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Neuronal Avalanches in Neocortical Circuits

John M. Beggs and Dietmar Plenz
Unit of Neural Network Physiology, Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892

Networks of living neurons exhibit diverse patterns of activity, including oscillations, synchrony, and waves. Recent work in physics has
shown yet another mode of activity in systems composed of many nonlinear units interacting locally. For example, avalanches, earth-
quakes, and forest fires all propagate in systems organized into a critical state in which event sizes show no characteristic scale and are
described by power laws. We hypothesized that a similar mode of activity with complex emergent properties could exist in networks of
cortical neurons. We investigated this issue in mature organotypic cultures and acute slices of rat cortex by recording spontaneous local
field potentials continuously using a 60 channel multielectrode array. Here, we show that propagation of spontaneous activity in cortical
networks is described by equations that govern avalanches. As predicted by theory for a critical branching process, the propagation obeys
a power law with an exponent of —3/2 for event sizes, with a branching parameter close to the critical value of 1. Simulations show that a
branching parameter at this value optimizes information transmission in feedforward networks, while preventing runaway network
excitation. Our findings suggest that “neuronal avalanches” may be a generic property of cortical networks, and represent a mode of
activity that differs profoundly from oscillatory, synchronized, or wave-like network states. In the critical state, the network may satisfy

the competing demands of information transmission and network stability.
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Introduction

During neuronal processing, individual neurons can integrate
inputs from thousands of other neurons and, after reaching
threshold, distribute their activity back to the network. This basic
process of neuronal integration and redistribution is similar to
that seen in many other complex systems in which simple units
with thresholds integrate and then dissipate energy back to the
system (Paczuski et al., 1996). In such systems, events like earth-
quakes (Gutenberg and Richter, 1956), forest fires (Malamud et
al., 1998), and nuclear chain reactions (Harris, 1989) emerge as
one unit exceeds threshold and causes other units to do so in turn,
thereby initiating a cascade that propagates through the larger
system. The spatial and temporal distributions of such cascades
or “avalanches” have been well described by power laws (Pac-
zuski et al., 1996), indicating that the system is in a critical state
(Bak et al., 1987) and that the dynamics can be seen at many
different scales. This type of avalanche propagation typically oc-
curs in these systems without oscillations, synchrony, or waves.
Neuronal activity could similarly be considered as a kind of neu-
ronal avalanche in which activity propagates as individual neu-
rons trigger action potential firing in subsequent neurons. Al-
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though just such a process has been suggested by several neuronal
network models (Chen et al., 1995; Corral et al., 1995; Herz and
Hopfield, 1995; Eurich et al., 2002), it has been unclear so far
whether actual neuronal networks display such critical behavior
and whether such criticality is a robust feature of neuronal orga-
nization. If present, neuronal avalanches would constitute a new
mode of network activity, and could have important implications
for information processing.

To examine these issues, we studied propagation of spontane-
ous neuronal activity in cultured and acute slices of rat cortex on
60-channel multielectrode arrays (Plenz and Aertsen, 1996; Plenz
and Kitai, 1998; Karpiak and Plenz, 2002). We also used comple-
mentary network simulations to examine how propagation like
that observed in the cultures would influence information pro-
cessing in a simple feedforward network. Using these methods,
the present study was conducted to examine two issues: (1) Do
cortical networks in vitro produce avalanches that comply with
physical theories of critical systems? (2) If cortical networks are in
the critical state, what consequences does this have for informa-
tion processing?

Materials and Methods

Organotypic culture experiments. Organotypic cultures from coronal
slices of rat somatosensory cortex were prepared in accordance with
National Institutes of Health guidelines (Plenz and Kitai, 1998), with the
cortical slice placed onto the 8 X 8 multielectrode array (interelectrode
distance, 200 wm; electrode diameter, 30 wm; Multichannelsystems, Re-
utlingen, Germany) (Egert et al., 1998; Karpiak and Plenz, 2002). Acute
coronal slices were cut at 350 wm thickness and were ~1.5 mm deep and
~2-3 mm wide. The array covered ~50-70% of the cortical tissue, with
the basal row aligned to the white matter and the upper row extending
into the supragranular layers (see Fig. 1A). In three of seven cultures, a
coronal striatal and nigral slice (500 wm thickness) were cocultured out-
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side the array (Plenz and Kitai, 1998). These areas do not project to
cortex, and no differences in cortical activity were found for single or
combined cortex cultures. Photographs taken at 1-3 d in vitro (DIV) and
after recording sessions confirmed that recording electrodes were located
in the cortical culture. Most recordings were performed with cultures
submerged in standard culture medium at a flow rate of 1 ml/min.

Acute slice experiments. Coronal sections from adult rat brains (6—8
weeks) were cut at 350—400 wm in chilled artificial CSF (ACSF) contain-
ing the following (in mm): 124 NaCl, 0.3 NaH,PO,, 3.5 KCl, 1.2 CaCl,, 1
MgSO,, 26.2 NaHCO,;, 10 p-glucose, and 50 uM D,L-2-amino-5-
phosphonovalerate (APV; Sigma, St. Louis, MO), saturated with 95% O,
and 5% CO, (310 = 5 mOsm). Slices were stored submerged for 1-2 hr
in ACSF without APV at room temperature before recording. For record-
ing, slices were gently transferred onto the multielectrode array. The
electrode array covered mostly supragranular layers of primary motor
and somatosensory cortex. Electrode positions were reconstructed using
pictures taken at the end of each recording session (see Fig. 6 A). Slices
were submerged in ACSF without APV at 35.5 = 0.5°C saturated with
95% O, and 5% CO, and recordings were performed at a flow rate of 2
ml/min.

Pharmacology. To study propagation under reduced inhibition, the
noncompetitive GABA ,-receptor antagonist picrotoxin (2 uM; Invitro-
gen, Gaithersburg, MD) was bath-applied. Event size distributions were
calculated based on 5 hr spontaneous activity before and during drug
application and 24 hr after recovery (see below).

