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How Spike Generation Mechanisms Determine the Neuronal
Response to Fluctuating Inputs
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This study examines the ability of neurons to track temporally varying inputs, namely by investigating how the instantaneous firing rate
of a neuron is modulated by a noisy input with a small sinusoidal component with frequency ( f). Using numerical simulations of
conductance-based neurons and analytical calculations of one-variable nonlinear integrate-and-fire neurons, we characterized the de-
pendence of this modulation on f. For sufficiently high noise, the neuron acts as a low-pass filter. The modulation amplitude is approx-
imately constant for frequencies up to a cutoff frequency, f,, after which it decays. The cutoff frequency increases almost linearly with the
firing rate. For higher frequencies, the modulation amplitude decays as C/f*, where the power « depends on the spike initiation mecha-
nism. For conductance-based models, o« = 1, and the prefactor C depends solely on the average firing rate and a spike “slope factor,”
which determines the sharpness of the spike initiation. These results are attributable to the fact that near threshold, the sodium activation
variable can be approximated by an exponential function. Using this feature, we propose a simplified one-variable model, the “exponen-
tial integrate-and-fire neuron,” as an approximation of a conductance-based model. We show that this model reproduces the dynamics
of a simple conductance-based model extremely well. Our study shows how an intrinsic neuronal property (the characteristics of fast

sodium channels) determines the speed with which neurons can track changes in input.
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Introduction

The input—output transformation performed by a neuron is clas-
sically characterized by its frequency—current ( f~I) relationship
(McCormick et al., 1985; Powers and Binder, 2001). However,
knowing of this relationship is not enough to predict neuronal
responses to transients or time-dependent inputs, a problem that
is, in general, particularly tricky because of the highly nonlinear
nature of action potential generation. Nevertheless, if the tempo-
ral variations of the input are small enough, the dynamics are
dominated by the linear response properties of the neuron.
Therefore, the response of the neuron to an arbitrary input with
weak temporal variations can be predicted if we can determine
how its instantaneous firing rate is modulated by sinusoidal
inputs.

The response of neurons to sinusoidal inputs has been inves-
tigated in various in vitro preparations, including the horseshoe
crab Limulus polyphemus (Knight, 1972b), visual cortex (Caran-
dini et al., 1996; Nowak et al., 1997), and vestibular nuclei (Ris et
al., 2001; Sekirnjak and du Lac, 2002). Most of these studies re-
stricted their analysis to low-frequency inputs (<20 Hz). Caran-
dini et al. (1996) found that the response of regular-spiking cor-
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tical cells to injection of a broadband noisy input is linear and can
be flat up to 100 Hz. Bair and Koch (1996), using in vivo record-
ings in middle temporal (MT) cortex of anesthetized monkeys,
showed that the power spectra of the responses of neurons to
randomly moving dots are low-pass with a broad range of cutoffs
up to 150 Hz.

The linear response of neurons to noisy fluctuating inputs has
also been investigated in theoretical studies relying on the leaky
integrate-and-fire (LIF) model (Knight, 1972a; Gerstner, 2000;
Brunel et al., 2001; Fourcaud and Brunel, 2002; Mazurek and
Shadlen, 2002). It was found that in the presence of white noise,
LIF neurons behave like low-pass filters, with a cutoff depending
on the passive membrane time constant and the average firing
rate of the neuron. The gain of the filter decays as 1/\]? , where fis
the input frequency, and its phase shift reaches the value of 45°, at
sufficiently large f. It was also found that temporal correlations in the
input noise improve the “accuracy” of the LIF response, because they
suppress the decay at high frequencies and reduce the phase shift
(Gerstner, 2000; Brunel et al., 2001; Fourcaud and Brunel, 2002). In
the present study, we show that simple conductance-based (CB)
models behave differently. Using a combined analytical and numer-
ical approach, we investigated theoretically how neuronal properties
affect the response of neurons to fluctuating inputs. In particular, we
demonstrate that the suppression of the AC part of the spike re-
sponse to fast varying inputs depends on the DC response of the
neuron and on the characteristics of the fast sodium currents re-
sponsible for spike initiation.
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Materials and Methods

Linear response of the instantaneous firing rate. We investigated the re-
sponse of a neuron to a time-varying input. Our goal is to determine the
instantaneous firing rate v(¢) (i.e., the probability that the neuron will fire
between time f and time ¢ + dt, divided by dt, in the limit dt — 0). We
assume that the neuron receives an input

Isyn(t) = IO + BI(t) + Inoise > (1)

where I, is the DC component of the input, 8I(¢) is its deterministic
temporal variation around I, and I ;. is a noisy component that is
described in more detail below. The firing rate v(¢) is determined as a
function of I, + 8I(t) by averaging the response of the neuron over
different realizations of I, ;.. Equivalently, v(t) represents the instanta-
neous firing rate of a population of noninteracting neurons that receive
the same input I, + 8I(¢), but in which each neuron receives an indepen-
dent realization of the noise.

In the limit of small 8I(¢), a linear relationship can be written between

v(t) and 8I(¢):
v(t) = d(I,) + fw dt' k(t")8I(t —t'), (2)

where ®(I;) is the average firing rate of the neuron in response to a
current I in the presence of noise I, ;. (the f~I curve of the neuron), and

the kernel, k, depends on I, and the properties of the noise. In particular,
the response to a sinusoidally and weakly modulated I, (t):

Isyn(t) = I() + Il COS(Z’TTft) + Inoise > (3)
where [} << [ is:

v(t) = vy + vi(f) cos[2m ft + &(f)], 4)

where v, = ®(I,,), and v,( f) and ¢( f) are related to the modulus and the
argument of the Fourier transform of «, &( f), by »,(f) = I,|k(f)| and
$(f) = argi( f).

The gain of the response at frequency f, v,( f)/I;, and the phase re-
sponse, ¢( f), completely characterize the linear filtering properties of
the neuron. We compute these quantities as a function of the frequency f.
Note that at sufficiently low frequencies, it is straightforward to relate the
gain v, /I, to the f~I curve of the neuron. Indeed, for small f, one can
write v(t) = D[, + I, cos(2mft)], so that because I, << I;:

vip o0d
I, oI’ (5)
whereas the phase shift at small fis ¢, . = 0.

Noise. When a neuron receives a large number of synaptic inputs per
membrane time constant through synapses with small amplitude com-
pared with threshold, the resulting currents can be well approximated by
amean input current with random Gaussian variations around the mean
(diffusion approximation) (Tuckwell, 1988); thus, we consider Gaussian
noise. If one assumes that postsynaptic currents are instantaneous, the
Gaussian noise is white. For exponentially decaying synaptic currents,
the Gaussian noise is colored with a correlation time equal to the synaptic
decay time constant (see Appendix B2).

