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A key issue in understanding the neural code for an ensemble of neurons is the nature and strength of correlations between neurons and
how these correlations are related to the stimulus. The issue is complicated by the fact that there is not a single notion of independence or
lack of correlation. We distinguish three kinds: (1) activity independence; (2) conditional independence; and (3) information indepen-
dence. Each notion is related to an information measure: the information between cells, the information between cells given the stimulus,
and the synergy of cells about the stimulus, respectively. We show that these measures form an interrelated framework for evaluating
contributions of signal and noise correlations to the joint information conveyed about the stimulus and that at least two of the three
measures must be calculated to characterize a population code. This framework is compared with others recently proposed in the
literature. In addition, we distinguish questions about how information is encoded by a population of neurons from how that information
can be decoded. Although information theory is natural and powerful for questions of encoding, it is not sufficient for characterizing the
process of decoding. Decoding fundamentally requires an error measure that quantifies the importance of the deviations of estimated
stimuli from actual stimuli. Because there is no a priori choice of error measure, questions about decoding cannot be put on the same level

of generality as for encoding.
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Introduction

One of the fundamental insights of neuroscience is that single
neurons make a small, but understandable, contribution to an
animal’s overall behavior. However, most behaviors involve large
numbers of neurons, thousands or even millions. In addition,
these neurons often are organized into layers or regions, such that
nearby neurons have similar response properties. Thus, it is nat-
ural to ask under what conditions groups of neurons represent
stimuli and direct behavior in either a synergistic, redundant, or
independent manner. With the increasing availability of multi-
electrode recordings, it now is possible to investigate how sensory
data or motor intentions are encoded by groups of neurons and
whether that population activity differs from what can be inferred
from recordings of single neurons. Complementary to this ques-
tion is how population activity can be decoded and used by sub-
sequent neurons.

The code by which single neurons represent and transmit in-
formation has been studied intensively (Perkel and Bullock, 1968;
Rieke et al., 1997; Dayan and Abbott, 2001). Many of the concep-
tual approaches and analytic tools used for the single neuron case
can be extended to the multiple neuron case. The key additional
issue is the nature and strength of correlations between neurons.
Such correlations have been measured using simultaneous re-
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cording, and their influence on population encoding has been
assessed with a variety of methods (Perkel et al., 1967; Mastro-
narde, 1983; Aertsen et al., 1989; Gray and Singer, 1989; Abeles et
al., 1993; Laurent and Davidowitz, 1994; Meister et al., 1995;
Vaadia et al., 1995; Krahe et al., 2002). The intuitive notion of
synergy has been quantified in various systems using information
theory (Gawne and Richmond, 1993; Gat and Tishby, 1999;
Brenner et al., 2000; Petersen et al., 2001). Studies of population
decoding have examined how animals might extract information
from multiple spike trains (Georgopoulos et al., 1986; Abeles et
al., 1993; Zohary et al., 1994; Warland et al., 1997; Brown et al.,
1998; Hatsopoulos et al., 1998), as well as the limits of possible
decoding algorithms (Palm et al., 1988; Seung and Sompolinsky,
1993; Salinas and Abbott, 1994; Brunel and Nadal, 1998; Zemel et
al., 1998).

Here, we describe a quantitative framework for characterizing
population encoding using information theoretic measures of
correlation. We distinguish the sources of correlation that lead to
synergy and redundancy and define bounds on those quantities.
We also discuss the consequences of assuming independence for
neurons that are actually correlated. Many of the quantities we
define have been published previously (Gawne and Richmond,
1993; Gat and Tishby, 1999; Panzeri et al., 1999; Brenner et al.,
2000; Chechik et al., 2002). Here, we bring them together, show
their interrelations, and compare to alternative definitions. In
particular, Nirenbergetal. (2001, 2003) have proposed a measure
of the amount of information lost when a decoder ignores noise
correlations. We show that their interpretation of this quantity is
incorrect, because it leads to contradictions, including that in
some circumstances, the amount of information loss may be
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Figure 1. A diagram of neural encoding and decoding. A pair of neurons, 1and 2, encode
information abouta stimulus, (), with spike trains, r,(t) and r,(t ). This may be described by the
conditional probability distribution of the responses given the stimulus p(r, , r,|s). Decoding is
the process of trying to extract this information explicitly, which may be done by other neurons
or by the experimentalist. This process is described by a function, £, that acts on r, and r, and
gives an estimated version of the stimulus.

greater than the amount of information that is present. We argue
that their measure is related more closely to questions of decod-
ing than encoding, and we discuss its interpretation.

Results

To understand the manner in which neurons represent informa-
tion about the external world, it is important to distinguish the
concepts of encoding and decoding. Figure 1 shows a schematic
of encoding and decoding for a pair of neurons. Encoding is the
conversion of stimuli into neural responses; this process is what
we observe experimentally. Decoding is a procedure that uses the
neural spike trains to estimate features of the original stimulus or
make a behavioral decision. The experimentalist uses a chosen
algorithm to either reconstruct stimulus features or to predict a
motor or behavioral outcome. The goal is to understand how
information encoded by neurons can be explicitly recovered by
downstream neurons and what decisions the animal might make
based on these neural responses.

Neural encoding

In general, neural responses are noisy, meaning that repeated
presentations of the same stimulus give rise to different responses
(Verveen and Derksen, 1968; Mainen and Sejnowski, 1995; Bair
and Koch, 1996). Although the observed noise often has a com-
ponent caused by incomplete control of experimental variables,
all neural systems exhibit sources of noise that operate even under
ideal experimental conditions. Thus, the relationship between a
stimulus and the resulting neural response must be described by
a probabilistic dictionary (for review, see Rieke et al., 1997). In
particular, for every possible stimulus s, there is a probability
distribution over the possible responses r given that stimulus,
namely p(r]s).

Questions of neural encoding involve what response variables
represent information about the stimulus, what features of the
stimulus are represented, and specifically how much one can
learn about the stimulus from the neural response. Given the
distribution of stimuli in the environment, p(s), the encoding
dictionary p(r|s) contains the answers to these questions.

Because the encoding dictionary is a complex object, it has
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often been useful to summarize its properties with a small num-
ber of functions, such as the spike-triggered average stimulus or
the firing rate as a function of stimulus parameters. An especially
appealing measure is the mutual information between the stimuli
and the responses (Shannon and Weaver, 1949; Cover and
Thomas, 1991):

I(S; R) = >, 2, p(s, r)log,

SES rER

[ (s, 7)

p(s)p(r)] bits, (1)

where S denotes the set of stimuli {s} and R denotes the set of
responses {r}. The mutual information measures how tightly
neural responses correspond to stimuli and gives an upper bound
on the number of stimulus patterns that can be discriminated by
observing the neural responses. Its values range from zero to
either the entropy of the stimuli or the entropy of the responses,
whichever is smaller. The mutual information is zero when there
is no correlation between stimuli and responses. The information
equals the entropy of the stimulus when each possible stimulus
generates a uniquely identifiable response, and it equals the en-
tropy of the responses when there is no noise (Shannon and
Weaver, 1949). Many authors have studied single neuron encod-
ing using information theory (Mackay and McCulloch, 1952;
Fitzhugh, 1957; Eckhorn and Popel, 1974; Abeles and Lass, 1975;
Optican and Richmond, 1987; Bialek et al., 1991; Strong et al.,
1998).

Mutual information is appealing for several reasons. First, it is
a very general measure of correlation between stimulus and re-
sponse and can be thought of as including contributions from all
other measures of correlation. Second, it does not make assump-
tions about what features of the stimuli or responses are relevant,
which makes information theory uniquely well suited to the anal-
ysis of neural responses to complex, naturalistic stimuli (Lewen et
al., 2001). Third, as signals flow through the nervous system,
information can be lost but never gained, a property known as the
data processing inequality (Cover and Thomas, 1991). Finally,
mutual information is the unique functional of the encoding
dictionary that obeys simple plausible constraints, such as addi-
tivity of information for truly independent signals (Shannon and
Weaver, 1949). For these reasons, we focus here on an informa-
tion theoretic characterization of population encoding.

Spike train entropies and mutual information are notoriously
difficult to estimate from limited experimental data. Although
this is an important technical difficulty, there are many cases in
which the mutual information has been estimated for real neu-
rons responding to complex, dynamic inputs, with detailed cor-
rections for sampling bias (Strong et al., 1998; Berry and Meister,
1998; Buracas et al., 1998; Reich et al., 2000; Reinagel and Reid,
2000). Many authors have explored strategies for estimating
spike train entropies (Treves and Panzeri, 1995; Strong et al.,
1998; Victor, 2002; Nemenman et al., 2003; Paninski, 2003), and
there is continuing interest in finding improved strategies. We
emphasize that these technical difficulties can and should be sep-
arated from the conceptual questions involving which informa-
tion theoretic quantities are interesting to calculate and what they
mean.