In acute slices, spontaneous activity was induced by bath perfusion
with the glutamate-receptor agonist NMDA (6 um in ACSF; Sigma) in
combination with the dopamine D,-receptor agonist (*)-SKF-38393 (5
M in ACSF; Sigma). Preliminary experiments revealed that the combi-
nation of both drugs at those concentrations robustly induced synchro-
nized local field potentials (LFPs), for an average of ~0.4 hr in the acute
slice.

Signal processing. Extracellular signals were continuously sampled at 1
kHz, low-pass-filtered at 50 Hz, and binned at At = 1, 2, 4, 8, or 16 msec.
A threshold was used to determine events of interest, and this threshold
was given by the receiver operating characteristic curve produced by the
filtered data and a Gaussian noise distribution (Gabbiani and Koch,
1998). Noise was not significantly different from a Gaussian distribution
(Kolmogorov—Smirnov test; p > 0.05), and produced an average thresh-
old of —2.86 = 0.23 SD. The filtered voltage traces were searched for
times at which they crossed this threshold, and it was found that LFPs
typically crossed over the threshold for 20 msec before crossing back.
During this 20 msec interval of threshold crossing, the LEPs often dis-
played a sharp negative peak, indicative of a population spike, that had a
distinct point of maximum excursion. Algorithms were used to identify
the time of occurrence of this maximum excursion and to record its
amplitude. The processed data thus contained both a time point and an
amplitude value for every LFP that crossed the threshold (see Fig. 1C). A
refractory period of 20 msec was imposed after each maximum to pre-
vent counting large excursions more than once. For control, a refractory
period of 2 msec, much shorter than 20 msec, was also used.

Cross-correlation functions and contiguity index. Cross-correlation
functions were calculated from 3 hr (cultures) or 0.4 hr (acute slice) of
data over a window of —0.2-0.2 sec at a bin width of 1 msec. The conti-
guity index measured the extent to which propagation in cortical net-
works was wave-like. The index is given by the fraction of active
electrodes whose activity was preceded by activity on at least one nearest-
neighbor electrode (n = 8 neighbors/electrode except for border elec-
trodes). Note that active electrodes in the first time bin of an avalanche
are counted as not preceding the nearest-neighbor activity.

Average interevent interval calculation. Traditionally, the interevent in-
terval (IEI) has been defined as the interval between events at a single
electrode. In the sense used in the current paper, the IEI denotes the
interval between LFPs occurring at all electrodes. For example, an LFP
might occur on electrode 1 at time t = 0, and the next LFP recorded by the
array might occur on electrode 24 at time ¢t = 4 msec. In this case, the IEI
would be 4 msec. Thus, the IEI distributions plotted in this report take
into account the interval between LFPs recorded over all electrodes. Be-
cause activity did not generally propagate directly between nearest-
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neighbor electrodes, the average IEI (IEL,,) was obtained by calculating the
average value of the IEI distribution over the time from 0 to T, ... Tiyax Was
given by the time at which the population cross-correlation function
dropped to a constant, near zero baseline. T, ranged between 150 and 200
msec in cultures and 50 and 80 msec in acute slices (see Fig. 1E).

Rescaling of arrays. Each electrode array was a square 8 by 8 grid with-
out the corners, thus having 60 electrodes. The interelectrode distance
(IED) between each electrode and its nearest neighbor was 200 wm. To
examine how the spatial scale given by the IED influences the power law
distributions, we performed two types of manipulations to the arrays
during analysis.

First, rescaling the arrays tested whether or not the slope of the power
law found to describe event size distributions (see Results) was depen-
dent on the IED. Rescaling was accomplished by removing some of the
intercalated electrodes from the analysis, while still maintaining a square
array. This also reduced the number of electrodes considered in the anal-
ysis. For example, to create an IED of 400 wm, a regular array of 4 by 4
electrodes was chosen from the 8 by 8 array (see Fig. 4D), which resulted
in twice the distance between the electrodes from the original array. This
rescaled array could be fit onto the original array in four ways, although
each way caused one of the corner electrodes to be missing, leaving only
15 electrodes. The data for this rescaled array was obtained from 15
electrodes for each of the four ways and averaged. A similar rescaling was
done to create an IED of 600 wm, leaving only eight electrodes (a 3 by 3
array with one corner missing). As before, this rescaling could be done in
four possible ways, so the result reported was from an average of the data
obtained from arrays positioned these four ways. Increasing the IED
resulted in a longer IEI for the rescaled arrays (see Fig. 4 A), and data from
the rescaled arrays were always binned at the nearest integer value to the
corresponding IEL

Second, reducing the number of electrodes in the arrays tested whether
the cutoff point in the power law (the point at which the linear portion of
the graph shows a break; see Results and Figs. 3 A, 4B,D,F) was dependent
on the number of electrodes. To explore this issue, we effectively cut the
array into halves and quarters without changing the IED. For example, to
create an array with 30 electrodes, only electrodes on the left side of the
array would be chosen for analysis. The array was bisected in two ways,
producing four half-size arrays (see Fig. 4 F). The results from these four
arrays were averaged to produce the power law for the half-sized array. In
a similar manner, the array could also be divided into quarters, each
containing 15 electrodes for analysis. Although quartering could be done
in more than four ways, only the four quarters near the corners were used
in this study for creating an average power law.

Branching parameter. The branching parameter o was used to describe
activity propagation in the cortical cultures. By definition, o is the aver-
age number of descendants from one ancestor (de Carvalho and Prado,
2000) and, intuitively, was defined in our system as the average number
of electrodes activated in the next time bin, given a single electrode being
active in the current time bin. Mathematically, the average branching
parameter o for the electrode array in the case of one ancestor electrode
is simply given by

Mmax

o= > dXpd), (1)

d=0

where d is the number of electrode descendants, p(d) is the probability of
observing d descendants, and #,,,,, is the maximal number of active elec-
trodes. Note that formula (1) does not describe a probability density, and
theoretically o can take any value =0. Because of refractoriness in activity
at single electrodes, o was estimated only from the first and second time
bin of an avalanche. Although strictly speaking, o is only defined for one
ancestor, we also estimated o when there were multiple ancestors. Under
these conditions, d is given by:

ng
d= round<*> R (2)

where 1, is the number of electrode ancestors observed in the first time
bin, n, is the number of active electrodes in the second time bin of an
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avalanche, and round is the rounding operation to the nearest integer.
The likelihood of observing d descendants was approximated by:

Nsald Mmax — 1
= 3 ()=, ®)
Nsa Mmax n,
avalanches
where ny,,,, was the total number of electrode ancestors in all avalanches
when n, descendants were observed, ny,, was the total number of ances-
tors observed in all avalanches, and

( nmax - 1 )

nmax - nﬂ

was a factor that provided an approximate correction for the reduced
number of electrodes available in the next time bin because of refracto-
riness. Note that the branching parameter is not defined for 0 ancestors
and thus does not provide information about the initiation of bursts. In
cases in which there was only one ancestor, the formula for o was math-
ematically equivalent to (1).

