gap junctions may be
essential for their generation (Schmitz et al., 2001). For other
types of oscillations, additional tuning mechanisms may be im-
portant, such as intrinsic neuronal resonance and synaptic dy-
namics (Gupta et al., 2000; Beierlein et al., 2003), which were not
included in the present model.

Appendix

Let A(t) be the population activity at time f, F the neuronal trans-
fer function, I the constant level of external input, K(t) the syn-
aptic impulse response, and d the combined axonal and synaptic
delay. Then the dynamics of a fully connected, homogeneous
network can be described by:

AMA/dt + A(t) = F(I — K- A(t — d)). (A1)
where * denotes convolution in time (Gerstner, 2000). During
asynchronous firing, the population activity is considered con-
stant over time: A(t) = C = F(I — C). Linearization about the
asynchronous state yields:

AdA/dt + A() = FI— C+ C—K-A(t — d)) = F(I — C)

+F(I—-C)(C—K-A(t—d). (A2)
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The linearized equation, after substituting y(t) for A(t) — F(I —
C) and a for the derivative of F is:

Adyldt + y(t) = —aK- y(t — d). (A3)
We take K(t) = (1/7) exp(—t/7) and follow the reasoning devel-
oped by MacDonald (1989), looking for a periodic solution y =
exp(i w t), with o = 271/T. We consider two cases. The first case
explains the observation in Figure 3B that for networks with low
resonance frequency, fi is slightly >1/(4d) but almost completely
independent of the decay time constant 7. The second case
matches the observation that networks with a high resonance
frequency can have an f; of =1/(4d), which in addition is more
dependent on the value of .

At low resonance frequencies (case 1), the synaptic kinetics is
much faster than both the membrane time constant A and the
oscillation period T, so that the delayed feedback can be consid-
ered to be approximately instantaneous. This reduces Equation
A3 to:

Adyldt + y(t) = —ay(t — d). (A4)
The resulting transcendental characteristic equation:
iwh + 1= —ge (A5)
has real roots for cos(w d) = —1/a and sin(w d) = w A/a, or:
tan(wd) = —(wd)(A/d). (A6)

Provided a > 1, solving for w dyields 7/2 < wd < 11, giving 2 d <
T <4 d. Hence, f > 1/(4d) but independent of 7.

At high resonance frequencies and hence high levels of excita-
tion (case 2), the membrane potential of a neuron is strongly
depolarized, and voltage deflections are small (although suffi-
cient to pass the firing threshold) because of the low-pass char-
acteristics of the membrane. Hence the contribution of the leak
current to membrane dynamics can, approximately, be ignored.
Equation A3 now reduces to:

Adyldt = —aK - y(t — d). (A7)
The resulting transcendental characteristic equation is:
iwA(l + iwT) = —ae . (A8)

For very fast synapses in the limit 7—> 0, the solution is w d = /2,
or T = 4d. For T > 0, the present case is an instance of a distrib-
uted delay (the synaptic kernel) with a gap (the synaptic delay d),
and T >4d with T increasing for increasing 7 (MacDonald, 1989).

Note added in proof. It was brought to our attention that Brunel and
Wang (2003) reported similar results recently.
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