Conductance-based models

Two single-compartment neuronal models are used in this study. The
first was proposed by Wang and Buzséki (1996), which is a modified
version of the original Hodgkin—Huxley model (Hodgkin and Huxley,
1952). The Wang—Buzsdki (WB) model has a leak current, a fast sodium
current with instantaneous activation dynamics, m( V), and a delayed-
rectifier potassium current. The firing current threshold of the neuron is
I = 0.16 pA/cm?. This corresponds to a voltage threshold V. = —59.9
mV. Note that the WB model is type I (zero firing frequency at threshold)
and not type II (nonzero firing frequency at threshold), like the
Hodgkin—-Huxley model with standard parameters (Hodgkin and Hux-
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ley, 1952) because of the different choice of parameters, in particular for
the sodium and potassium conductance (Wang and Buzsaki, 1996).

The second model was proposed by Hansel and van Vreeswijk (2002),
which has the fast sodium current and the delayed rectifier current of the
WB model but also additional intrinsic currents: A-type current, slow
potassium current, and persistent sodium current. Details of the models
are given in Appendix A.

Numerical integration of CB models. Model equations in the presence
of noise have been integrated using a stochastic second-order Runge
Kutta (RK2) method (Honeycutt, 1992), with a time step <0.02 msec in
all simulations. The instantaneous firing rate was computed by taking the
average spike count in bins of one-thirtieth of the input period over a
minimum of 2000 periods. The obtained instantaneous firing rate was
fitted by a sinusoid (Eq. 4) using a least-square method or by computing
directly the first Fourier component of the output spike train. Both meth-
ods yielded the same results. The input modulation amplitude I, was
adjusted depending on the input frequency to get an instantaneous firing
rate modulation equal to 25% of the baseline. We checked that, to this
level of input modulation, the amplitude of the firing rate modulation v,
varied linearly with I,.

Nonlinear integrate-and-fire neuron models

To understand the factors that determine the response to time-varying
inputs, we investigated simpler models that are to some extent analyti-
cally tractable. We introduced a family of one-variable neuronal models
whose membrane potential V dynamics are given by:

av
Cor = =V = V) + 9V) + L,(0), (6)

where C is the membrane capacitance, g; is the leak conductance, V; is
the leak potential, I, is the external synaptic current (Eq. 3),and ¢( V) is
a function of voltage that describes the spike-generating currents. The
passive membrane time constant is 7,, = C/g;.

The LIF (Knight, 1972a; Tuckwell, 1988) is the special case of this
family of models for which ¢s( V) = 0. In this model, a spike threshold V;,
has to be imposed to obtain spike generation. The resulting spike is
instantaneous, and the neuron is reset to a voltage V, after a spike.

When the function )( V) is supralinear, the membrane potential di-
verges to infinity in finite time if the input current exceeds some thresh-
old. This divergence can be identified with the firing of a spike, provided
that one supplements Equation 6 with a reset condition for the mem-
brane potential to a value V,, as in the LIF model. A threshold voltage V..
can be defined as the voltage at which the slope of the I-V curve vanishes,
which is given by:

Y (Vy) =g . (7)

This is also the largest steady voltage at which the neuron can be main-
tained by a constant input current. The corresponding current I, =
g (V. — V) — (V) is the threshold current above which tonic firing
occurs. We also defined the spike slope factor A, (in mV) as:

k43

Ar= vy

(8)

This parameter, which is inversely proportional to the curvature of the
I-V curve at the threshold V', measures the sharpness of spike initiation.
The quadratic integrate-and-fire (QIF) neuron corresponds to:

WV) = 53 (V= VP4 V= V) ~ I, ©)

where I is the current threshold, V.-and A are the spike threshold and
slope factor, respectively, as defined above. If one chooses V, = —, this
model represents the normal form of type I neurons (Ermentrout and
Kopell, 1986; Ermentrout, 1996).

Other spike-generating currents, ( V), were considered in this study.
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Of particular interest is the exponential integrate-and-fire (EIF) neuron
for which the spike-generating current is exponential:

V-V,
$(V) = giAr exp (T) . (10)

It is easy to check that V. and A satisty Equations 7 and 8, respectively.
Note that in the limit A, — 0 (spike with very sharp initiation), the EIF
neuron becomes equivalent to the LIF model with V,;, = V..

Fitting IF to the Wang—Buszdki model. In all of the models considered in
this study, we take C = 1 uF/cm?, g, = 0.1 mS/cm?,and V, = —65mV.
The spike threshold V,;, of the LIF model was chosen such that the thresh-
old current is equal to the threshold current I of the WB model. In the
WB model, the f~I curve behaves near the onset of firing
(I =1I;) as BVI—1;. This is also the case for the QIF and EIF models.
Therefore, one can determine the parameters 3 and I; to match the
behavior of their f~I curves with one of the WB models. This gives 8 =
0.038 msec ' wA ~ 2 cm, I.= 0.16 wA/cm 2 This also determines A =
3.48 mV and V= —59.9 mV. For larger I, the f--I curves are no longer
well described by the square root behavior. The reset voltage, V,, and the
refractory period, .., were chosen to minimize the difference of its f~I
curve with one of the WB models for input currents well above I (Fig. 1).
Matching the f~I curves in this range of currents determines V, = —63.8
mV and 7, = 0 (QIF model), V, = —68 mV and 7, = 1.7 msec (EIF
model).

Fokker—Planck equation. To analyze the response of an IF neuron to a
time-dependent input, we studied how the distribution of its voltage,
P(V, t), evolves over time. We assumed Gaussian white noise,
Lie(t) = O \@n(t) , where 7(t) has unit variance and o has a dimen-
sion of a voltage. The distribution, P(V, t), at time t obeys the Fokker—
Planck equation (Risken, 1984; Abbott and van Vreeswijk, 1993; Brunel
and Hakim 1999; Brunel, 2000; Knight et al., 2000; Nykamp and
Tranchina, 2000; Brunel et al., 2001; Fourcaud and Brunel, 2002):

(?P_ ]y
Friie (11)
where
[ =) e+ I o op
Iv(v> t)_ |:7 T + C :|P( > 7587‘/’

is the probability flux through the potential V (i.e., the probability per
unit of time that the membrane potential of the neuron crosses the value
V from below at time 7). The firing rate, v, of the neuron is the flux
through V = oe:

v(t) = lim Ju(V,t). (12)

V—tow

For a complete analytical description, one also needs the boundary con-
ditions, which take into account that, after the spike, the neuron is reset
toV,.

All of our calculations are based on the above equations, which are
valid for white input noise, or on their generalizations for more realistic
noise models. The details of the calculations can be found in Appendix B.