Network simulations. Simulations were used to explore the implica-
tions of a critical branching process on information transmission. Feed-
forward networks had N processing units per layer and L layers. Binary
units (on or off) made C randomly assigned connections to units in the
next layer. Each connection had a probability p; of transmitting that was
randomly chosen, but the sum of probabilities emanating from a unit was
constrained to be equal to

o= pi (4)

where 0 = p; = 1 and 0 = o = C. Note that this formulation allows the
branching parameter o to be adjusted in the network. A unit in the next
layer became active only if a unit in the previous layer was active and the
connection between them transmitted. A given network type was deter-
mined by the choice of N, L, and C. Results from 20 network types are
reported: (N: 6, 8, 10, 12, 14; L: 3, 4; C: 2, 3). Ten networks of each type
were constructed, and each was run five times for each value of o (o =
0.1-3.0, in increments of 0.1 for 30,000 total simulations). All possible
binary input patterns (2™) were presented to the input layer as a stimulus
set S. Binary patterns appeared in the output layer as a response set R.
Information I transmitted through the network was given by: I(S; R) =
H(R) — H(R/S), where H(R)was the entropy of the response set, and
H(R/S) was the entropy of a response, given a stimulus, calculated over all
responses and all stimuli (Cover and Thomas, 1991).
All values are expressed as means = SD unless stated otherwise.

Results

The results are composed of four main sections. First, we derive
the power laws that characterize propagation of spontaneous ac-
tivity in mature organotypic cortex cultures. Second, we demon-
strate that these laws also describe propagation of spontaneous
activity in acute, mature cortex slices. Third, we demonstrate that
the spontaneous activity observed indicates that the cortical net-
work operates in a critical state. Finally, we describe the outputs
of feedforward neural network models that were used to explore
the consequences of the critical state on information
transmission.

General characteristics of spontaneous activity

We analyzed the propagation of neuronal activity in seven orga-
notypic cultures prepared from rat somatosensory cortex and
grown on 60-channel multielectrode arrays (Fig. 1A). After 28 =
3 DIV, spontaneous LFPs were recorded continuously from the
cortex for at least 10 hr in each culture at a 1 kHz sampling rate.
The present analysis is based on a total of 70 hr of recording. A
typical LFP consisted of a negative population spike superim-
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Figure 1.  Spontaneous, correlated neuronal activity in organotypic cortex cultures. A, Orga-
notypic coronal cortex slice culture on 8 XX 8 multielectrode array (IED, 200 wm). WM, White
matter. B, Spontaneous LFP from 60 electrodes (linear order) with two periods of correlated
activity. G, Overplot of LFPs from a single electrode (left, ~1min spontaneous activity) and from
all electrodes during one correlated period of activity (right, aligned to negative peaks). Note
typical negative peaks riding on a longer-lasting depolarization. Broken line, —3 SD. D, Succes-
sive LFPs on individual electrodes are >20 msec apart in time. Average time interval distribu-
tions for successive LFPs on one electrode for four representative cultures (1 hr spontaneous
activity). £, Representative cluster of 59 cross-correlation functions for one electrode in relation
toall other electrodes (single culture). £, Population cross-correlogram shows correlation falls to
zero within = 100—200 msec. red, Average; black, individual cultures.

posed on a positive envelope (Fig. 1B), as has been described
previously (Jimbo and Robinson, 2000). This general LFP shape
was consistent over time at individual electrodes and across elec-
trodes (Fig. 1C). Time interval distributions for successive LFPs
on individual electrodes revealed that LEPs were at least 24 msec
apart from each other (calculated with refractory period t,. = 2
msec), which allowed us to reliably extract LFPs with a refractory
period set to t,.. = 20 msec (Fig. 1D) (see Materials and Meth-
ods). On average, 58.9 * 0.4 electrodes per culture were active;
i.e., they had negative population spikes that crossed an optimum
threshold as determined by receiver-operating characteristic
curves (see Materials and Methods). The rate of LFPs differed
widely between individual cultures and was on average 58,000 *
55,000 LEPs per hour (mean * SD; range, 10,000-240,000 LFPs/
hr). The total voltage produced by each network when expressed
as sum of LFP amplitudes was on average —2 X 10° mV = 3 X
10° per hr (n = 7 cultures).

Synchronized bursting separated by many seconds of quies-
cence is considered a hallmark of mature cortical networks grown
in isolation (Crain, 1966; Calvet, 1974; Gutnick et al., 1989;
Maeda et al., 1995; Gopal and Gross, 1996; Kamioka et al., 1996;
Plenz and Aertsen, 1996; Corner et al., 2002). In agreement with
these previous reports, LFPs appeared on many electrodes almost
simultaneously when viewed at low temporal resolution, forming
synchronized activity epochs separated by many seconds with no
activity (Fig. 1B). Despite this apparent synchrony, cross-
correlation functions suggested a different picture. Within a sin-
gle network, cross-correlation functions between pairs of elec-
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trodes were highly variable, but quickly declined within = 100—
200 msec (Fig. 1E), which was found in all networks analyzed
(Fig. 1F). The variability in correlation at higher temporal reso-
lution across electrodes suggested that “synchronous” events
were composed of more complex spatiotemporal patterns, for
which currently no exhaustive description is available. In the fol-
lowing paragraph, we will derive such a statistical description of
this activity at high temporal resolution.