Encoding versus decoding

While the concept of encoding is relatively straightforward for
neurons, decoding is more subtle. Many authors think implicitly
or explicitly about an intermediate step in decoding, namely the
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formation of the conditional stimulus distribution, p(s|r), using
Bayes’ rule:

_ p(rls)p(s)

p(si) p(r)

(2)

This probability distribution describes how one’s knowledge of
the stimulus changes when a particular neural response is ob-
served; this distribution contains all of the encoded information
(de Ruyter van Stevenick and Bialek, 1988). Some even call this
intermediate step decoding (Dayan and Abbott, 2001). Although
this distinction might be viewed as semantic, we note that the
action of a stimulus—response pathway in an organism results in
an actual motor output, not a distribution of possible outputs.
Thus, the decision-making process that produces a single output
is different from forming p(s|r) and is necessary to use the infor-
mation encoded by neural spike trains. Furthermore, there are
some methods of stimulus estimation, such as linear decoding,
that do not make explicit reference to p(s|r) (Bialek et al., 1991),
so this intermediate step is not always required. For these reasons,
we prefer to think of decoding as the process that actually esti-
mates the stimulus and the formation of the conditional stimulus
distribution, where relevant, as the raw material on which many
decoding algorithms act. As such, we refer to this distribution as
a decoding dictionary.

In the case of encoding, there is a single response distribution
to be measured, p(r|s), and the mutual information between
stimulus and response implied by this distribution provides a
powerful characterization of the encoding properties of these
neural responses. However, in the case of decoding, there are
many possible algorithms that can be used on the same neural
responses. Often, one talks about an “optimal” decoder, meaning
that one chooses a class of possible decoding algorithms and ad-
justs the specific parameters of that algorithm for the best results.
This raises the question of what makes one decoder better than
another. One obvious figure of merit is the information that the
estimated stimulus conveys about the original stimulus, I(S;
SY). Intuitively, the best decoder is the one that captures the
most of the encoded information. Furthermore, the data process-
ing inequality implies that I(S; S) =< I(S; R), so that there is an
absolute standard against which to make this comparison.

Unfortunately, mutual information alone is an insufficient
measure with which to evaluate the success of a decoder. Mutual
information only measures the correspondence between the
original and estimated stimulus, not whether the estimated stim-
ulus equals or approximates the original stimulus. This fact is
shown in Figure 2 by an example of a perfectly scrambled de-
coder. This decoder achieves a one-to-one mapping between the
estimated and original stimuli but always makes the wrong esti-
mate. Such a decoder retains all of the information about the
stimulus but is obviously doing a bad job. For an organism to
appropriately act on the information encoded by neural spike
trains, it must actually make the correct estimate. Thus, decoders
fundamentally must be evaluated with respect to an error mea-
sure, E(s, s), that describes the penalty for differences between
the estimated and original stimuli.

Importantly, there is no universal measure of whether an error
is large or small. For instance, a particular error in estimating the
location of a tree branch may be fatal if you are a monkey trying to
jump from one branch to the next but acceptable when trying to
reach for a piece of fruit. Errors may also be strongly asymmetric:
failing to notice the presence of a predator may result in death,
whereas unnecessarily executing an escape response only wastes
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Figure2. Schematicofascrambled decoding process. Six stimuli, {s}, are encoded by neural
responses and mapped by a decoder onto six estimated stimuli, {s *'}. This mapping is one-to-
one, so it preserves all the information in the stimulus. However, the estimates are scrambled,
so that this decoder never gives the correct answer.

finite resources. Thus, any notion of a natural measure of the
error stems from the objective that the decoder is trying to
achieve. Because there is no “correct” error measure against
which to judge the success of a decoder, statements about decod-
ing cannot be put on the same level of generality as statements
about encoding. Information theory can still play a role in char-
acterizing decoding, but only in conjunction with an error
measure.

Population encoding

Many questions about the nature of encoding by a population of
neurons are extensions of the questions dealing with a single
neuron. Instead of studying the single-cell response distribution,
we need to use the set of responses of N neurons, given by p(7|s),
where7 = {ry, r,, ..., ry}. Similarly, using the joint probability
distribution, p(s, 7), we can calculate the mutual information
between the set of responses and the stimulus. For two cells:

P(S’ rl) "2) :| ( )

I(S; Ry, Ry) = 2, >, pls, 1y rz)Ing[p(s)p(W

s T2

The main additional issue for neural encoding by a population
of cells is the correlation among these cells and how these corre-
lations relate to the stimulus. To understand how a population
code differs from the codes of its constituent neurons, we must
identify appropriate measures of correlation and independence
and quantify their relation to the stimulus. In many ways, the
question of how responses of multiple neurons can be combined
to provide information about the stimulus is related to the ques-
tion of how successive responses (spikes, bursts, etc.) of a single
neuron can be combined to provide information about a stimu-
lus that varies in time (see, for example, Brenner et al., 2000).

Three kinds of independence

Independence and correlation are complementary concepts: in-
dependence is the lack of correlation. The statistics community
has long noted the distinction between independence and condi-
tional independence and its implications (Dawid, 1979). This
distinction has been applied to neuroscience in the classic work of
Perkel etal. (1967). Following their example, it has been common
to use cross-correlation as a measure of these dependencies (Palm
et al., 1988). In the case of the neural code, we are interested
primarily in the relation between stimuli and responses, which is
itself another form of correlation. Thus, for neural codes, there
are three kinds of independence. This diversity is the result of the
fact that different sources of correlation have different impacts on
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the manner in which neural activity encodes information about a
stimulus (Gawne and Richmond, 1993; Gat and Tishby, 1999;
Panzeri et al., 1999; Brenner et al., 2000; Chechik et al., 2002).
These notions are distinct in the sense that if a pair of neurons
possesses one form of independence, it does not necessarily pos-
sess the others. Here, we present definitions of the three kinds of
independence, along with corresponding information theoretic
measures of correlation, which quantify how close the neurons
are to being independent.

Activity independence. The most basic notion of correlation is
that the activity of one cell, r, , depends on the activity of another
cell, ,, when averaged over the ensemble of stimuli. This notion
of correlated activity is assessed by looking at the joint distribu-
tion of the responses of a cell pair, p(r,, r,). This joint distribu-
tion can be found from the simultaneously recorded responses by
summing over stimuli:

plry, ) = E p(r, r2|5)P(5)' (4)

Ifthere is no correlated activity between the pair of cells, then this
distribution factors:

p(ry, r2) = p(r1) p(ry). (5)

The natural measure of the degree of correlation between the
activity of two neurons is the information that the activity of one
cell conveys about the other:

plry, 1)

p(T])P(rz):| bits. (6)

I(R;; R,) = E p(ry, Tz)logz[

1,12

If the activity of the cells is independent, then I(R,; R,) = 0.
Because the information is bounded from above by the entropy of
the responses of each cell, it is possible to use a normalized mea-
sure, I(R;R,)/min[H(R, ), H(R, )], where H(R,) is the entropy
of the responses of cell i. This normalized measure ranges be-
tween 0 and 1. The value of I(R ;R, ) implicitly depends on the
stimulus ensemble S, as can be seen from Equation 4. For sim-
plicity, we leave this dependence out of our notation, but one
should keep in mind that activity independence is a property of
both a population of neurons and an ensemble of stimuli.

One could ask, perhaps more abstractly, for a measure of sim-
ilarity between the distributions p(r,, r,) and p(r,)p(r,) and
then interpret this measure as a degree of (non)independence.
There are even other, common information theoretic measures,
such as the Kullback—Leibler (KL) divergence (Cover and
Thomas, 1991) or the Jensen—Shannon divergence (Lin, 1991). It
is important to note that all such similarity measures are answers
to specific questions and, as such, cannot necessarily be used
interchangeably. For instance, the Jensen—Shannon divergence
measures how reliably one can decide if a given response comes
from the joint distribution, p(r,, r,), or the product distribu-
tion, p(r,) p(r,), given that these are the only alternatives. It has
a maximal value of 1 bit, when the two distributions are perfectly
distinguishable. In contrast, the mutual information has a maxi-
mal value equal to the spike train entropy, when the two re-
sponses are identical.