Simulations of the EIF model. In the EIF model, an action potential is
defined as a divergence of the voltage. In simulations, one has to intro-
duce a cutoff at a finite voltage V,;,. However, if one assumes that the
neuron immediately spikes after reaching V,;,, one ends up with a neuron
that is effectively an LIF for some inputs. This can be avoided by treating
the spike more carefully. In our simulations, we chose a threshold Vi,
large enough so that:

Y(Ve)>L+ 1+ 1 + o \Cg, . (13)

by a factor =100. For V < V,;, we integrated the dynamics using a
stochastic RK2 algorithm (Honeycutt, 1992). For V > V,;,, we neglected
all of the currents but ¢ V) and analytically integrated Equation 6. In
particular, the time it takes for the voltage to increase from V = V,, to
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Figure1. A,B,f~IcurvesoftheLIF, QIF, EIF, and WB neurons for a constant input current ( A)

and a noisy input current (B) (Gaussian white noise, o = 5 mV). The parameters of the EIF
model were chosen to match the f—/ curve of the WB model. The parameters of the QIF model
were chosen to match the behavior of the /~/ curve of the WB model near firing onset. The range
offiring rates in which the =/ curves of the QIF and WB models match is more restricted than for
the EIF model. The f~/ curve of the LIF neuron cannot be made to agree with the f~/ curves of the
other models at low firing rates because of the different qualitative dependence of the firing
rate on the input current (logarithmic vs square-root). In contrast, the parameters of the LIF
model can be determined to match the f—/ curve of the WB model at high frequencies (see
Materials and Methods for details on the determination of the model parameters).

V= +ois t, = 7, exp[(Vy — Vi )/Az]. If Vyy, is too large, the RK2
procedure at large V underestimates the increase in the membrane po-
tential at each time step. This leads to a systematic overestimate in the
spike time and causes an additional phase shift in the neuronal response.
In practice, we must make sure the time t,,, is large compared with the
integration time step dt. Thus, one needs to check that the two condi-
tions, (Eq. 13) and t,, >> dt, are both satisfied. In the simulations with
A= 3.48, avalue for which both conditions are satisfied with V;, = —30
mV for the range of inputs that we investigated.

Results

Filter of a simple conductance-based model

We investigated how the instantaneous firing rate of the WB
model is modulated by a sinusoidal input at frequency f in the
presence of a noisy background input using numerical simula-
tions. Figure 2A shows a particular realization of such an input
current. The instantaneous firing rate is computed by averaging
the response over many realizations of the noise, as shown in
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Figure2. Firingrate modulation of a conductance-based neuron. A, Deterministic part of the

input current (dashed line) with input noise (solid line). B, Raster plot, 2000 repetitions of the
input current with independent noise sources. (, Instantaneous firing rate of the neuron aver-
aged over these repetitions. D, £, Gain ( D) and phase shift ( £) of the firing rate modulation of a
WB neuron versus the frequency, f, of the oscillating input. Spiking threshold, V,, is —20 mV
() and 20 mV (O). The dashed line in D is obtained by fitting the simulated data, assuming
a decay proportional to 1/fat high frequencies. The phase shift at high frequencies depends on
the definition of the spike time. It increases linearly with f (dotted and dotted— dashed lines are
linear fits at high frequencies). In both D and £, error bars are smaller than symbol size. Param-
eters: o = 6.3 mV (white noise), v, = 40 Hz.

Figure 2, B and C. Figure 2, D and E, shows how the amplitude
and phase shift of the firing rate modulation of the neuron de-
pends on the frequency of the sinusoidal input when the noisy
component is a Gaussian white noise with an SD of o = 6.3 mV
and its DC part is such that the average firing rate is v, = 40 Hz.

The amplitude versus frequency curve (Fig. 2D) shows a
marked attenuation of the response above a frequency of ~50 Hz.
A fit of our numerical simulation data in the range 50 Hz < f <
500 Hz, assuming a power law decay, reveals that the firing rate
modulation at large f decays as 1/f (Fig. 2 D). Moreover, we find
that in this frequency range, the phase shift does not vary much
and is slightly larger than 90°, as shown in Figure 2E. We per-
formed extensive numerical simulations varying the level of noise
and the DC external input as well as the temporally correlated
noise. In all of these simulations, the same behavior of the firing
rate modulation was found at sufficiently large f, although the
frequency above which it becomes apparent depends on the val-
ues of the varied parameters (Fig. 9).

In all of these simulations, the instantaneous spike rate was
computed using a definition of spike time as the time the mem-
brane potential crosses a voltage, V, = 20 mV, from below. The
response modulation amplitude does not depend on the precise
value of V, provided it is sufficiently high (more than —30 mV).
In contrast, the phase shift is more sensitive to V,, especially at
very high input frequencies where the increase of the phase shift is
linear with a slope that depends on V (Fig. 2E).

Integrate-and-fire models with intrinsic spike

generation mechanisms

Recent studies have shown that the high-frequency response of
the LIF model depends on the temporal correlations of the noise.
For white noise, the response decreases as 1/\/7 with a phase lag
of 45°; for colored noise, the response stays finite with no phase
lag (Brunel et al., 2001; Fourcaud and Brunel, 2002). These results
are clearly at odds with what we found in the simulations of the
WB model.
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To understand the origin of the behavior of the WB model at
high frequencies and why it is different from the LIF, we studied
nonlinear integrate-and-fire neurons, in which the membrane
potential obeys Equation 6. The advantage of using this simpli-
fied model is that it allows us to compute analytically both the f~I
curve and the firing rate modulation at high frequencies, and
hence to understand in detail the factors that affect it.

With a supralinear spike-generating current {s( V), the neuron
is endowed with an intrinsic mechanism for spike initiation. We
considered two cases in particular, the QIF neuron defined by
Equation 9 and the EIF neuron defined by Equation 10. These
two neuronal models are type I, like the WB model, and their f~I
curve increases proportionally to ,/I—I; , near the firing onset at
current threshold, I;. Hence, for both the QIF and EIF, the pa-
rameters can be chosen so that the onset of firing in response to a
constant input reproduces the parameters of the WB model suf-
ficiently close to the current threshold (Fig. 1) (see Materials and
Methods for details). For the EIF model, this constraint deter-
mines the value of the “spike slope factor,” A;. To determine the
remaining free parameters, V, and 7, we also required a good
fitting of the WB model f~I curve outside the region of
bifurcation.

The f~I curves of the QIF and EIF, with parameters so defined,
and the WB model are compared in Figure 1 A. It shows that the
firing rate response to constant current of the EIF and WB models
are very close in a broad range of firing rates (up to 200 Hz). The
QIF neuron reproduces the f~I curve of the WB neuron well at
low firing rates but not at high rates. Finally, the LIF neuron
cannot reproduce the f~I curve of type I neurons well at low rates,
because the firing rate has a logarithmic, not square root, depen-
dence on I — I;. However, the LIF neuron can be made to repro-
duce the f~I curve reasonably well at high firing rates by a suitable
adjustment of parameters.