The definition of neuronal avalanches

As predicted from cross-correlation analysis, when the LFP data
were binned at finer temporal resolution (e.g., bin width At = 4
msec), it became clear that LFPs did not appear on all electrodes
at exactly the same time (Fig. 2A). Rather, some LFPs occurred
before others, forming spatiotemporal patterns on the electrode
array. To begin to characterize these patterns, two terms were
defined. The spatial pattern of active electrodes on the multielec-
trode array during one time bin Af was called a frame and a
sequence of consecutively active frames that was preceded by a
blank frame and ended by a blank frame was called an avalanche
(Fig. 2A). When activity was classified using this definition, the
cortical cultures were found to produce numerous avalanches per
hour at various lengths (Fig. 2 B). The distribution of avalanches
ranged from several thousand avalanches with just one frame to a
few dozen avalanches at longer duration and was similar for all
bin sizes tested (At = 1-16). Thus, within the synchronous ep-
ochs there existed an entirely different form of activity, ava-
lanches of different durations, in which nonsynchronous activity
was spread over space and time.

The fact that LFPs occurred consecutively within an avalanche
suggested that activity initiated at one electrode might spread
later to other electrodes. Because activity has been reported to
propagate successively, but in a wave-like manner in the devel-
oping retina (Meister et al., 1991), in slow cortical oscillations
(Sanchez-Vives and McCormick, 2000), and in the epileptic cor-
tical slice (Chervin et al., 1988), it was of interest to test how this
activity might differ from a wave-like propagation. An index of
contiguity (see Materials and Methods) was developed to mea-
sure how often activity spread from a given electrode to its nearest
neighbors. In a perfect wave, almost 100% of activity would pro-
ceed from the nearest neighbors, but in the cortical cultures only
39.3 * 8% of the electrodes showed activity that was preceded by
activity from nearest neighbors (bin width At = 4 msec for all
networks). Thus, most of the time, LFPs in the cortical networks
did not propagate in a spatially contiguous way.

The power law in neuronal avalanche size

The variability of spatiotemporal patterns within and across cul-
tured networks raised the question of whether or not there was a
general law that would provide insight into this variability as well
as allow prediction of the features of these patterns. As a first step
toward this, we expressed the size of an avalanche as the number
of electrodes that were activated during the avalanche. The prob-
ability distribution of avalanche sizes revealed a simple, linear
relationship inlog-log coordinates (Fig. 3A). This linear relation-
ship had a cutoff near 60, the maximal number of active elec-
trodes in the array, indicating that most electrodes were not acti-
vated more than once in a given avalanche. More importantly,
this linear relationship also demonstrated the existence of a
power law P(n) ~ n“, where n was the size of an avalanche, P(n)
was the probability of observing an avalanche of size #, and o was
the exponent of the power law, giving the slope of the relation-
ship. The power law remained linear even when avalanche sizes
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Figure2. Activity within synchronized periodsis composed of avalanches. A, Raster of spon-
taneous activity (top) shows correlated periods containing spatiotemporal patterns (middle)
and an avalanche of three frames in the original coordinates of the multielectrode array (bot-
tom). Avalanches were defined as sequences of continuous activity that were preceded and
terminated by a bin width of At with no activity. Dots, LFP times (dot sizes proportional to LFP
amplitudes); 1 and 8, columns and rows on the grid. B, Cultured cortical networks produce
thousands of avalanches of different durations per hour.

were measured using different time bins Af ranging from 1 to 16
msec (mean R? = 0.98 = 0.04). This demonstrated the robust-
ness of the power law for avalanche sizes at multiple time scales.
However, the slope a revealed a clear dependence on bin width A¢
(Fig. 34, inset), to be explained more fully below.

Similar relationships were found when the size of an ava-
lanche took into account different LFP values for each electrode
(Fig. 3B). In this case, avalanche size was expressed as the absolute
sum of LFP amplitudes over all electrodes with LFPs above
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Figure 3.  Size distributions for avalanches follow power laws independently of bin width

At. A, Probability distribution of avalanche sizes (number of electrodes activated) in log—log
coordinates at different At (average for n = 7 cultures). The linear part of each function
indicates power law. Cutoff given by maximal number of electrodes (n = ~60). Inset, Depen-
dence of slope cvon At: ce(At) ~ At ~%16= 29T (R2 = 0,99 + 0.01; averages for all cultures).
Circles, Electrodes; squares, LFP. B, Probability distribution of avalanche size distributions based
on summed LFPs as a function of bin width At. Inset, Single culture; overplot of power laws for
all seven cultures at At = 1 msec expressed in multiples of average LFP size.

threshold and ranged from just a few to several thousands of
microvolts, thereby covering several orders of magnitude. Again,
a simple power law described the probability of finding ava-
lanches for a given field size, whether expressed in absolute LFP
amplitudes or multiples of average LFP amplitude (Fig. 3B, in-
set). The dependence of the exponent a in these power laws based
on LFP amplitudes was identical to that found when measuring
avalanche size based on number of active electrodes only (Fig. 3A,
inset).

Thus, the power laws captured the distribution of the widely
varying spatiotemporal patterns in a simple equation. They also
indicated a fundamental scale invariance of network dynamics
over many orders of magnitude (in this case, involving either a
few neurons or an entire neuronal network); that is, if f(size,) =

J. Neurosci., December 3, 2003 - 23(35):11167-11177 « 11171

(sizey)” then the ratio fk X size,)/f(size,) = k* is independent of
any chosen unitary event size (size,; k is an arbitrarily chosen
number). In other words, at any given scale, e.g., fixed size, the
ratio of patterns with size above or below that scale is constant
and the dynamics do not have a critical size threshold.