In this case, the KL divergence between p(r,, r,) and
p(ry)p(ry) is, in fact, identical to the mutual information be-
tween R, and R,. This holds because the mutual information is a
special type of KL divergence, one that is taken between two
particular probability distributions. However, the converse is not
true: the KL divergence between two arbitrary distributions is not
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necessarily a mutual information. Therefore, the specific ques-
tions answered by the KL divergence are, in general, different
from those answered by the mutual information (see below for a
discussion of the interpretation of the KL divergence).

The mutual information I(R,; R,) measures directly how
much (in bits) the response of one cell predicts about the re-
sponse of the other. We will see that this mutual predictability
contributes to redundancy in what the cells can tell us about their
stimulus. In addition to being an appealing and general measure
of correlation, we will see below that this choice of information
measure results in an interrelated framework for the three differ-
ent kinds of independence.

Conditional independence. Correlated activity between two
neurons can arise either from shared stimulation, such as from
correlations in their stimuli or overlap in their receptive fields, or
from shared sources of noise, such as a presynaptic neuron that
projects to both neurons or a common source of neuromodula-
tion. In the former case, the correlations between neurons can be
explained from knowledge of how each neuron alone responds to
the stimulus, whereas in the latter case they cannot. Therefore, an
important distinction is whether the correlations are solely attrib-
utable to the stimulus (“signal” correlations) or not (“noise” cor-
relations). Although this nomenclature is widely used, one
should keep in mind that “noise” correlations are not always
detrimental to the neural code.

The strength of noise correlations can be assessed by looking
at the joint distribution of neural activity conditioned on the
stimulus p(r,, r,|s). If two neurons respond independently to
the stimulus, they are called “conditionally independent,” and
the distribution of responses factors for all s:

p(ry, rols) = p(ri]s) p(rals). (7)

As in the case of activity independence, a natural measure of
conditional independence is the mutual information between
cells given the stimulus

I(R;; Rs) = 3 plr, ’z|5)‘°g2[zm]' v

T2

By measuring the dependence between neurons for each stimulus
s, this quantity ignores all correlations that arise from shared
stimulation and, thus, equals zero only if there are no noise-
induced correlations. A normalized measure is I(R,;R,|s)/
min(H(R,|s),H(R,|s)), which ranges between 0 and 1. For
many purposes, it is useful to compute the average over stimuli,
(I(Ry; R2|5)>5-

The distinction between signal and noise correlations relates
directly to an important distinction in experimental technique:
noise correlations can only be measured by recording simulta-
neously from a pair of neurons. A simple technique of demon-
strating the existence of noise correlations is the shuffle test or
“shift predictor” (Perkel et al., 1967; Palm et al., 1988), where the
cross-correlation between simultaneously recorded pairs of neu-
rons are compared on the same stimulus trial versus different
stimulus trials. Of course, as a practical matter, it is preferable to
measure even signal correlations simultaneously and from the
same preparation, because of nonstationarities in neural
responses.

Although the shuffle-corrected cross-correlation function
may seem intuitive and straightforward, it actually suffers from
ambiguities in how to normalize and interpret its values. The
apparent strength of cross-correlation between two neurons de-
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pends on the auto-correlation function of each neuron, so that
observed changes in cross-correlation contain this potential con-
found (Brody, 1999). Also, the cross-correlation function can be
expressed in different units: firing rate of one cell relative to the
other, fraction of total spikes within a time window, etc. There are
subtle differences between these choices of units (such as whether
the measure is symmetric) that make their interpretation tricky.
In contrast, the quantity (I(R,; R,|s)), provides a characteriza-
tion of noise correlations that resolves these ambiguities, has a
clear-cut interpretation, and is sensitive to forms of correlation
not captured by the shuffle-corrected correlogram (e.g., if the
response of one neuron is more precise when the other neuron is
active).

Pairs of neurons that are conditionally independent are not
necessarily activity independent, because shared stimulation may
still induce correlations in their responses when averaged over the
entire stimulus ensemble. For a simple example, consider two
binary neurons that produce either a spike or no spike in response
to two, equally likely stimuli. They each respond to the first stim-
ulus with a 50% probability of spiking, but neither fires in re-
sponse to the second stimulus. These neurons possess condi-
tional independence, because their joint response distribution
factors for each stimulus, but not activity independence, because
if one cell stays silent, the other is more likely to stay silent.

Conversely, pairs of neurons that are activity independent are
not necessarily conditionally independent, because noise corre-
lations may increase the probability that neurons fire together for
some stimuli and decrease it for others, such that those contribu-
tions roughly cancel when averaged over the stimulus ensemble.
For an example of this case, consider an extreme instance of
stimulus-dependent correlations: binary neurons such that for
the first stimulus either both fire or both remain silent with equal
probability, but for the second stimulus, either one fires a spike
and the other remains silent, or vice versa, with equal probability.
Here, the neurons are positively correlated for the first stimulus
and negatively correlated for the second. They are clearly not
conditionally independent, but because the positive and negative
correlations occur with equal strength, they are activity indepen-
dent. Notice that if the two stimuli occur with unequal probabil-
ity, then the cell pair is no longer activity independent. As these
examples demonstrate, activity independence and conditional
independence are distinct measures of correlation between
neurons.

Information independence. A final notion of correlation relates
to the information encoded by a cell pair. Intuitively, if the cells
are sensitive to completely different features of the stimulus, then
the information they convey together should just be the sum of
what they convey separately:

I(S; Ry, Ry) = I(S; Ry) + I(S; R,). 9)

Cell pairs that do not encode information independently can be
either synergistic, meaning that they convey more information in
their joint responses than the sum of their individual informa-
tion, or redundant, meaning that they jointly convey less. Thus,
the obvious measure of information independence is the synergy
(Gawne and Richmond, 1993; Gat and Tishby, 1999; Panzeri et
al., 1999; Brenner et al., 2000):

SYn(Rl) R,) =IS;R,,R,) — I(S; R)) — I(S; Ry). (10)

Negative values of this quantity indicate redundancy. A normal-
ized version of the synergy is given by Syn(R, , R, )/I(S; R, R,),
which ranges between —1, when the responses of the two neurons
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Figure 3.  Graphical presentations of synergy as a combination of other measures of inde-
pendence. A, Following Equation 11, we can represent the synergy or redundancy of a pair of
cells as a point in a plane with the axes (I(R; ; R,[s)), and (R, ; R,). Because both of these
measures are non-negative, only the top right quadrangle is allowed. Neurons that possess
activity independence lie on points along the abscissa. Neurons that possess conditional inde-
pendence lie on points along the ordinate. Information independence corresponds to the diag-
onal that separates the synergistic values from the redundant ones. B, Similarly, following
Equation 16, we can also express the synergy as a point in a plane with the axes A/_ ... and
Aljigna- Because Al ., is non-negative, only the top half plane is allowed.

noise

are related by a one-to-one mapping, and 1, when the cell pair
only conveys information by its joint response and there is zero
information contained in the responses of each individual cell.

It is important to note that synergy, as defined here, is a prop-
erty that is averaged over the stimulus ensemble. Cell pairs can be
synergistic for some subset of the stimuli, redundant during oth-
ers, and independent for yet other stimuli. Hence, when cells are
found to be information independent, this may result from aver-
aging over synergistic and redundant periods rather than from
independence at all times.

An alternative way to write the synergy is as the difference
between the mutual information between the cells given the stim-
ulus and the information that they share that is not explicitly
related to the stimulus (Brenner et al., 2000):

SYn(Rn Rz) = <I(R1; R2|5)>s - I(R1§ RZ)) (11)

which is a combination of the measures of conditional and activ-
ity independence (see Eq. 6 and 8). If a pair of neurons possesses
both activity and conditional independence, then there is no syn-
ergy or redundancy. However, information independence may
hold without activity independence and conditional indepen-
dence, when these two terms cancel. Thus, the three measures of
independence and correlation are interconnected, giving a struc-
tured framework for the quantification of correlation and inde-
pendence. Figure 3A shows a graphic presentation of synergy as a
combination of the two other independence measures, reflecting
that two dimensions are needed to describe the nature of neural
(in)dependence.

Because each term in Equation 11 is non-negative, the first
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term contributes only synergy and the second only redundancy.
By writing the synergy in this form, one can readily see that
(I(R,;R,]|s)), is an upper bound on the synergy. Because this
term is non-negative for all stimuli, there can be no cancellation
in its value when the cell pair is synergistic for some stimuli and
redundant for others. Similarly, —I(R;; R,) is a bound on the
redundancy of a pair of neurons.