We then compared the response of the QIF, EIF, LIF, and WB
models to noisy input currents (Eq. 3, with I; = 0). The corre-
sponding f~I curves are plotted in Figure 1 B for the four models
with the same parameters as in Figure 1 A. As in the noiseless case,
the f~I curves of the QIF and EIF models match the WB model /~I
curve very well in a broad range of input currents, and this range
is larger for the EIF model than for the QIF model.

For a more in-depth look at the spiking dynamics of these
various models, Figure 3 plots the voltage traces of the four mod-
els for the same realization of the input current. As shown in
Figure 3A, the QIF, EIF, and LIF models behave on large time
scales in a very similar way as the WB model. However, differ-
ences between these models are found on shorter time scales, as
shown in Figure 3B. The best match with the WB model is ob-
tained with the EIF model. The subthreshold potential traces are
essentially indistinguishable. This is because the same leak cur-
rent is present in both models and because the I-V curves of the
two models are very similar near threshold voltage, V. The latter
property stems from the fact that the activation curve of the fast
sodium current in the WB model can be well approximated near
threshold by an exponential function, as shown in Figure 3C.
Thus, the membrane potential behavior at the spike onset is very
similar for the WB and EIF models. After initiation, the dynamics
of the spike in the WB model is controlled by the interplay be-
tween Na © and K™ channel dynamics and is essentially indepen-
dent of synaptic inputs. Thus, its spike shape is approximately
invariant. Consequently, the only significant difference between
the EIF and WB models, the precise shape of the spike after the
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Figure3. A, Voltage traces for WB, EIF, QIF, and LIF neurons for the same realization of the
noisy input current. B shows a higher resolution for a short time interval in which a spike has
been generated in all models. The subthreshold traces are similar for all models; however, the
dynamics of the spike are different on an msec time scale. When the fluctuation leads to a spike
in all models, the LIF neuron spikes first. The EIF neuron spikes almost exactly at the spike onset
of the WB. The QIF neuron fires much later. For details of the QIF and EIF parameters, see
Materials and Methods. For the WB parameters, see Appendix A. Here, the LIF model has the
leak current of the WB model, a reset potential of V. = —68 mV,and V,, = —57mV, to get the
same average firing rate as the WB model. G, /-V curve of the EIF (solid line) and WB (dotted
line) neurons. The threshold V/;is defined as the minimum of the curve. The spike slope factor A,
is proportional to the radius of the curvature of the /-V/ curve at its minimum.

onset, leads to an input-independent fixed short delay (of order
0.1-0.2 msec) between the spikes of the two models.

The other two models failed to reproduce the dynamics of
spike initiation of the WB model. When a fluctuation in the input
current induces a spike in all four models, the LIF neuron, which
has an instantaneous spike, usually spikes first. The spike in the
QIF neuron usually occurs later because of the long time spent by
the neuron in the voltage threshold.

The high-frequency response of nonlinear

integrate-and-fire neurons

We analytically calculated the firing rate response of a general IF
model to a sinusoidally modulated input in the presence of
Gaussian white noise (Eq. 3). The details of the calculations,
which rely on the Fokker—Planck equation and an expansion of
both instantaneous firing rate and membrane potential distribu-
tion in powers of 1/f, are described in Appendix B. There, we
prove that, depending on the function {(V), there are three
classes of possible behaviors for the firing rate modulation at high
frequencies:

Table 1. High-frequency properties of linear and nonlinear integrate-and-fire
models

Exponent Phase lag
Model « P(f — )
LIF, colored noise 0 0
LIF, white noise 0.5 45°
EIF, all types of noise 1 90°
QIF, all types of noise 2 180°

The amplitude of response modulation in the high-frequency regime is proportional to 1/, Note that the types of
noise considered include current-based as well as conductance-based synaptic inputs.
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(1) If ' (V)/{( V) does not vanish and is finite at large V, the
phase lag ¢( f) is 90°, whereas the response modulation is given
by:

Lvy | l,lf’(V)
W ey )

(14)

where (V) is the derivative of . This happens if the spike-
generating current has an exponential dependence on the volt-
age, as in the EIF model. For this model, one finds that at high
frequencies:

vol,
Vl(f) - ZWCATf’ (15)
and the phase lag is ¢ = 90°.

(2) If ' (V)/{( V) goes to zero at large V, the rate modulation
decays faster than 1/fat high frequencies. This is, for instance, the
case of the QIF model for which the calculation of the order 1/f>
in the expansion of v, shows that at high frequencies, v,( f) =
(voI,)/[g, AT(27f7,,)*], and the phase lag is ¢ = 180° (see Appen-
dix B).

(3) If Y/ (V)/p( V) diverges when V goes to infinity, the re-
sponse is less attenuated than 1/f. This happens in particular for
the LIF neuron.

We also show in Appendix B that in cases 1 and 2, the high-
input frequency behavior is independent of the temporal corre-
lations of the noise. In contrast, in case 3, the properties of the
noise matter, as found in previous work in which the LIF model
was studied (Brunel et al., 2001; Fourcaud and Brunel 2002).
Furthermore, it can be shown that the results hold for current-
based as well as conductance-based noise, because in the case of
suprathreshold membrane potential, the spike-generating cur-
rent (V) dominates the neuronal dynamics, and the synaptic
input has little effect on what happens after spike initiation.

In conclusion, the amplitude of the firing rate modulation
behaves at high frequencies like a power law v, ( f) ~ 1/f“, where
the exponent a depends on the nonlinearity of the spike-
generating current (V). The phase lag at high-input frequency is
a/2. The exponent « and asymptotic phase shift of the various
models are summarized in Table 1. The high frequencies behav-
iors of the rate modulation in WB and EIF models are extremely
consistent. Other IF models failed to reproduce the behavior of
the WB model.

Properties of the EIF neuron at intermediate frequencies

The simulation and analytical results described so far show that in
the limit of low- and high-input oscillation frequencies, the be-
haviors of the EIF and WB models are very similar. We consider
now the behavior of the EIF model at intermediate frequencies
using numerical simulations.