A unique power law exponent of —3/2 in cortical networks
Many complex systems with power law behavior in event size
distributions can be described by a single, characteristic exponent
(Paczuski et al., 1996), which raises the question of whether such
a characteristic exponent exists for the cultured neuronal net-
works. To answer this question, we begin by pointing out the
inherent relationship that was observed to exist between the
IEL,, for successively active electrodes and the IED of the elec-
trode array. At a fixed IED, a temporal bin width At > IEL,,
would group many LFPs into the same bin, thereby concatenat-
ing several smaller avalanches together into a longer avalanche.
Thus, long bin widths would bias the power law distribution
toward fewer short avalanches and more long avalanches (i.e., a
decrease in slope). Conversely, at At < IEL,,, long avalanches
would be preferentially fragmented into several smaller ava-
lanches, resulting in a power law with a steeper slope. When the
power law was calculated at the highest spatial resolution (200
pm) and the corresponding IEIL,,, for each culture (Fig. 4A), the
power law exponent a was observed to be —1.50 = 0.008 for
electrode number and —1.49 = 0.005 for summed LFP ampli-
tude (Fig. 4 B,C) (linear regression = SE). Thus, despite the large
variability in IEL,,, between individual cultures of 2.7-6 msec
(equivalent to a “propagation velocity” of ~74-33 mm/sec), the
power law exponent was constant when the data were binned at
the corresponding IEL,,,. In addition, it should be noted that
work in other laboratories has shown that the average propaga-
tion velocity of activity in cultured networks of dissociated neu-
rons grown on multielectrode arrays is ~50 mm/sec (Maeda et
al., 1995). This figure matches exactly with the IED in our arrays
of IED = 200 wm divided by the average optimal bin width At =
4 msec).

Several findings indicated that the value of —3/2 should be
taken as the characteristic exponent for this system. First, the
slope of the power law did not significantly change even when the
data were sampled using a wide range of different thresholds
(3-10 times SD; ANOVA; number of electrodes, p = 0.66; sum of
LFP amplitudes, p = 0.442; Tukey test; data not shown). Second,
because neuronal activity propagates with limited velocity, the
[EI,,, measured in the networks should increase with the IED of
the electrode array, whereas the power law exponent « should be
truly independent from such external scaling. To demonstrate
that a was indeed independent, we effectively rescaled the arrays
by removing some of the intermediate electrodes from the anal-
ysis, still maintaining a square array (see Materials and Methods).
This had the effect of increasing the average distance between
electrodes and also increasing the average IEI for the rescaled
arrays (Fig. 4A). When the data were binned at the optimal bin
widths given by these new IEDs, the avalanche size distributions
still followed a power law with slope a =~ —1.5 (number of elec-
trodes: @ = —1.489 to —1.55; summed LFP amplitude: o =
—1.489 to —1.55; r = 0.98—-0.99), which also suggested that the
network behavior was scale-free (Fig. 4 D,E). Third, the number
of electrodes at which the power law no longer shows a linear
relationship gives the cutoff point. To demonstrate that the cutoff
point was limited solely by the number of electrodes in the array,
during analysis we cut the array into halves and quarters, effec-
tively removing electrodes without changing the IED. As ex-
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pected, the cutoff point always appeared at
the maximum number of electrodes avail-
able in the array, suggesting that the power
law would continue indefinitely for an in-
finite array (Fig. 4 F). Note that some ava-
lanche sizes are actually larger than 60, the
maximum number of electrodes in the ar-
ray. This unusual occurrence could be
caused by an avalanche that spread
through the array and returned to its point
of origin to reactivate some of the ancestor
electrodes again. In that way, some elec-
trodes would participate more than once
in the same avalanche, thus allowing the
total size of an avalanche to exceed 60
electrodes.

To further understand the network
state that is represented by a power law
with slope of —1.5, we increased the excit-
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ity was dominated either by very small or
very large, all-inclusive events, typical for
epileptic tissue (Chervin et al., 1988). This
suggests that a power law of slope —1.5
indicates the optimal excitability of the
network at which the power law exists. Fi-
nally, to test whether the refractory period

Black, Number of electrodes; blue, LFP; average for all cultures. C, Average slopes for cultures (left) and acute slices (right). D, At
At= IEl, .4 and corresponding IED, the slope e is independent of array size. Icons indicate resampled anrays at IED = 200, 400,
and 600 wm. £, Resampled power laws for summed LFP values (same arrays asin D). F, Cutoff point of the power law is determined
by the number of electrodes in the array (n = 15, 30, 60; IED = 200 pum). G, Reduction in inhibition in the presence of the GABA,
receptor antagonist picrotoxin destroys the power law and renders the event size distribution bimodal. Note the presence of a
large hump at higher values, indicating epileptic discharge. H, The nitial slope of the event size distribution is significantly steeper

(p < 0.05) in the presence of picrotoxin. Same color code as in G. /, Average event size distribution for refractory period set to 0

of 20 msec, which is larger than any of the
bin widths At used, might artificially re-
duce the number of LFPs recorded, we recalculated the event size
distributions with a different set of parameters. At a refractory
period of 2 msec and bin width At = 4 msec, the power law for
spontaneous propagation of LFPs was still present with the char-
acteristic exponent of —1.5 (Fig. 41).

The scale-free lifetime distribution of neuronal avalanches

Although we have only considered avalanche sizes so far, the
lifetime distribution of avalanches has also been shown to be an
important parameter that characterizes systems dynamics; in the
case of neuronal networks, it describes the temporal dimension of
propagation. Theoretical considerations (Zapperi et al., 1995) as
well as neuronal network simulations (Eurich etal., 2002) predict
that the distribution of lifetimes for avalanches should likewise
obey a power law, but with an exponential cutoff. We also ob-
served this relationship in the neuronal avalanches in the cul-
tured networks. Here, the shape of lifetime distributions was
largely independent of bin width Af (Fig. 5A) (IED = 200 um),
and the distributions were shown to be scale-free using the trans-
formation t' = t/At (Fig. 5B). As predicted by theory (Zapperi et

msec at At = 4 msec (three cultures). Broken line in red indicates slope of —3/2.

al., 1995), the scale-invariant life time distribution revealed an
initial slope close to o = —2.