Assuming conditional independence

Sampling the distribution of joint responses of pairs or groups of
cells requires, in general, exponentially more data than the single
cell case. Hence, the characterization of neural population activ-
ity is often severely constrained by experimental limitations. Be-
cause it is easier to sample the responses of individual cells, even
when neurons can be recorded simultaneously, one may try to
approximate the joint distribution by assuming that the cell pair
is conditionally independent. Furthermore, when using record-
ings from different trials (Georgopoulos et al., 1986), or even
different animals (Chechik et al., 2002), one must make this
assumption.

When ignoring the fact that the pair of cells were recorded
simultaneously or when combining the nonsimultaneous re-
cordings of cells presented with the exact same stimulus, a cus-
tomary guess for the joint response distribution is given by:

Panume(ri, 12fs) = p(ri[s) p(rfs). (12)
We use the notation “shuffle,” because this is the joint response
distribution that would result from compiling the responses of
simultaneously recorded cells from different, or shuffled, stimu-
lus trials (similar to the “shift predictor”) (Perkel et al., 1967;
Palm et al., 1988). Notice also that this assumption implies that
the strength of noise correlations measured by Equation 8 is zero.
The information that the shuffled cell responses convey about the
stimulus is given by:

Ishufﬂe(S; Rl) RZ)

p(r]s) p(r,]s)
(s p(rls) p(s') |

= > p(s) 2 plris) p(ry|s)log, (13)

1,12

The difference between the information conveyed by a cell
pair in the real case and I e
AInoise = I(S’ Rl’ RZ) - Ishufﬂe(S; R1> RZ)’ (14)
measures the contribution of noise-induced correlations to the
encoded information. This value may be either positive or nega-
tive, depending on whether those correlations lead to synergy or
redundancy (for specific example, see Fig. 5). Furthermore, the
difference between the sum of the information that each of the
cells individually conveys about the stimulus and I, .
AIsignal = I(S! Rl) + I(S’ RZ) - Ishufﬂe(S; Rl’ RZ)) (15)
measures the effect of signal-induced correlations on the encoded
information. This value is non-negative (see Appendix A), be-

cause signal correlations indicate that the two cells are, in part,
encoding identical information and, thus, implies redundancy.
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The difference between these two terms gives the synergy of the
two cells:

SYH(RD RZ) = AInoise - AIsignall' (16)

When neurons are not recorded simultaneously, one typically
assumes that AT, ;.. = 0. With this assumption and the fact that
Aligna is non-negative, the only possible result is apparent net
redundancy. This is reflected in Figure 3B, which gives a graphic
presentation of the signal and noise components as the two di-
mensions that span the synergy. We emphasize that although the
AlGena and Al quantify the influence of signal and noise
correlations, unlike the quantities defined previously, these are
not mutual information measures.

Population encoding for three or more neurons

In the preceding sections, we focused on the case of two neurons.
The basic distinctions we made between activity and conditional
independence as well as their connections to the distinction be-
tween signal and noise correlations will hold for the case of three
or more neurons. One should note, however, that correlations
among n neurons can be assessed in more than one way. For
instance, one can compare the correlations among n neurons to
the correlations only observable among n — 1 neurons (Mar-
tignon et al., 2000) or one can compare #n neuron correlations to
n independent single cells (Chechik et al., 2002). For the case of
two cells, these two comparisons are the same, but for three or
more cells they differ (Schneidman et al., 2003).

Comparison to other measures

Approximate conditional stimulus distributions

In a recent study, Nirenberg et al. (2001) studied the importance
of noise correlations for how information is encoded by pairs of
ganglion cells in the retina. Noise correlations can be ignored
explicitly by assuming that the joint response distribution for two
neurons is given by Equation 7. Bayes’ rule can be used to find the
stimulus distribution conditioned on the neural response for that
case:

p(ri|9) p(r,)s) p(s)
(s p(rls) p(s')”

pshufﬂe(s|r1) Tz) = 2 (17)

Nirenberg et al. (2001) denoted this quantity by p;.q(s|7y, 72),
but we use p . to avoid confusion between different kinds of
independence. They suggested using the KL divergence between
the true decoding dictionary p(s|r,, r,) and the approximate
dictionary pgume(s|7,»> 2) to quantify the amount of informa-
tion that is lost by using a decoder that assumes conditional in-
dependence. Averaged over the real, correlated responses, r; and
r,, one obtains:

b= E p(ri> 72) D[ p(slris m)l| panatae(slri> 7)1, (18)

T2

This measure does not refer to any specific algorithm for estimat-
ing the stimulus or errors made by that algorithm but, instead, is
meant to be a general characterization of the ability of any de-
coder to make discriminations about the stimulus, if knowledge
of the noise correlations is ignored. Nirenberg et al. (2001) ar-
gued that it is appropriate to consider an approximate decoding
dictionary combined with the real spike trains, because the brain
always automatically has access to the real, correlated spike trains
but may make simplifying assumptions about how to decode the
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information that those spike trains contain. They state that D
measures the loss in information that results from ignoring cor-
relations in the process of decoding and, thus, refer to this mea-
sure as Al

Nirenberg and Latham (2003 ) make a connection between the
KL divergence and the encoded information by using an argu-
ment about the number of yes/no questions one must ask to
specify the stimulus (see below). Although this argument may
initially seem reasonable, closer consideration reveals that it is
flawed. This can be demonstrated by the direct contradiction that
results from assuming that the KL divergence measures an infor-
mation loss, as well as the contradictory implications of this ar-
gument. In particular, there are situations in which this putative
information loss can be greater than the amount of information
present. Furthermore, interpreting the measure D as a general
test of the importance of noise correlations for encoding infor-
mation about a stimulus is problematic, because of the highly
counterintuitive results that one finds when applying the mea-
sure to toy models.

Contradiction. The central claim made by Nirenberg et al.
(2001) is that D measures the amount of information about the
stimulus that is lost when one ignores noise correlations. If this
were true, then the information that such a decoder can capture
would be given by:

“Inofnoise(S; Rl) RZ)” = I(S3 RI) RZ) - D

Pabutne(slr> 1)

= EP(”D 7’2)217(5|7’1, r,)log, 205)

1,72 s

(19)

This expression for “I,,_ i~ is unusual. It does not obviously
have the form of a mutual information, as is evident from the fact
that the probability distribution inside the logarithm is not the
same as that multiplying the logarithm. The fact that Equation 19
is not a mutual information term can be demonstrated by specific
examples. Figure 4 shows one such case for a pair of model neu-
rons that can generate three different responses (0, 1, or 2 spikes)
to each of three, equally likely stimuli. The joint response distri-
bution, p(r,, r,|s) is shown in Figure 4A. For this toy model, D
exceeds the total information encoded by both neurons, and,
consequently, Equation 19 is negative. This example demon-
strates that if one assumes that D is an information loss, then one
would sometimes lose more information than was present by
ignoring noise correlations. Because the mutual information be-
tween the output of a decoder and the input stimulus cannot be
negative, this is a clear contradiction. Therefore, D is not an
information loss.

Counter-intuitive properties of D. Because D is always posi-
tive, one might wonder whether it sets a useful upper bound on
the importance of noise correlations. Again rewriting:

D = p(rla r2|S)
D= E p(s)% p(r, r2|s)logm
p(rly rz)
_ r% P(T’l; rz)logm S (20)
where:
(21)

pshufﬂe(rl) TZ) = EP(S’)P(7’1|5,)P(7'2|SI)-
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Figure4. [ can be larger than the information that the cells encode about the stimulus. 4,
The conditional joint response distribution p(r, , |s), of two neurons responding to three stim-
uli. Each of the neurons responds with either zero, one, or two spikes. p(r, , r, ) is the average of
plr,, 1,|s) over the stimuli. The a priori probability of each of the stimuli equals 1/3. 8, The
conditional stimulus distribution for the cell pair, p(s|r, , r,), obtained using Bayes’ rule. ¢, The
conditional stimulus distribution that assumes no noise correlation, p,,o(s|r; 1), 0b-
tained by inverting p(r,|s)p(r,|s) using Bayes’ rule; see text for details. For this case, the
information that both cells carry about the stimulus, /(R;, R,; S) equals 0.0140 bits,
whereas [ equals 0.0145 bits.

We see that both terms are non-negative, because they both
have the form of a KL divergence. The first term, in fact, is
(I(R, ;R2|5)>$, which is a measure of the strength of noise corre-
lations and an upper bound on the synergy. Because the second
term is non-negative, D = (I(R,; R,|s)).. Therefore, D does not
constitute an upper bound on the importance of noise correla-
tions as is also demonstrated by specific examples in Figure 5.
Even so, perhaps D constitutes a tighter upper bound on the
synergy than (I(R,; R,|s)),? This turns out not to be the case, as
shown below.