When the noise level is weak, resonances appear at frequencies
that are integer multiples of the average firing rate vy, f= kv, (k =
1, 2,...) (Fig. 4, insets). This is because at low noise levels, the
neuron behaves like an oscillator. When the noise increases, the
neuronal firing process becomes less regular. The resonant peaks
become less pronounced and they disappear, one after the other.
For a sufficiently high noise level, the last resonance peak (k = 1)
disappears, and the firing rate modulation monotonically de-
creases with the input frequency, f. The dashed line in Figure 4,
computed by numerical simulations, represents the boundary in
the plane (v,, o) between the weak noise regime (below the line)
where the firing rate modulation displays resonances and the
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Figure 4. The qualitative behaviors of the firing rate modulation of the EIF model at inter-

mediate frequencies depend on the characteristics of the input current. Insets show a represen-
tative example of the corresponding behavior (gain vs input frequency in log—log scale). In all
insets, we plot a simulation of the EIF model (squares, gain) and the EIF and QIF high input
frequency regimes (solid and dotted— dashed lines). The dashed line gives the noise level below
which there are resonant peaks at the average firing rate v, and possibly atinteger multiples of
v, in response. Above the dashed line, the EIF model behaves like a low-pass filter, with ap-
proximately constant gain at low frequencies and a 1/f attenuation for sufficiently high fre-
quencies. The gain reaches the asymptotic behavior from above at low firing rates, whereas it
reaches the asymptotic behavior from below for high firing rates and high noise (see differences
in the two insets in the high noise region).

strong noise regime (above the line) where the resonances are
completely suppressed. In the latter region, the spike response
modulation, v,( f), is approximately constant in some range of
input frequencies, beyond which it decreases with f with an as-
ymptotic decay in 1/f. Therefore, when the noise is sufficiently
large, the EIF neuron behaves like a low-pass filter.

The gain and phase shifts of the filter in the presence of white
noise are plotted in Figure 5, A and B, respectively, for fixed v,
and three values of the spike slope factor, A;. In all cases, the gain
of the filter decreases as 1/f at large enough frequencies. This
asymptotic regime is reached earlier for larger A;. There is an
overall reduction of the gain as A, increases. This effect is in
agreement with our analytical calculation (Eq. 15), which pre-
dicts that in the limit f — 0, the firing rate modulation, v,, de-
creases with A . This is also consistent with Equation 5, because
one can show (using Eq. 29) that the derivative of the f~I curve at
v, = 20 Hz is a decreasing function of A;. The phase shift is an
increasing function of A, as shown in Figure 5B. This corre-
sponds to what is expected intuitively, because a decrease of A,
increases the sharpness of spike initiation. At large frequencies,
the phase shift of the filter goes to —m/2 for any A, but the
convergence is slower when A is small.

Figure 6 shows the effect of temporal correlations in the input
noise on the shape of the filter. The response is plotted for three
values of the temporal correlation of the noise, 7,, over a broad
range of input frequencies, f. In these simulations, the noise level
was adjusted so that the low-frequency response stays constant as
7, was varied. All three curves overlap for sufficiently large fre-
quencies, f> 100 Hz, in agreement with our analytical results. In
contrast, for intermediate frequencies, 30 < f < 100 Hz, the
response modulation increases with 7. This effect is reminiscent
of the behavior of the LIF neuron (Brunel et al., 2001) for which
correlations in the input noise suppresses the attenuation of the
response modulation (Brunel et al., 2001; Fourcaud and Brunel,
2002).
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Figure5. Influence of the spike sharpness on the ElF filter. A, B, Gain ( A) and phase ( B) of the
firing rate modulation are plotted for different values of the spike slope factor A, indicated in
A. Other parameters: v, = 20 Hz, o = 6.3 mV. Note that as A, decreases, the high frequency
asymptotic regime is shifted to higher input frequencies. For large A;, the gain decays faster
than 1/f, and the phase shift is larger than 90° in an intermediate frequency range.

To further characterize the filtering properties of the neuron,
we defined the filter cutoff as the frequency, f,, for which the filter
gain decreases by a factor 1/ V]? compared with its low-frequency
limit, v,( f.) = v ¢/ \,E . We used numerical simulations to study
how f. depends on the average firing rate, v,, the spike slope
factor, A, and the temporal correlations in the noise. Figure 7
shows the results for a noise level o = 8 mV. For this value of o,
the EIF neuron is in the strong noise regime in the entire range of
average firing rates and the spike slope factor explored.

Figure 7A shows that for a fixed value of the slope factor, f. is
finite in the limit of low average firing rate, v,, and that it is an
increasing function of v,. For v, > 10 Hz, f. varies linearly with .
In Figure 7B, the cutoff frequency is displayed as a function of A
for fixed v, and different values of 7,, the noise correlation time.
In general, f. is a decreasing function of A but, at large enough
A, it saturates toward a value that depends only weakly on 7,. In
contrast, the smaller the 7, the weaker the variations of f. at small
A In particular, for white input noise, f, is almost constant in all
of the explored range of A;. Temporal correlations in the noise
increase the cutoff frequency, f, and this effect is more pro-
nounced at smaller values of A;. (i.e., when spikes have sharper
initiation).
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Parameters: o = 6.3 mV; v, = 20 Hz; f = 20 Hz. The first Fourier component, v, , is linear in
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linear approximation.

Domain of validity of the linear response

In the previous sections, we analytically computed the linear re-
sponse of the EIF neuron to modulated input in the limit of small
or large modulation frequency, f. These results should provide a
correct quantitative description of the neuron dynamics in these
limits for sufficiently weak amplitude modulation, I;. The nu-
merical simulations presented above, performed for a finite but
small value of I}, confirm this expectation. They also extend our
study by investigating the neuronal linear filter at intermediate
values of the input frequency.

How large can the input modulation be for the response of the
neuron to still be linear? To address this issue, we performed
simulations at various levels of input modulation and measured
the amplitude of the Fourier components of the response up to
order 3. Results of these simulations are displayed in Figure 8 for
o = 6.3 mV, v, = 20 Hz, and an input modulation frequency of
f = 20 Hz. For these parameters, v, varies linearly with I;, and
higher order Fourier components are negligible up to input mod-
ulations that induce temporal variations of the firing rate as large
as 75% of the average firing rate. This shows that the neuron
responds in a linear manner in this range of firing rate variations.
A similar range of validity was obtained for all values of f tested
(0—100 Hz) in the strong noise regime (the boundaries of strong
and low-noise regimes are indicated in Fig. 4). In the low-noise
regime, the domain of validity is on the same order of magnitude,
except for frequencies close to resonances.

Comparison of the linear responses of EIF and
conductance-based neurons

In Figure 9, we compare the gain and phase shifts of the EIF and
WB models for two levels of noise, o, and average firing rates, v,,.
We found a remarkable agreement for the gain of the two models
in all ranges of frequencies studied. For the phase shift, the agree-
ment is also excellent but in a smaller range of frequencies, up to
100 Hz. Above 100 Hz, the phase lag is significantly smaller in the
EIF model than in the WB model. This is a consequence of the
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gain (A, 7-2) and phase shift (8, 7-2) with high (4-7, B-1) and low noise (A-2, B-2). Note the
good agreement in all regimes for the gain. The phase shifts of both models are very similar up
to an input frequency at ~100 Hz in which the WB model has an additional phase lag. Thisis a
consequence of the fixed delay between EIF and WB spike time shown in Figure 38.
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Figure10.  Comparison of the response of the WB (solid line) and EIF (dashed line) models to

a current step (average, >1,600,000 repetitions; firing rate computed in 0.6 msec bins; o =
6.3 mV). The time course of the responses of WB and EIF models is indistinguishable. The
agreement between both models is excellent, confirming the close match of the linear filters
shown in Figure 9.

delay & ~ 0.2 msec between the spikes in the EIF and WB models,
which is clearly visible in Figure 3B. The corresponding addi-
tional phase lag is 271f3. This phase shift depends on the voltage
V,, which is used for the definition of the spike times in the WB
model.