Neuronal avalanches in acute cortex slices

Because neuronal propagation as described in the above para-
graphs might be affected by the specific culture condition, we
further examined propagation of synchronized, negative LFPs in
mature, acute slices from rat primary motor and somatosensory
cortex. Spontaneous activity was induced pharmacologically by
increasing the NMDA-mediated sustained excitation in the cor-
tical networks (Seamans et al., 2001) through bath application of
the glutamate receptor agonist NMDA and the dopamine D,-
receptor agonist SKF-38393, which robustly induced spontane-
ous LFP activity (Fig. 6). Similarly as in the organotypic cortex
cultures, LFPs had a typical time course of a negative peak fol-
lowed by a longer-lasting depolarization. Many electrodes initi-
ated spontaneous LFPs in the acute slices, and neuronal ava-
lanches typically encompassed a spatial extent of up to 10-15
neighboring electrodes (Fig. 6 B). Spontaneous activity lasted on
average for 1780 * 448 sec (n = 9 acute slices) and correlation
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between LFPs declined sharply within ~50-80 msec, resulting in
an IEL,,, = 3.73 = 0.467. At the closest integer of At = 4 msec,
this activity had a contiguity index of 28 = 9% and was composed
of on average 505 * 420 avalanches (rate, 966 = 590 avalanches/
hr) (Fig. 6C). The event size distributions for spontaneous activ-
ity in the acute slices clearly revealed the initial signature of the
same power law as was described for the cultured networks (Fig.
6D,E). The average initial slope values for acute slices were
—1.50 £ 0.08 for LFP (r = 0.95; 10—80 wV) and —1.58 = 0.04 for
electrode data (r = 0.999; 1-8 electrodes). Thus, neuronal ava-
lanches also exist in acute, mature cortex slices and display a
characteristic exponent of —3/2. However, neuronal avalanches
in acute slices are more compact and spatially restricted to fewer
electrodes compared with the neuronal culture. This is indicated
by the exponential cutoff of the power law (Fig. 6 E) and most
likely reflects the severed long-range cortical connectivity in the
acute slice.

Finally, the lifetime distribution for neuronal avalanches in
acute slices was also characterized by an initial slope close to —2
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coronal brain slice and position of the microelectrode array. Cx, Cortex. B, Overplot of three
different periods in which spontaneous, synchronized LFPs are visible. Three different periods
(1-3) are shown (1 sec each) that reveal the occurrence of neuronal avalanches in three differ-
ent, partially overlapping locations. For spatial location in the slice, see A. , Raster plot of LFP
activity in response to bath application of the NMDA receptor agonist NMDA and the D, receptor
agonist SKF-38393. Note that synchronized events are visible across the array for ~2000 sec
after which the activity subsides. D, Individual event size distribution at At = IEI,, from each
acute slice experiment over plotted (n = 9 acute slices). Black, Number of electrodes; gray,
summed LFPs; broken line, power law with o = —3/2).F, Average eventsize distribution from
data shown in D. Inset, Lifetime distributions of avalanches display a power law in initial portion
with characteristic slope of —2 and exponential cutoff. Broken line, Power law with exponent
ofa=—2.

and an exponential cutoff, as was described for neuronal ava-
lanches in organotypic cortex cultures (Fig. 6 E, inset).

A critical branching process in cortical network

What mechanism could be responsible for a power law of event
sizes in a neural network with a slope of —3/2? A particular pro-
cess is immediately suggested by the data, given that the slopes
a = —3/2 for avalanche sizes and a = —2 for avalanche life times
have been predicted by theory for a critical branching process
(Harris, 1989; Zapperi et al., 1995). To investigate whether such a
branching process might adequately describe propagation of ac-
tivity in the cultured neural networks, we measured the branch-
ing parameter sigma (o) directly (de Carvalho and Prado, 2000).
For our system, o gives the expected number of electrodes that
will be active in the next time step after a single active electrode.
This average number of descendants can be approximated by the
ratio of descendant electrodes to ancestor electrodes for two suc-
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Figure 7. Network dynamics in cultured networks are characterized by a critical branching

parameter of o = 1, suggesting a state of optimal information transmission. 4, Estimate of
branching parameter o from individual avalanches. o = the ratio of descendant electrodes to
ancestor electrodes. B, Sketch depicting the critical behavior of a branching process over time. If
o > 1, the size of the avalanche will grow over time, taking over the network (epilepsy),
whereas at o << 1, the avalanche will diminish quickly in size. Only at o= = 1 (critical) can
avalanches persist at all scales. (, Values of o for individual cultures (circles) based on single
ancestor (left) or multiple ancestor (right) calculations. Boxes, Means = SD. D, Phase plot of (o,
«) as a function of At. Note that the trajectory passes through critical point (1,—1.5) at the
average population IEl of 4.2 msec. o calculated from single ancestor avalanches. Circles, LFPs;
squares, number of electrodes; = SE.

cessive time bins at the beginning of an avalanche (Fig. 7A). Ac-
cording to theory, o > 1 would represent a supercritical state in
which an increasing number of electrodes would be activated at
each step, eventually leading to an unstable runaway activation of
the network (Fig. 7B). If o < 1 (subcritical state), activity would
decrease over successive steps. If o = 1 (critical state), activity at
one electrode would lead to activity in one other electrode on
average, keeping the network at the edge of stability (Harris,
1989). Because o is estimated only from a small aspect of the
avalanches and can vary tremendously for individual avalanches
(range, 1/59 to 59/1), reliable calculations of o require a very large
number of avalanches. Nevertheless, direct measurement of o
from avalanches in the cultured networks at At = IEI,,, and
IED = 200 um revealed numbers that were remarkably close to
the critical value of one: 0 = 1.04 = 0.19 for avalanches starting
with a single electrode, and o = 0.90 = 0.19 for avalanches start-
ing with more than one electrode (Fig. 7C) (~90,000 avalanches
measured; note that o calculated from multiple ancestors will be
underestimated because of collision effects). To verify that this
finding was caused by the temporal pattern of activity in the
cultured cortical networks, o was estimated for 50 control sets of
shuffled data whose LFP times were randomly jittered by
amounts from 4 to 80 msec. After a jitter of =4 msec, o was
significantly decreased to 0.7 (ANOVA; p < 0.05; Tukey test; n =
7 networks) and decreased further with increased jittering. These
results show that the branching parameter was significantly dif-
ferent from what would be expected by chance.
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Finally, both, the slope of the power law « and the branching
parameter o were calculated from different aspects of the neuro-
nal avalanches (size and branching parameter over the initial
duration) as a function of the freely chosen bin size At. This
allowed the calculation of a trajectory in (o, a)-space as a func-
tion of At. This trajectory (1) crossed through the critical point
(o, @) = (1, —1.5), and (2), this crossing happened at At ~ 4
msec, which was close to the average IEI,,, = 4.2 msec calculated
for the population of neuronal cultures (Fig. 7D, Fig. 4 A at IED =
200 pm). This analysis independently confirmed our initial re-
sults for a using an IEL,,,, that was optimized for individual net-
works. Together, these data strongly imply a critical branching
process as the mechanism behind the power law distributions in
cortical networks.