In Figure 5, we imagine a simple situation in which a pair of
neurons can only generate two responses, spike or no spike, and
they are only exposed to two different, equally likely stimuli. In
both of these examples, the neurons fire a spike with p = 0.5 for
the first stimulus, but neither fires a spike for the second stimulus.
As such, they are sparse in a manner similar to many real neurons.
In example A, the response to the first stimulus is perfectly anti-
correlated, meaning that if one cell fires a spike, the other stays
silent, and vice versa. Knowledge of this noise correlation resolves
any ambiguity about the stimulus, such that the joint mutual
information is one bit. Because each cell mostly remains silent in
this stimulus ensemble, the individual mutual information of
each cell is considerably lower, and the synergy of the cell pair is
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A D < Syn(R R2)
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Figure5.  Examples of counter-intuitive values of . For both examples, there are two stimuli
and two neural responses. The probability of each stimulus is 1/2. A, One conditional joint
response distribution, p(r, , r,|s), which results in the synergy of the cells being larger than b;
IRy, Ry, S) = 1bit; Syn(R,, R,) = 0.377 bits; ) = 0.161 bits. B, Another conditional joint
response distribution, p(r, , r,|s), which results in D being larger than zero when the noise
correlations contribute net redundancy; (R, , R, ; $) = 0.311bits; Syn(R, , R,) = —0.311 bits;

D = 0.053 bits.

+0.377 bits. Using Bayes’ rule to find the real conditional stim-
ulus distribution and the one that ignores noise correlations, one
finds that D = 0.161 bits, or about 2.3 times smaller than the
synergy. This is a strange result, because synergy can only arise
from noise correlations. Thus, one naively expects that all synergy
is lost when one ignores the noise correlations. Consistent with
this expectation, the upper bound on the synergy, {I(R,; R,|s)),
is 0.5 bits, and information lost by using shuffled spike trains is
AIL,.. = 0.451 bits.

In example B, the two cells have a complete positive correla-
tion for the first stimulus, meaning that they either both fire a
spike or both remain silent, each with p = 0.5. As before, they
both remain silent for the second stimulus. In this case, the two
neurons always have exactly the same response. As a result, the
synergy equals —0.311 bits, which is a redundancy of 100%.
However, they still have quite strong noise correlations, and D =
0.053 bits or 16.9% of the joint mutual information, which is
virtually the same fraction as in example A. This comparison
indicates that D cannot distinguish between noise correlations
that lead to redundancy and those that lead to synergy. In this
example, shuffling the spike trains breaks the complete redun-
dancy of the two cells and actually increases the encoded infor-
mation. Correspondingly, AT, ;.. = —0.238 bits or —76% of the
joint mutual information (negative values imply that a shuffled
set of responses would have more information than the original
spike trains).

Figure 6 shows an example with three stimuli and neurons
capable of three responses. Here, the neurons have anticorrela-
tions that allow all three stimuli to be perfectly resolved, and the
synergy equals +0.415 bits or 26.2% of the joint mutual informa-
tion. However, the correlations between these cells are such that
D = 0. Interestingly, p..mc(s|71> 72) is not equal to p(s|r,, r5)
for all joint responses, but in all cases in which they are unequal,
the joint response probability p(r,, r,) = 0 (for related examples
and discussion, see Meister and Hosoya, 2001). This example is
an extreme illustration, in which the measure D implies that there
is no cost to ignoring noise correlations, when, in fact, observing
the responses of the two cells together provides substantially
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Syn(R;Rz)>0butD=0
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Figure 6.  Cells may be synergistic but § = 0. The conditional joint response distribution
plr, ,r2|s) of two neurons responding to three stimuli, each with probability 1/3. In this case, the
cells are synergistic but Dis zero: I(R, , R, ; S) = 1.585 bits; Syn(R, , R,) = 0.415bits; 0 = Obits.

more information about the stimulus than expected from obser-
vations on the individual neurons in isolation. Clearly, the mea-
sure D cannot be relied on to detect the impact of interesting and
important noise correlations on the neural code.

Problematic implications of D. Although Nirenberg and
Latham (2003) do not attempt to explore all of the consequences
of interpreting their KL divergence as a general measure of infor-
mation loss, we show here that this argument leads to further
contradiction. One corollary of their claim comes from its exten-
sion to cases other than assessing the impact of ignoring noise
correlations (Nirenberg and Latham, 2003). Hence, one can also
ask how much information is lost by a decoder built from any
approximate version p(s|r,, r,) of the conditional stimulus dis-
tribution, and the answer, if we follow the arguments of Niren-
berg and Latham (2003), must be Dy [ p(s|ry, )| p(s|ry, r5)].
However, in general, the KL divergence between p(s|r,, r,) and
p(s|r1 , 7, ) can be infinite, if for some value of s, r; and r,, p = 0
and p # 0. This result is clearly impossible to interpret.

Another corollary is that the information loss resulting from
ignoring noise correlations is defined for every joint response
(ry,r5). This means that we can also use the formalism to deter-
mine how much information the decoder loses when acting on
the shuffled spike trains. This expression is:

D = E pshufﬂe(rl) rZ)DKL[P(S|r1> r2)||pshufﬂe(s|rl> rz)]: (22)

L2

However, we have shown above that the mutual information that
a pair of neurons conveys about the stimulus under the assump-
tion of conditional independence is I, . and the consequent
difference in mutual information is AL, ;... Equation 22 is not
identical to A, ;.. In particular, AI, ;.. can be either positive or
negative, because the assumption of conditional independence
sometimes implies a gain of information rather than a loss (Ab-
bott and Dayan, 1999). This typically occurs when the neurons
have positive correlations (Fig. 5, example B) (Petersen et al.,
2001). In this case, shuffling the spike trains actually reduces their
joint noise and, therefore, can increase the information conveyed
about the stimulus. In contrast, Equation 22 is never negative,
implying that there is always a loss of information. Thus, another
contradiction results.

What does D measure? Nirenberg et al. (2001) argue that
their average KL divergence measures the number of additional
yes/no questions that must be asked to determine the stimulus
when a decoder uses the dictionary pg,m.(s|r;> 7,) instead of
p(s|ry, r,). They identify this number of yes/no questions with a
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loss in mutual information about the stimulus. However, this
identification is mistaken. The KL divergence is not equivalent to
entropy or an entropy difference (Cover and Thomas, 1991). Any
information theoretic quantity that has units of bits can, intu-
itively, be thought of as representing the number of yes/no ques-
tions needed to specify its random variable. However, this does
not imply that all such quantities are equivalent. For instance,
both the entropy and the mutual information have units of bits.
However, they are conceptually different: a neuron firing ran-
domly at a high rate has lots of entropy but no information,
whereas a neuron firing at a low rate, but locked precisely to a
stimulus, has less entropy but more information.

The precise information theoretic interpretation of the KL
divergence comes in the context of coding theory (Cover and
Thomas, 1991). If signals x are chosen from a probability distri-
bution p(x), then there exists a way of representing these signals
in binary form such that the average “code word” has length equal
to the entropy of the distribution. Each binary digit of this code
corresponds to a yes/no question that must be asked about the
value of x, and, hence, the code length can be thought of as
representing the total number of yes/no questions that must be
answered, on average, to determine the value of x. Achieving this
optimal code requires a strategy matched to the distribution p( x)
itself; in particular, the code length for each value x should be
chosen to be —log,p(x). The KL divergence between two distri-
butions, p(x) and q(x) and D [ p(x)||g(x)], measures the av-
erage extra length of code words for signals x drawn from p(x)
using a code that was optimized for g(x). It is not an information
loss in any sense. Instead, one might think of Dy, as measuring a
form of coding inefficiency. In the present context, however, this
loss of coding efficiency does not refer to the code of the neuron
but, rather, to a nonoptimal code that would be constructed by a
hypothetical observer for the conditional stimulus distribution
p(slry, ).

The KL divergence is commonly used in the literature simply
as a measure that quantifies the difference between two probabil-
ity distributions, without reference to its precise information the-
oretic interpretations. In this sense, D is a sensible measure of the
(dis)similarity between pg .me(s|r,> 72) and p(s|r,, r,), but it
does not assess how much information about the stimulus can be
obtained by using one distribution or the other. Moreover, as a
general measure of the dissimilarity of probability distributions,
the KL divergence is one of several common choices. Other sen-
sible measures include the L, norm and the Jensen—Shannon
divergence. Each of these measures is the answer to a specific
question about the dissimilarity of two distributions.