In Figure 10, we show how the instantaneous firing rate of WB
and EIF models responds to a current step that brings the neuron
from 20 to 30 Hz. Again, the figure shows an excellent agreement
of EIF and WB model responses, as expected from Figures 8
and 9.

Effect of sodium channel activation kinetics on
high-frequency behavior

Sodium channels have a voltage-dependent activation time con-
stant on the order of 0.1 msec (Martina and Jonas, 1997). The WB
model makes the simplifying assumption that the sodium activa-
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tion is instantaneous. Because (V) depends on the voltage di-
rectly in the nonlinear IF models, the effective spike initiation is
also instantaneous in these models. In most situations, this as-
sumption will not affect the results much, but there is clearly a
frequency above which the finite activation time constant will
become important.

To measure at which frequency the activation kinetics affects
the firing rate modulation, we introduced the activation kinetics
in the WB model as in the Hodgkin—Huxley formalism. For the
EIF model, we replaced the spike-generating current, $( V), by a
dynamical variable with an activation time constant, 7,., = 0.1
msec: T, d/dt = —if + g AT exp[(V — V;)/A[]. After each
spike, the potential was reset to V,, and the spike-generating cur-
rent was reset to §s(V,). Results are shown in Figure 11. In both
models, the firing rate modulation was not affected at low and
intermediate frequencies. It was only slightly more attenuated
and had a larger phase lag at input frequency beyond several
hundred Hertz. In particular, the cutoff frequency was not af-
fected, and the instantaneous model was sufficient to describe the
neuron dynamics in a wide range of input frequencies (0-500
Hz). Slower activation kinetics decreased the frequency at which
the deviation from the 1/f behavior occurred. For example, for
time constants of 1 msec, the response is already significantly
more attenuated than 1/fbelow 100 Hz.

High-frequency behavior of other

conductance-based neurons

So far, our results suggest that the high-frequency response de-
pends only on the properties of the current leading to spike gen-
eration. To test this prediction, we performed numerical simula-
tions of a conductance-based model with the same fast sodium
current as in the WB model but with several additional ionic
currents (Hansel and van Vreeswijk, 2002) (see Materials and
Methods). These additional currents modify the subthreshold
behavior of the neuron and act on time scales slower than the
sodium activation time. They have a significant effect on the
response at low-input frequencies because of, in particular, the
adaptation current. However, Figure 12 shows that, above the
cutoff frequency, the amplitude of the firing rate modulation
decreases again as 1/f as in the EIF model. The dashed line in
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additional currents. A, B, Response to inputs with strong (A) and weak (B) noise and various
average firing rates (indicated in corresponding panels). The high frequency behavior is propor-
tional to 1/f with a cutoff close to the average firing rate, ;. The dashed line shows the EIF
high-input frequency asymptotic regime with parameters matching the sodium activation
curve of the conductance-based neuron. Note that in this figure, the frequency is normalized to
the averagefiring rate, v, so thatall response curves match approximately at high frequencies.
The 1/f regime extends up to 1000 Hz as in the WB model.

Figure 12 shows the amplitude in the asymptotic regime pre-
dicted by the EIF neuron (Eq. 15) with the same values of C and
A as for the regularly firing and WB neurons. This confirms that
high-input frequency behavior is determined only by intrinsic
currents leading to spike emission and the average firing rate.

Discussion

We studied how the firing rate response of a neuron to an oscil-
lating input depends on the modulation frequency, f. The models
that we investigated include conductance-based models as well as
generalized integrate-and-fire models. For sufficiently strong
noise, we found that these neurons behave like a low-pass filter.
For f below a cutoff frequency f,, the response modulation is
weakly dependent on f. For f > f, it decreases rapidly with fand
behaves at large flike a power law C/f“, where C is a prefactor
independent of f. We analytically calculated o and C for general-
ized integrate-and-fire models and have shown that & depends on
the nonlinearity of spike initiation.
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Of particular interest is the case of neurons with an exponen-
tial spike nonlinearity (EIF model). In this case, « = 1, and C
depends on both the average firing rate of the neuron and the
sharpness of spike initiation characterized by the spike slope fac-
tor, A This high-frequency behavior is independent of the
properties of the noise; it holds for white noise as well as colored
noise and for current-based and conductance-based noise. In con-
trast, all other types of nonlinearity lead to exponents « different
from 1.

Fast sodium currents involved in action potentials increase
exponentially near firing onset. Therefore, we expect that our
analytical results derived in the framework of the EIF are relevant
to predicting the response of real neurons to rapidly varying in-
puts. This is further supported by our simulations of
conductance-based models, the quantitative behavior of which is
identical to that found for the EIF.

We have also shown that the cutoff frequency of the EIF neu-
ron increases approximately linearly with the average firing rate,
and that it is a decreasing function of the spike slope factor A .
The latter dependency is very mild for white noise but much
more pronounced for colored noise. We expect this result to be
generic, as confirmed by our simulations of simple conductance-
based models.

Implications for modeling

We have shown how a simple conductance-based neuronal
model can be reduced in a systematic way to a new type of
integrate-and-fire model, the EIF model, in which the dynamics
involve a current that increases exponentially with the membrane
potential. Remarkably, the responses to rapidly fluctuating in-
puts of the full and reduced models are indistinguishable. More
generally, the filter characteristics are quantitatively similar for
the two models in the entire range of input frequencies. This is in
contrast to the LIF model, the response properties (Gerstner,
2000; Brunel et al., 2001; Fourcaud and Brunel, 2002; Mazurek
and Shadlen, 2002; van Rossum et al., 2002) of which differ qual-
itatively from those of conductance-based models at all frequen-
cies, as shown here. Also, although QIF and conductance-based
neurons behave similarly at low frequencies, qualitative discrep-
ancies remain at high frequencies.

The stability of asynchronous firing in large networks of in-
teracting neurons has been studied extensively in LIF (Abbott
and van Vreeswijk, 1993; Treves, 1993; Brunel and Hakim, 1999;
Brunel, 2000) and QIF (Hansel and Mato, 2001, 2003) neuronal
networks. The approach developed in these studies can be gener-
alized to some extent for neurons with more realistic dynamics,
provided that one knows how they respond to weakly modulated
oscillating inputs. Hence, the present study paves the way for a
greater understanding of the synchronization properties of
conductance-based neurons. In particular, the presence of a cut-
off frequency in the filtering properties of conductance-based
neurons indicates that there is an upper bound to the frequency
of population oscillations, which can emerge in large networks
(Geisler et al., 2002).