Information transmission and criticality

If activity in cortical networks obeys a critical branching process,
what implications does this have for information transmission?
To explore this issue, we studied the effects of changes in o on
information transmission in artificial neural networks (see Ma-
terials and Methods).

To model propagation of activity in the cortical networks we
used a feedforward, rather than a recurrent, neural network ar-
chitecture. This choice was motivated by the following results.
The vast majority of runs lasted <20 msec, which was the abso-
lute refractory period observed at each individual electrode, so
most electrodes would be activated only once during a run. In
fact, the percentage of times that a given electrode was reactivated
in a given run was <4.6%. Of the few electrodes that were reac-
tivated, there were at least five intervening frames (when binned
at At = 4 msec: 5 X 4 msec =20 msec absolute refractory period)
of no activity before the electrode was activated again. Thus, un-
der no circumstances was an electrode immediately, or even four
time bins later, reactivated by a recurrent connection. Under
these conditions, the avalanches were propagating through the
cortical network in a manner that was functionally equivalent to
propagation in a feedforward network. Such feedforward archi-
tectures have been used recently by many investigators to model
propagation of activity in cortical networks (Diesmann et al.,
1999; Cateau and Fukai, 2001; van Rossum et al., 2002; Litvak et
al., 2003; Reyes, 2003).

In the feedforward networks that we used, each binary pro-
cessing unit was connected to C other units in the next layer, and
each of these connections was given a probability p; of success-
fully transmitting activity from one unit to another (Fig. 8A).
Because the branching parameter o is constrained by the sum of
the probabilities (Harris, 1989; de Carvalho and Prado, 2000), it
was possible to vary o in the networks and measure its effect on
information transmission (see Materials and Methods). Net-
works with two and three connections per unit as well as three
and four layers were tried. Averaging over all networks, informa-
tion transmission peaked when o was tuned to o = 1.1 % 0.30,
and this peak value asymptotically approached o= 1.04 + 0.10 as
the number of input units in the network, N, increased (Fig.
8B,C) (R? = 0.99). It is also interesting to note that network
performance, measured as the peak information transmitted per
input unit, increased as the ratio of input units to connections
(N/C) increased (Fig. 8 D). This suggests that the critical state
would maximize information transmission especially under con-
ditions of sparse network connectivity, as is suggested to be the
case in the neocortex (Braitenberg and Schiiz, 1991). The fact that
the critical state (o0 = 1) maximized information transmission in
these networks is consistent with an intuitive understanding of
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how a branching process would work in the context of a highly
parallel network. If the network were subcritical, an input signal
would attenuate, causing most output units to be inactive, thus leav-
ing little evidence of the input. If the network were supercritical, any
input signal would eventually lead to most output units being active,
again leaving little information as to what the input was.

Discussion

Three distinct modes of correlated population activity have been
experimentally identified in cortex in vivo: oscillations, syn-
chrony, and waves (for review, see Singer and Gray, 1995; Engel et
al., 2001; Ermentrout and Kleinfeld, 2001). These network modes
have also been described in cortical networks in vitro [e.g.,
y-oscillations (Plenz and Kitai, 1996), synchrony (Kamioka et al.,
1996), and waves (Nakagami et al., 1996)].

In the present study, we identified a new mode of spontaneous
activity in cortical networks from organotypic cultures and acute
slices: the neuronal avalanche. Neuronal avalanches were charac-
terized by three distinct findings: (1) Propagation of synchro-
nized LFP activity was described by a power law. (2) The slope of
this power law, as well as the branching parameter, indicate that
the mechanism underlying these avalanches is a critical branch-
ing process. (3) Our network simulations and pharmacological
experiments suggest that a critical branching process optimizes
information transmission while preserving stability in cortical
networks.

The analysis presented here focuses exclusively on the propa-

J. Neurosci., December 3, 2003 - 23(35):11167-11177 « 11175

gation of sharp (<20 msec) negative LFP peaks. Such LFPs peaks
are commonly observed in slice cultures (Jimbo and Robinson,
2000) or evoked extracellular potentials in acute slices. Current
source density analysis in combination with optical recordings
has demonstrated that sharp, negative LFPs peaks are indicative
of synchronized population spikes (Plenz and Aertsen, 1993).
Similarly, cortical LFPs in vivo are closely correlated with single
spike cross-correlations of local neuronal populations (Arieli,
1992). Thus, negative LFP peaks in the present study might rep-
resent synchronized action potentials from local neuronal popu-
lations. This is supported by computer simulations of the neu-
ron—electrode junction of planar microelectrode arrays, which
demonstrate that sharp, negative LEPs originate from synchro-
nized action potentials from neurons within the vicinity of the
electrode (Bove et al., 1996). Therefore, our results might be spe-
cifically applicable to the propagation of synchronized action po-
tentials in the form of neuronal avalanches through the network,
and the power law of —3/2 provides the statistical framework for
transmitting information through the cortical network in form of
locally synchronized action potential volleys.