Because D is a KL divergence between approximate and real
decoding dictionaries and because it cannot be interpreted as a
loss of encoded information, this quantity should be thought of
as a measure related to the problem of decoding and not to the
problem of encoding. One important consequence of this dis-
tinction is that one cannot reach very general conclusions using
any decoding-related measure. As noted above, there are many
possible decoding algorithms, and the success of any algorithm is
dependent on the choice of an error measure. Thus, the conclu-
sions one reaches about the problem of decoding must always be
specific to a given decoding algorithm and a particular error
measure.

In the case of D, one is implicitly assuming that the decoding
dictionary is represented by a code book that is optimized for
Peutne(s71> 7). This is not the only possible code book that
ignores noise correlations. Another possibility is to use one opti-
mized for p(s), which completely ignores the neural response
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altogether. This counter-intuitive choice does explicitly ignore
the noise correlations and, in some circumstances (e.g., the ex-
ample in Fig. 4), it actually is more efficient than the one opti-
mized for p g, ume(slris 72).

Another source of confusion is that D is expressed in units of
bits, rather than reconstruction error. This is highly misleading,
because the encoded information is also expressed in bits. Al-
though the encoded information provides a completely general
bound concerning the performance of any possible decoder, it is
important to keep in mind that D does not have this level of
generality, despite its suggestive units.

What does it mean to ignore noise correlations? The most ob-
vious sense in which one can ignore noise correlations is to com-
bine spike trains from two different stimulus trials. As described
above, shuffling the spike trains changes the joint response dis-
tribution p(r,, 7,|s) into pyume(71> 72ls) (Eq. 12) and conse-
quently changes the probability of finding any joint response to
Pshuinie(71> 75 ) (see Eq. 21). Finally, the information that the shuf-
fled spike trains encode about the stimulus is I ,m;.(S; Ry, R,)
(Eq. 13). However, the measure D refers to a different circum-
stance: it assumes a decoding dictionary that ignores noise corre-
lations but combines this with the real, correlated spike trains.
For some purposes, this may be an interesting scenario. If D does
not assess the impact of this assumption on the information en-
coded about the stimulus, then what is the answer to this
question?

In general, this question is ill-defined. The obvious approach
is to construct the new joint probability distribution g(s, r,,
2) = Peutne(s|71> 72) p(ry, 75) which combines a decoding
dictionary that ignores noise correlations with the real, correlated
spike trains. Then, the mutual information between stimulus and
responses under the joint distribution q is given by:

q(S, T 72)

ISR, Ry) = 2 qls, 1y, fz)logzm,

T1,12,8

(23)

where q(r,, r,) = 2q(s, ry, r,) and q(s) = 2, q(s, ry, 15).
However, this scenario is strange, because simultaneously assum-
ing pume(s|r»> 7,) and p(r,, r,) implies (through Bayes’ rule)
that the distribution over the stimuli q(s) is different from the
original p(s).

It is also worth noting that this formalism can be extended to
the case of assuming any approximate decoding dictionary,
p(s|ry, r,), by again forming the joint distribution, §(s, r,,
r2) = p(s|ry, r)p(ry, r5). Similarly, a different distribution
over the joint responses, p(r,, r, ), can be inserted. However, the
distribution over stimuli p(s) will, in general, not be equal to the
actual distribution, p(s). This can lead to contradictory results;
for instance, the apparent mutual information can exceed the
original stimulus entropy, I, > H(S), because the new distribu-
tion over stimuli f(s) might have larger entropy than p(s).

Nirenberg and Latham (2003) discuss a special case of com-
paring two neural codes, in which one code is a reduced code or
subset of the first (Nirenberg and Latham, 2003). One example of
a reduced neural code would be a code that counts spikes in a
large time window versus one that keeps many details of spike
timing by constructing “words” using spike counts in a smaller
time bin (Strongetal., 1998). In this case, the joint response of the
reduced code, r’, can always be found from the joint response of
the full code, r, by a deterministic function, r’ = F[r]. Because R’
is a reduced code, it always conveys less information about the
stimulus than the full code: I(S; R") = I(S; R). This difference in
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information can be rewritten as an average of KL divergencesin a
form that is suggestive of the measure DD. However, it is important
to keep in mind that a neural code that ignores noise correlations
by combining spike trains from shuffle trials is not a reduced
version of the real neural code. The shuffled responses, R, e
include the entire set of responses found in the simultaneous
responses, R, but they occur with different probabilities. There is
no deterministic function that can act on r on every trial to pro-
duce 1y, ¢.. Therefore, the information lost by constructing a
reduced neural code is not directly relevant to the case of ignoring
noise correlations.

The subtlety of what it means to “ignore correlations” can be
seen in a simple example. Suppose that we observe a set of signals
{¥1> V2> - .. yn}> all of which are linearly related to some inter-
esting signal x. There are many simple situations in which our
best estimate of x (e.g., the estimate that makes the smallest mean
square error) is just a linear combination or weighted sum of the
¥, that is x, = 2;w;. Such a “decoder” obviously does not
detect correlations among the y; in any explicit way, because there
is no term approximate to y;y; that would be analogous to detect-
ing synchronous spikes form different neurons. In contrast, the
optimal values of the weights w; depend in detail on the signal and
noise correlations among the y; (as is relevant for the linear de-
coding of spike trains discussed below). Is this implicit depen-
dence sufficient to say that the linear decoder makes use of cor-
relations? Or does it ignore correlations because it does not
explicitly detect them? Even if we can resolve these ambiguities in
simple linear models, would our definitions of what it means to
ignore correlations be sufficiently general that they could be ap-
plied to arbitrary neural responses? These difficulties simply do
not arise in the discussion of synergy and redundancy from an
information theoretic point of view.

Series expansion of the mutual information

Panzeri et al. (1999) have presented an approximation of the
information conveyed by a population of neurons based on a
series expansion, in which successive terms correspond to differ-
ent orders of correlation functions. The first-order term is equal
to the information in the time varying firing rate of each cell, and
the three second-order terms involve correlation functions
among pairs of spikes. This expansion is in the same spirit as
expansion series for the case of single neurons (DeWeese, 1995;
Brenner etal., 2000). Within the series expansion of Panzerietal.,
second-order terms that add and subtract to the synergy were
identified and related to signal and noise correlations (Panzeri et
al., 1999; Petersen et al., 2001). One second-order term, which
depends only on signal correlations, gives rise only to redun-
dancy; another second-order term, which depends only on noise
correlations, gives rise only to synergy. The final second-order
term, which mixes signal and noise correlations, can be either
positive or negative.

This expansion relies on the assumption that the firing rate is
low enough or that the sampled time bin is short enough that the
probability of finding a spike in each time bin is much less than
one. By truncating the expansion at second order, this method
neglects correlations among more than two spikes, regardless of
whether these spikes are from the same cell or two different cells
(Panzeri et al., 1999). The authors show that, under some condi-
tions, this second-order expansion is a good approximation to
the fully sampled information (Petersen et al., 2001). One should
keep in mind, though, that the adequacy of this expansion de-
pends on the neural system under study as well as the ensemble of
stimuli (Bezzi et al., 2002). To verify such adequacy, one must
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either show that contributions from higher-order terms are small
or show that the second-order expansion gives results close to
those of direct sampling (Strong et al., 1998; Reinagel and Reid,
2000). Of course, if direct sampling can be achieved, it is not clear
what is gained by a second-order expansion. If instead, higher-
order correlations cannot be adequately sampled, then the bias
introduced by ignoring these terms may be smaller than the bias
introduced by sampling them poorly.