Functional implications

Our results can be used to determine how many neurons are
needed to detect a transient signal in noisy conditions, given
single-neuron characteristics. Equivalently, one can calculate the
minimal duration a given signal should last to be detected. Con-
sider, for example, a population of 100 neurons emitting at a
background rate of 10 Hz and subjected to a transient signal that,
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ifapplied for a time long enough, would increase the firing rate to
20 Hz. An ideal detector must be able to distinguish the transient
increase of the population rate induced by the signal from rate
fluctuations attributable to the finite number of neurons. This
can be done using a receiver operator characteristics analysis
(Green and Swets, 1966). Briefly, one computes the distributions
of the spike counts in a given interval under two conditions (sig-
nal or no signal). One then computes the probability of correct
detection of the signal (i.e., the probability that the spike count is
larger when the signal is present than when it is absent). If neu-
rons have very sharp spikes (A close to zero) in the presence of
correlated noise, the signal can be detected in ~5 msec with 90%
accuracy. If the spike slope factor is A, = 3 mV, the signal can be
detected only in ~12 msec with the same accuracy. The detection
time increases further for larger values of A .

Experimental implications

How sharp are spikes in cortical neurons?

Our work shows that the spike slope factor, A, is one of the main
parameters on which the response of a neuron to fluctuating
inputs depends. Activation curves of Na* channels have been
measured in several preparations, including neocortical pyrami-
dal cells (Fleidervish et al., 1996), hippocampal pyramidal cells,
granule cells, and basket cells (Martina and Jonas, 1997; Fricker et
al., 1999; Ellerkmann et al., 2001). These authors used Boltzmann
functions to fit the observed data. Using their best-fit parameters,
one finds Ay in the range of 3—-6 mV for these types of cells.
However, in all cases, there are few data points in the region of the
threshold, leading to a considerable uncertainty in the estimate of
this parameter. Therefore, more experiments are needed to de-
termine the spike slope factor of cortical neurons.

Experimental measurements of the linear response of neurons

The instantaneous firing rate of neurons responding to sinusoi-
dal currents has been measured in slice preparations (Knight,
1972b; Carandini et al., 1996; Chance, 2000). Carandini et al.
(1996) and Chance (2000) found cutoff frequencies in the range
of 10-100 Hz that increase with the average firing rate. This is
consistent with our findings. However, none of these studies have
systematically explored high-frequency behavior. Bair and Koch
(1996) measured the poststimulus time histogram power spectra

Table 2. Gating variables of conductance-based models
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0.1(V + 35) v
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Table 3. Conductance density in mS/cm? and reversal potentials in mV for the ionic
channels in the conductance-based models

X 9y V
Na 35 55
NaP 0.08 55
K 15 —90
A 2.5 —90
K 0.5 —90

s

of MT neurons in response to visual stimuli consisting of randomly
moving dots. In the examples shown in this study, the output power
spectrum is rapidly attenuated in the 30—100 Hz frequency range.
However, it is difficult to interpret these results, because the fre-
quency content of the synaptic input to MT neurons is unknown.
Thus, additional experiments are needed to test our prediction for
the 1/fattenuation of the response at high frequencies.

Testing our experimental predictions

The main predictions of our work are: (1) the neuronal gain
decays as 1/fat high frequency, independently of the characteris-
tics of the input, (2) the cutoff frequency increases with the aver-
age firing rate, and (3) the cutoff frequency increases when the
spike slope factor decreases in the presence of temporally corre-
lated noise. One possible experimental test of these results would
be to study the response of neurons in vitro, in which sodium
channels underlying spike initiation are blocked with TTX and
replaced, using dynamic clamp techniques by an artificial sodium
current with known properties. Note that because the dynamics
of sodium currents underlying spike initiation are fast, a dedi-
cated analog circuit may be needed to emulate them with the
dynamic clamp method. A similar experiment can be devised in
vivo (e.g., in cortical neurons). Using QX314 (lidocaine N-ethyl
bromide quaternary salt) intracellularly, sodium currents in a
specific cell can be blocked without affecting the activity of its
neighboring cells. This would preserve the background noise that
the cell receives from the rest of the network and allow for the
study of its effect on the response.

Appendix

A. Conductance-based models

The Wang—Buszaki model was introduced by Wang and Buzséki
(1996). The membrane potential V() is governed by the follow-
ing equation:

av

CME = _IL - INa - IK + Isyn(t) bl

where C,, is the membrane capacitance (C,; = 1 wF/cm?), I; =
g.(V = V,) is theleak current (g, = 0.1 mS/cm? V;, = —65mV;
7,, = Clg; = 10 msec), Iy, = guam h(V — Vy,) is the sodium
Hodgkin—Huxley current with an instantaneous activation vari-
able, I, = gen*(V — V) is the delayed rectifier potassium cur-

rent, and I,(#) is the input current defined in Materials and
Methods.
The dynamical equations for the gating variables are:
dx  x.(V) —x
=T (16)
dt 7.(V)

where x = m, h, n. All functions x..(V), 7, are given in Table 2.
The respective maximum conductance densities and the reversal
potentials of the ionic currents are given in Table 3.

Another conductance-based model used in this work is taken
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from Hansel and van Vreeswijk (2002). The dynamics of the
model are described by:

av

CME = — LI~ Ik— Iy — Ikt Isyn >

(17)

where the currents I}, I, and I are identical to the WB model
(except V, = —70 mV), but three additional ionic currents are
present: (1) a persistent sodium current, Iy,p = guaps-( V)(V —
Vi) (2) an A-type potassium current, I, = g,a..(V)’b(V — V),
and (3) a slow potassium current responsible for spike adapta-
tion, Iy, = grz(V — V).

The dynamical equations for the gating variables m, h, n, b,
and zare given by Equation 16. All gating variable parameters are
given in Table 2. The respective maximum conductance densities
and the reversal potentials of the ionic currents are given in Table 3.

In most of this study, we neglect the sodium activation kinet-
ics, and we take m = m,,.