Other authors who have studied propagation of synchronized
action potentials in neural networks have concluded that precise
patterns of activity could travel through several synaptic stages
without much attenuation (Abeles, 1992; Aertsen et al., 1996;
Reyes, 2003). The concept of a critical branching process does not
necessarily conflict with this view, but does place constraints on
the distance that activity could propagate when it is traveling in
avalanche form. Although it is natural to think that a critical
branching parameter of 1 will produce a sequence of neural ac-
tivity in which one neuron activates only one other neuron at
every time step, this is not the case. Because the branching param-
eter reflects a statistical average, it gives only the expected number
of descendants after many branching events, not the exact num-
ber at every event. Thus, a single neuron might activate more than
one other neuron on some occasions, whereas on others it may
activate none. In fact, the most common outcome in the critical
state will be that no other neurons are activated. The resulting
events generated by this system will contain many short ava-
lanches, some medium-sized avalanches, and very few large
avalanches.

Neuronal avalanches in the context of

self-organized criticality

The spontaneous activity observed in the present study remark-
ably fulfills several requirements of physical theory developed to
describe avalanche propagation. Tremendous attention in phys-
ics has been given recently to the concept of self-organized criti-
cality, a phenomenon observed in sandpile models for avalanches
(Paczuski et al., 1996), earthquakes (Gutenberg and Richter,
1956), and forest fires (Malamud et al., 1998). In brief, this theory
states that many systems of interconnected, nonlinear elements
evolve over time into a critical state in which avalanche or event
sizes are scale-free and can be characterized by a power law. This
process of evolution takes place without any external instructive
signal; it is an emergent property of the system. In addition, many
of these systems are modeled as branching processes.

The neuronal activity discussed here has numerous points of
contact with this body of theory: (1) All cortical networks dis-
played power law distributions of avalanche sizes. (2) The cortical
networks in the cultures arrived at this state without any external
instructive signal. (3) The slope of the power law for avalanche
sizes and for avalanche life times, as well as the experimentally
obtained values of ¢ all indicate that the avalanches can be accu-
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rately modeled as a critical branching process. For these reasons,
the activity observed in the cortical networks should be consid-
ered as neuronal avalanches.

Neuronal avalanches as a new mode of network activity
Although some power law statistics have been observed before in
the temporal domain of neuronal activity [e.g., time series of ion
channel fluctuations (Toib et al., 1998), transmitter secretion
(Lowen et al., 1997), interevent times of neuronal bursts (Segev et
al., 2002), and EEG time series in humans (Linkenkaer-Hansen et
al., 2001; Worrell et al., 2002)] our results go beyond the phe-
nomenological description of a power law only. We provide two
independent approaches to understanding neuronal propagation
in cortical networks (unique exponent of —3/2 and critical
branching parameter) that lead to a statistical description of neu-
ronal propagation that can be viewed in the framework of infor-
mation processing. To our knowledge, no previous evidence has
been presented for the existence of a critical branching process
operating in the spatiotemporal dynamics of a living neural
network.

The power law in the present study basically says that the
number of avalanches observed in the data scales with the size of
the avalanche, raised to the —1.5 power. This allows for a predic-
tion of very large avalanches. They are a natural consequence of
the local rule for optimized propagation, and are expected to
occur even in normal (i.e., nonepileptic) networks, and are not
particularly rare. For example, in a network with ~10,000 ava-
lanches/hr that engage just one electrode, at least 21 avalanches
will occur every hour that will encompass exactly all 60 elec-
trodes. Thus, on average, activity on every electrode will be cor-
related with every other electrode in the network at least once
every 3 min.

The neuronal avalanches described here are profoundly dif-
ferent from previously observed modes of network operation. As
shown by the correlograms, activity in the cortical networks was
not periodic or oscillatory within the duration of maximal ava-
lanche lifetimes. In addition, the contiguity index revealed that
activity at one electrode most often skipped over the nearest
neighbors, indicating that propagation was not wave-like. Fi-
nally, although the spontaneous activity did display notable syn-
chrony at relatively long time scales, the avalanches that we de-
scribe here actually occurred within such synchronous epochs at
amuch shorter time scale (<100 msec). At this shorter time scale,
the avalanches themselves did not display synchrony, regardless
of the threshold level, IED, or number of electrodes used to ob-
tain the data. These are compelling reasons for neuronal ava-
lanches to be considered a new mode of network activity.

Features of the critical state
It should be noted that the branching parameter used to charac-
terize the critical state is a statistical measure and does not say
anything about the specific biological processes that could pro-
duce a particular value of o. There are several mechanisms oper-
ative in cortical networks that are likely to influence o the degree
of fan-in or fan-out of excitatory connections, the degree of
fan-in or fan-out of inhibitory connections, the ratio of inhibi-
tory synaptic drive to excitatory drive, the timing of inhibitory
responses relative to excitatory responses, and the amount of
adaptation seen in both excitatory and inhibitory neurons, to
name a few. To clearly distinguish the specific role each of these
mechanisms would play in the branching process will be the sub-
ject of future experiments.

Previous theoretical work has discussed the importance of a
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balance between excitation and inhibition in network dynamics
(Van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome,
1998). This balance has been implicated in proportional amplifi-
cation in cortical networks (Douglas et al., 1995) as well as in the
maintenance of cortical up states (Shu et al., 2003). Here, we
extend the idea of balance by using the branching parameter, a
concept that allows us to explore information transmission at the
network level. Although a branching parameter well below unity
would confer stability on a network, the simulations suggest that
this stability would come at the rather severe price of greatly
reduced information transmission. In contrast, a branching pa-
rameter hovering near unity would optimize information trans-
mission, but at the risk of losing stability every time the network
became supercritical. Although these neural network simulations
are vastly oversimplified representations of the dynamics that
occur in cortical networks in vivo, they may nonetheless offer
some insight as to why the cerebral cortex is so often at risk for
developing epilepsy. In fact, our experimental results demon-
strate that removal of inhibition to increase propagation in the
neuronal network to obtain a power law with slope o > —1.5
results in epileptic activity. The competing demands of stability
and information transmission may both be satisfied in a network
whose branching parameter is at or slightly below the critical
value of 1. Thus, calculating the power law exponent and/or
branching parameter might offer quantitative means to evaluate
the efficacy of cortical networks to transmit information.
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