Recently, Pola et al. (2003) generalized this approach beyond
second order in correlation functions. They use analogous terms,
in which full probability functions are substituted for correlation
functions. Interestingly, the authors show that this breakdown of
the mutual information into four terms is exact, meaning that no
additional terms are necessary to sum to the joint mutual infor-
mation. For the case of two neurons, the four terms can be written
in the following form (see Appendix B for a derivation of these
equations from the expressions used in Pola et al., 2003):

I(S; Ry, R,) = Iy, + Tsig—sim + Tcor—ind + Tcor—dep, (24)
where these terms are
Ly, = I(S; R)) + I(S; Ry),
Isig—sim = _Alsignal)
Tor—ind = ALy — D, and
jcor—dep =D. (25)

Pola et al. (2003) give the following interpretation of the
terms. Ij;, is the information conveyed if the two neurons carry
independent information. I, g, expresses the loss of informa-
tion because of similarity in the responses of the two cells aver-
aged over the stimulus. It can only give rise to redundancy, as can
be seen from its form as a KL divergence (see Appendix B).
I or—ing gives a contribution to the joint information from the
interaction between cross-cell correlation and signal similarity;
its values can be either positive or negative. I, 4., gives a con-
tribution attributable to stimulus-dependent correlations and
can only be positive. I, _;nqand I, 4ep are both zero if the cells
are conditionally independent. This decomposition is similar to
the one we presented above. The only difference is that Pola et al.
(2003) have resolved Al ;.. into I, g and I, gep

However, it is important to note that the noise correlation
terms used by Pola et al. (2003) are not themselves mutual infor-
mations. Obviously, because I, dep €quals D, it suffers from all
of the same problems of interpretation that we showed above.
Namely, it is not a loss of mutual information and can be greater
than the joint mutual information. Similarly, I ,,_;.q4 is also not
an information or information loss. This can be seen be examin-
ing its form in more detail (see Appendix B). As a consequence,
I .or—ing can contribute redundancy >100%; for the toy model in
Figure 6, I, _ina/I(S; Ry, R,) = —202%. As such, it is difficult
to interpret this term.

One should note that there is no unique way to decompose the
mutual information into a series of terms (DeWeese, 1995). The
breakdown proposed by Pola et al. (2003) generalizes contribu-
tions to the mutual information that arose in the second-order
expansion described previously by Panzeri et al. (1999). Rather
than asking for the second-order approximation to the informa-
tion, one could ask exactly for the information carried by spike
pairs (Brenner et al., 2000). In the same spirit, our approach is
based on decompositions of the synergy that either set bounds on
synergy or redundancy (Eq. 11) or follow from the consequences
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of ignoring noise correlations (Eq. 16). In each case, there is a
well-posed question answered by the value of each term, giving
each term a clear information-theoretic interpretation. These
terms are not derived from an expansion to the joint mutual
information and they do not individually exceed the joint mutual
information as either a loss or a gain. In contrast, the noise cor-
relation terms proposed by Pola et al. (2003) can individually
have contradictory values, making their interpretation unclear.

Linear decoding

Linear decoding has been used to study how two or more cells
jointly convey information. Warland et al. (1997) constructed
linear decoding filters that were simultaneously optimized for
two or more retinal ganglion cells stimulated with spatially uni-
form flicker. This method includes second-order correlations be-
tween pairs of spikes. They found that cells of different functional
type roughly added their information, whereas cells of the same
functional type were redundant. They also found that the filters
for two or more cells optimized together were significantly dif-
ferent than the filters for each cell optimized alone. This suggests
that signal correlations alone can alter the optimal decoding
strategy, even if they do not give rise to synergy or redundancy.

Dan et al. (1998) studied the importance of a prominent kind
of noise correlation between neurons in the LGN: the increased
tendency of cells to fire spikes synchronously on the same stim-
ulus trial (Alonso et al., 1996). The authors allowed synchronous
spike pairs to have a different decoding filter than a spike from
either cell occurring by itself. Thus, the spike trains of a pair of
cells had three different neural symbols: synchronous spikes from
cells A and B; a spike from cell A but not B; a spike from cell B but
not A. They found that the linear decoder that simultaneously
optimized these three filters extracted, on average, 20% more
information than the decoder that assigned a filter for each cell,
regardless of whether spikes were synchronous or not.

However as these authors note, the information estimated by
linear decoding is a lower bound on the encoded information.
Strictly speaking, one cannot conclude anything about the rela-
tionship between two quantities with knowledge of the lower
bound on each. Thus, it is possible that a more sophisticated
decoder could achieve even greater synergy for synchronous
spikes in the LGN or remove the redundancy of retinal ganglion
cells of the same functional type. Conversely, such a decoder
might give more total information than a linear decoder but re-
veal that synchronous spikes in the LGN are redundant or that
retinal ganglion cells of different functional types are also redun-
dant. These possibilities indicate why it is useful to calculate the
information theoretic quantities proposed here and establish the
significance of correlations between pairs of neurons for infor-
mation transmission in a manner that is not dependent on the
choice of decoding algorithm.

Discussion

Here, we have presented an information theoretic framework for
assessing the importance of correlated firing in the transmission of
information by pairs of neurons. We have shown that there are three
different notions of independence or lack of correlation: activity,
conditional, and informational independence. For each notion of
independence, there is a corresponding information theoretic quan-
tity that measures the degree of correlation. These three kinds of
independence are distinct in the sense that any one independence
can hold without implying either of the other two. But these quan-
tities are interrelated: the synergy of two neurons can be expressed as
the difference between the measures of conditional and activity in-
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dependence. In addition, the synergy can be written as the difference
of contributions of signal and noise correlations. Although the syn-
ergy, thus, plays a central role in the characterization of population
encoding, at least two measures of independence must be calculated
to provide a complete description.

Although cross-correlation functions are more intuitive and
more commonly used, we have relied on information theoretic
tools here because they are more general measures of correlation
and require only a minimal set of mathematical assumptions.
Indeed, our approach overcomes known difficulties with the in-
terpretations of cross-correlation values and gives a consistent set
of measures for the description and interpretation of population
encoding.

Our measures of redundancy and independence address fun-
damental issues in neural coding. Barlow (1961) and Attneave
(1954) have proposed that redundancy reduction is a key at-
tribute of efficient coding schemes, because populations of neu-
rons with this property do not waste their representational capac-
ity with repeated messages. In this sense, an efficient code is one
in which all pairs of neurons are nonredundant, Syn(R,, R,) =
0. Similarly, one can think of an efficient code as one in which all
pairs of neurons possess activity independence, I(R,; R,) = 0,
because this condition also guarantees a lack of redundancy.

Such notions of efficient coding have been related to the struc-
ture of receptive fields in the retina, because the mechanism of
center-surround antagonism can remove the dominant spatial
correlations present in natural visual stimuli (Attneave, 1954;
Barlow, 1961). Using the requirement of activity independence,
researchers have made quantitative predictions of the linear filter
characteristics of ganglion cells in the vertebrate retina (Atick,
1992) and second-order neurons in the fly retina (Srinivasan et
al., 1982; van Hateren, 1992). Despite the success of these retinal
theories, natural visual scenes possess correlations beyond those
captured by their power spectrum (Ruderman, 1994). Similar
ideas have been used to explore how redundancy reduction might
be performed in the presence of such higher-order correlations.
Independent component analysis can, in part, take these correla-
tions into account, producing components that approximate ac-
tivity independence and resemble V1 receptive fields (Bell and
Sejnowski, 1997; Hyvarinen and Hoyer, 2001). Plausible forms of
nonlinear gain control, perhaps in area V1, can also serve to
remove these correlations (Schwartz and Simoncelli, 2001).

However, as a design principle for the neural systems, redun-
dancy reduction is a problematic objective. Among other issues, ef-
ficient codes are very sensitive to noise and require careful processing
when one wishes to extract the encoded information. It is not clear
that compressed representations are valuable for the brain, because
the existence of redundancy may actually signify the prevalence of
the stimulus. Barlow revisited the possible role of redundancy in
neural systems recently (Barlow, 2001) and suggested that redun-
dancy may actually play an important role in the representation and
analysis of probability distributions in neural systems.

We have made a distinction between encoding and decoding
questions. Information theory is a powerful tool for the analysis
of encoding questions, and it gives a bound on what may be
decoded from neural responses. However, to evaluate the perfor-
mance of a decoder, one must specify the cost of each of the
possible errors that the decoder might make. Because mutual
information is only sensitive to the correspondence between
spike trains and stimuli, it cannot, by itself, characterize the qual-
ity of a decoder. As a result, questions about decoding cannot be
put on the same level of generality as questions about encoding.

Because there typically is not an obvious choice for an error
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measure, one would like to be able to draw conclusions about
decoding that do not depend on a specific choice of error measure
or decoding algorithm. We have discussed such an attempt by
Nirenberg et al. (2001), who studied the impact of noise correla-
tions on decoding. They tried to find a general answer to this
question by comparing the difference between the true decoding
dictionary, p(s|r,, r,), and an approximate dictionary that ex-
plicitly ignored noise correlations. But, as we have shown, the
measure proposed by Nirenberg et al. (2001) is not an informa-
tion loss, does not assess the encoding properties of neurons, and
is not the answer to the question what one may lose about the
stimulus, if noise correlations are ignored by a decoder. For mak-
ing statements about decoding that do not rely on a chosen error
measure, one can compare different decoding dictionaries, but it
should be kept in mind that there is no single measure with which
to make this comparison and that such measures are not neces-
sarily related to the encoded information. Consequently, the
question of whether retinal ganglion cells are independent en-
coders is still open, as is the question about the effect of noise
correlation on decoding their activity.