B. Analytical calculations of the neuronal response to
sinusoidal modulated noisy inputs

B1. Gaussian white noise
We rewrite Equation 6 as:

av
Ci = gLF(V) + Isyn(t) >

dt (18)

with F(V) = =V + V, + §(V)/g, and:
Ln(6) = 1(t) + o \Cgim(®) , (19)
I(t) = I, + I, cos(wt), (20)

where I(#) is the deterministic part of the input current, and n(¢)
is a Gaussian white noise with zero mean and unitary SD. The
frequency of the modulation is fand w = 27f. For convenience,
we also define w(t) = I(t)/g;, which can be written as u(f) = p, +
W, cos(wt), with w, = Iy/g;, w = I,/g;. We denote the membrane
time constant 7,, — C/g;. Equation 18 can then be rewritten as:

T RV + () + o mm()

TmZ (2 1 )

The distribution of voltages at time ¢ obeys the Fokker—Planck
equation (Risken, 1984):

aP 0% 9*P

Tigr T 29V (22)

ad
Sy [FO) + (P,

with the boundary conditions:

lim Jy(V,t)=w(t),

V >+
where
B [F(V) + w(D)] o’ dP
JVit) = RV — (V)

The reset of the voltage to V, after the spike is taken into account
by requiring that:

]V(Vj’t) =Ju(V.,t) + v(1). (23)
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We solve this equation assuming that u, << u,. For the sake of
simplicity, we use complex notations and write to first order:

P(V,t) = Py(V) + P,(V,w)e™",
v(t) = v, + Vl(w)eiw)
J(V,t) = ]V,O(V) + ]V,I(V!w)eiw- (24)

where P,(V, w), v,(w), and Jy,,(V, ) are complex quantities,
Py << Py 0] << vy Tyt << Ty

Substituting Equation 24 in Equation 22 and keeping only the
terms at leading order, one finds that Py( V) satisfies the equation:

o’d’P, d
2 dv: dV[F(V) + Ro]Po(V) =0, (25)
which, after one integration over V, gives:
o’ 9P, K, for V>V,
2y W) T Py = { K for V<V, }
(26)

where K, and K_ are constants. The boundary condition (Eq.
12) and reset (Eq. 23) determine K, and K_:

K, = —y71,, K_=0. (27)

The solution of Equation 26 is:

2vyT, |
Py(V) = e

max(V,V;)

2 u
exp _olf [F(x) + poldx |du.
14

(28)

The normalization of the distribution Py( V) determines the av-
erage firing rate, v,. One finds:

2Tm +oo +co -1
Vo ={—5 dv [F(x) + pwoldx |du .
To —o max(V,V;)

(29)

We now consider the first order contributions in the expansions
of Equation 22. One finds:

- PP, Feup aP,
10T = 57y 8V( Ro) Py — oy (30)
The boundary condition at the same order gives:
F(V)+
v (w) = lim [MOPI(V,w)
V >+ Tm
o’ 9P, M1
_EW(V’(D)_'_TT”PO(V) ,
_[F(V)
= lim P,(V,w) | . (31)
V —>+w m

In the last equality, we used the fact that F( V) goes to infinity at
large V.
The solution of Equations 30 and 31 simplifies in two limits:
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Low-input frequency

At low frequencies (wT,, << 1), P(V, t) follows adiabatically the
slowly changing input, and the left-hand side of Equation 30 can
be neglected. It is then easy to check that P, = u, (0P,/du) is a
solution of Equation 30. Using Py(V) ~ y_... v,/F(V) (Egs. 26,
31), we can compute the firing rate modulation in the low-input
frequency limit:

61}0

vi(w — 0) = P«l@ (32)

High-input frequency
Expanding Equation 30 in powers of 1/w and keeping only the
leading order gives:

P(V) =

| ap,
_ H oy, 0< ) (33)

iwT, IV

and v, is determined by the large V behavior of P,(V) (Eq. 29).
Using Equation 26 and the fact that F(V) diverges at large V, one
finds:

and thus
P v F' (V)
e (35)
v (V)
Inserting Equation 35 into Equation 33, we find:
v F' (V)
1= - g (36)
iwT, F*(V)
Finally, inserting Equation 36 into Equation 31, we find:
v F’ (V) vy lim (V)
b~ M1Vo MiVo It ¥ (37)

1(1)7”,‘,%oo F(V) o,V =% (V)"

This formula can be applied to the EIF model to show that v,
decays like 1/w at large w. In contrast, for any polynomial F(V),
the 1/w term vanishes, and it is necessary to calculate P, and v, at
the next order (i.e., 1/w?). One finds that v, = A/w?, where the
prefactor A is proportional to limy._..(F' > — FF")/F. In particu-
lar, if F~ V?atlarge V, A is finite, and v, decays like 1/w” at large
. This is the case for the QIF model for which one finds:

Volhr

“Afom) e

vi(w) =

If F~ V¥ > 2 atlarge V, A diverges. In this case, one expects the
firing rate modulation to decrease like 1/ with 1 < o < 2.

B2. Temporally correlated noise

In the previous section, we assumed white Gaussian input noise.
Here, we show that the presence of correlations does not affect
the high-frequency behavior of the spike response modulation of
the EIF neurons. Assuming that synaptic current decays expo-

ot T,
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nentially with a synaptic time constant, 7,, the equations for the

dynamics of the IF neurons are:
av
TmE = F(V) + Msyn(t) + I*Lext(t) >

A phoyn
T dr

_IJ“syn + Mo + U\’Tmn(t)

The probability density function, P(V, g, t) (Brunel et al., 2001;
Haskell et al., 2001; Fourcaud and Brunel, 2002), satisfies a two-
dimensional Fokker—Planck equation:

oP 1 [O’sz 9*P 9

(Hagn — Mo)P
9 Msyn\Msyn "LO) :|

+
27, Apd,

([I‘Lsyn + I*Lext + F(V)]P) . (39)

T&V

The probability flux is now a two-dimensional vector with com-
ponents:

Mesyn + Mext + F(V)

Jv= T, —P, (40)
Mesyn = Mo Usz aP
=— P+ 41
i ( - ) 27 oy Y
In particular, in the large V' limit:
1
P(V’Msyn’t) TV ot WUV(V’Msymt)] > (42)

because F(V) diverges at large V. As before, the instantaneous
firing rate is given by:

+oo
v(t) = limj TV egyno ) A gy - (43)

V -

To solve these equations, one expands P(V, Poyms 1), WV, Foym t)
and v(¢) in a way similar to the case of white noise. One finds:

+oo
= hm f ]V,K(V)M'syn)dl‘l‘syn > (44)
V —>w
and
1
PK(V”‘LS)’H) TV ot W []V,K(VJJ“S)’H)] (45)

for k = 0, 1. A similar analysis, as in the white noise case, shows
that at first order in 1/w:

iy 0P,

b= _iw’rmw (46)

Combining Equations 44—45, one can show that:

My N Ry
vl ~ w—> _in m ( )aV Mosyn > (47)

my —ow

H1Vo m F(V)
o inmV%w F(V)

(48)
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which is the same expression as in the case of white noise (Eq. 37).
Therefore, the asymptotic behavior at high frequencies of the
instantaneous rate modulation is not affected by the presence of
temporal correlations in the noise.
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