The general question of what can be achieved with a nonoptimal
or approximated decoder is a very important one. In most cases, it is
not clear that the nervous system or even the experimenter can learn
or use the “right” decoder or even a good approximation. Moreover,
biological constraints might limit the classes of possible decoders
that might be learned or implemented. We emphasize again that the
answer to this question relies principally on analysis of the possible
decoding errors (Wu et al., 2003). Information theory is useful for
decoding in conjunction with an error measure. Given a decoding
algorithm that, for example, minimizes the L, norm between s and
s, one can analyze the decoding errors and place bounds on I(S;
§°%), as discussed for the reconstruction of time-dependent signals
by Bialek et al. (1991). The mutual information between stimuli and
estimated stimuli is a lower bound on the mutual information be-
tween stimuli and responses, and so one can proceed from error-
based decoding to a statement about information transmission
(Rieke et al., 1997).

For specific error functions or decoding schemes, one can
place bounds on the extracted information (Lin, 1991; Samengo,
2002). For continuously valued stimuli, one can use the Fisher
information (Cover and Thomas, 1991), which is not actually an
information measure in the Shannon sense, to place a bound on
the mean squared error between stimulus and estimated stimulus
(Seung and Sompolinsky, 1993; Zhang et al., 1998; Abbott and
Dayan, 1999; Sompolinsky et al., 2001). The Fisher information
can be used to place a lower bound on the encoded information,
but this bound is tight only under specialized conditions (Brunel
and Nadal, 1998; Kang and Sompolinsky, 2001).

Rather than asking directly what neurons encode and what
may be decoded, information theoretic measures have also been
used to quantify the difference between neural responses. Com-
paring the responses of different cells to the same stimulus, one
can ask how much information you gain about the identity of a
cell by observing its response. The answer to this question is given
by the Jensen—Shannon divergence (Lin, 1991), and this measure
is useful for classifying cell types or comparing the encoding
properties of individual cells (Schneidman et al., 2001, 2003).
Alternatively, Johnson et al. (2001) have suggested using infor-
mation theoretic measures of dissimilarity (the KL divergence,
Chernoff “distance”, or a “resistor-average” version of the KL
divergence) to compare the distributions of neural responses to
two different stimuli, p(r|s,) to p(r|s,). Relying on known re-
sults from classification theory (Hogg and Craig, 1995), these
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quantities can either bound or predict the asymptotic behavior of
the error that one might make in assessing which of the two
stimuli was presented by observing the neural responses. This
approach would be especially useful for distinguishing stimulus
features that result in different neural responses from those that
do not. Note, however, that these measures correspond to the
decoding error only for the simple case of two stimuli. One
should also keep in mind that these measures do not relate di-
rectly to the encoded information.

As discussed here, there are many possible information theo-
retic measures with which to evaluate neural codes. However,
they can differ importantly in their interpretation. In particular,
each measure is the answer to one or more specific questions
about the neural code. We hope that a clearer understanding of
this relationship will help to resolve ongoing debates about the
nature of neural codes in different circuits, animals, and species.

Appendix A: Proof that AL, =0

AIsignal = I(S> Rl) + I(S) RZ) - Ishufﬂe(S; Rl) RZ)

p(r, |5)

= ?p(ﬂ?p(h |s)log, o)

p(r2|S)

+ > p(s) > p(rs)log, D)

P(r1|5)P(r2|5)
(SI)P(7'1|5,)P(T2|5,) '

~ 2992 plnls)plral9logy 5+

1,12

Inserting 3, ip(ri\s) = 1 and grouping terms gives:

AIsignal = Z p(s) E P(rl |S)P(r2‘5)

1,12

p(rls) p(rls)
x |1 +1
%8 p(r) %8 p(ry)

o P(rl |5)P(Tz|5)
&S () p(nls) p(nls) |

Defining pume(r1, r2) = 2,p(s") p(rys") p(rals’) gives:

2 p(s") plr|s) p(rls’)
P(”l)P(rz)

AIsignal = E E P(S)p(rl |5)P(r2|5)10g2

rLr2os

pshufﬂe(rl > 7'2)

= 2 pshufﬂe(rla rz)Ing m .

12

This quantity has the form of a KL divergence, which is
non-negative:

AIsignal = DKL[pshufﬂe(rl’ Tz)”P("l)P(rz)] = 0. (26)

Appensix B: Generalization of the Second-order
Expansion of the mutual Information

The second-order expansion of the mutual information per-
formed by Panzeri and co-workers (Panzeri et al., 1999; Panzeri
and Schultz, 2001) makes an explicit connection between second-
order correlation functions and contributions to the mutual in-
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formation. They defined two types of correlation functions. The
first, denoted by y(#;, ts s), measures noise correlations:

(ri(t; 5)ra(8; 9))

y(t;, 13 5) = o Nt ) L, (27)

where r(#; s) is the firing rate at time ¢ in response to stimulus s,
and the average () is over repeated stimulus trials. The second
correlation function, denoted v(t;, t;), measures signal cor-
relations:

v(t, 1) = —_m('t" S)rz_(t” .5»5 -1, (28)
(1t 9)(F:(4 9))s

where 7(t; s) is the firing rate averaged over stimulus trials, and

the average (), is over stimuli.

To generalize beyond second-order correlations, Pola et al.
(2003) replaced their correlation functions between pairs of
spikes with analogous ratios of probability distributions over all
possible neural responses. The new measure of noise correlations
was:

p(rh 1"2|5)

p(rlp(nls) ~ (29)

Y(ry, 133 5) =
and the new measure of signal correlations was

p("h r,)
v(ry, rz) = m - (30)

They inserted these functions into the expressions that they
defined previously for the second-order contributions to the mu-
tual information, also making the replacement of p(r,|s) for
r,(t; s) and p(r,|s) for r,(t; 5):

- 1
Isig*sim = m E P(rl)P(rz) [V(rb rZ)

L2

— (1 + v(ry, r)In(1 + v(r, r,))]

jcorfind == E P(S) E p(rl |5)P(72|5)'Y("1’ 7'2|S)

s 1,12

log,(1 + v(r, 1))

Leoraep = 2, P(5) 2 p(r1]s) plrsls) (1 + y(ry, 1]5))
% Io Pshufﬂe(rla 72) (1 + 'Y("ly 72|5))
&S o) p(rn]s) plnsls') (1 + y(r, rls)) |

(31)

where pshufﬂe(rl > rz) = E's’p(s/)p(rl|5,)p(r2|5,)'

Taking each contribution to the information separately, we
substitute the expressions for y(r,, r,; s) and v(r,, r,) (Eq. 29
and 30) and rearrange terms:

- 1
Isig*sim = m rEr[pshufﬂe(rl’ 1‘2) - P(rl)P(Tz)]
pshufﬂe(rla Tz)

o(r)p(r) ] (32)

- E pshufﬂe(rla 7’2)10%2[

1,12
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the first term cancels to zero once summed over responses, and
the second term can be seen to have the form of a KL divergence:

Isig*sim = _DKL[pshufﬂe(rl’ 7’2)||p(7'1)P(7’2)]y (33)
using Equation 26 from Appendix A, we get
Isig*sim = _AIsignal' (34)

Next, for the stimulus-independent noise correlation contri-
bution:

Tcor—ind = _EP(S) E[p(rli T2|S) - P(71|5)p(r2|5)]

L2

log,(1 + v(r,, 1))

Pshufﬂe(rl > r2):|

= D[ pandlris ) = plri, fzﬂl"gz[ prp(r)

rLr

pshufﬂe(rl > 72):|
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1,12

p(rlr r) ] (35)
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+ E p(ry, 7‘2)1032[

L2

All three of these terms are KL divergences that have appeared
here. Using equations 26, 6, and 20, respectively, we can substi-
tute for all three:

Tcorfind = AIsignal - I(R]) RZ) + (<I(R1) R2|S)>s - D)

= AIsignal + SYn(Rn RZ) - D

A

= AInoise —D. (36)

Finally, for the noise correlation

contribution:

stimulus-dependent

Paatne(r1> 12) p(ry, 72|5) ]

Tcor*dep = EP(S)E P(T’l’ 72|5)10g2|: P(7’1> 7’2) P(7’1|5)p(r2|5)

1,12
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