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 Introduction 

 The innate immune system plays a pivotal role as the 
first line of host defense and as a mediator of inflamma-
tory processes. A key element of the innate immune re-
sponse is the recruitment of immune cells to sites of in-
flammation. A tightly controlled neutrophil recruitment 
is essential for the successful control of pathogens. A de-
fect in mechanisms regulating neutrophil recruitment, as 
seen in the leukocyte adhesion deficiency syndromes, 
causes disorders such as recurrent infections  [1] . In con-
trast, an inadequate increase of recruited neutrophils 
may lead to overshooting inflammation and severe tissue 
and organ damage  [2] . Research over the last decades has 
established a uniform paradigm of neutrophil recruit-
ment into inflamed tissues. This classical recruitment 
cascade involves distinct steps in a canonical sequence. 
The recruitment of neutrophils to sites of inflammation 
usually takes place in postcapillary venules of the sys-
temic microcirculation. The first step of the cascade is the 
interaction of neutrophils with endothelial cells (captur-
ing), followed by rolling along the endothelium, transi-
tion to selectin-mediated slow rolling, and chemokine-
induced arrest  [3] . Capturing and rolling are mainly
mediated by the interaction of selectins expressed on in-
flamed endothelial cells with their counterreceptors (e.g. 
PSGL-1) on neutrophils  [4] , which may induce an intra-
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 Abstract 

 The recruitment of immune cells is crucial for the develop-
ment of inflammatory processes. The classical recruitment 
cascade of neutrophils into inflamed tissues is well under-
stood and consists of capturing, rolling, slow rolling, arrest, 
postadhesion strengthening, crawling, and transmigration. 
While this commonly agreed paradigm might be applicable 
to most peripheral tissues, recruitment mechanisms may 
substantially vary in different organs such as the lung, liver, 
and kidney. These organs are highly specialized tissues with 
unique cell populations and structural organization, which 
enables them to fulfill their individual functions. The pub-
lished research over the last decade has shed some light on 
organ-specific mechanisms of neutrophil recruitment and 
helped to generate a deeper understanding of the specific 
recruitment mechanisms involved in this process. The aim of 
this review is to highlight current concepts of tissue-specific 
differences and similarities of neutrophil recruitment into 
the lung, liver, and kidney.  Copyright © 2012 S. Karger AG, Basel 
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cellular signaling cascade leading to the activation of  �  2 -
integrins on neutrophils  [5] . Following selectin engage-
ment, the  �  2 -integrin LFA-1 is forced into an extended 
conformation in which the integrin can interact with en-
dothelial adhesion molecules leading to the transition 
from rolling to slow rolling  [6, 7] . During slow rolling, 
neutrophils are exposed to different chemokines present-
ed on inflamed endothelial cells which bind to their re-
ceptors on neutrophils and mediate  �  2 -integrin-depen-
dent arrest  [8, 9] . In addition to this pathway, previously 
published studies demonstrated that E-selectin engage-
ment in the absence of G �  i  signaling can also induce neu-
trophil arrest  [10–12] . E-selectin signaling cooperates 
with chemokine signaling to recruit neutrophils into in-
flamed tissue. After arresting on the inflamed endothe-
lium, the neutrophils crawl on and subsequently transmi-
grate through the endothelial cell layer via a trans- or 
paracellular route in order to emigrate from the vessel 
 [13] . Upon arrival at the inflamed tissue, neutrophils may 
clear pathogens by phagocytosis or produce reactive oxy-
gen species in order to combat exogenous pathogens and 
release inflammatory mediators  [14] . Recent studies have 
also shown that intravascular adherent neutrophils may 
generate neutrophil extracellular traps in the liver and 
lung microcirculation during systemic inflammatory 
processes  [15, 16] . These DNA-based structures can catch 
circulating bacteria and may represent an alternative 
mechanism of pathogen clearance exerted by neutrophils 
 [17] .

  Platelets are best known as primary mediators of he-
mostasis, but these cells are also involved in inflamma-
tory processes. It has been demonstrated that platelets 
play an active role in both innate and adaptive immunity 
 [18, 19] . Activated platelets adhering to leukocytes and/or 
endothelial cells may modulate neutrophil recruitment. 
The initial interaction of platelets with neutrophils is me-
diated by the binding of P-selectin on the surface of acti-
vated platelets to PSGL-1 on neutrophils  [18] . This cell-cell 
interaction is further stabilized by the subsequent interac-
tion of the activated platelet integrin  �  IIb  �  III  to neutrophil 
 �  2 -integrins via fibrinogen. This cell-cell interaction pro-
motes the recruitment of neutrophils into inflamed tissue 
 [18, 20] . In addition, activated platelets secrete several in-
flammatory cytokines which can directly activate neutro-
phils and also indirectly modulate leukocyte recruitment 
by enhancing the expression of different adhesion mole-
cules on endothelial cells  [18] . Platelets can attach to en-
dothelial cells by binding of the constitutively expressed 
glycoprotein (GP)Ib/IX/V complex on platelets to the von 
Willebrand factor expressed on activated endothelial cells 

or in the subendothelial space  [21] . Binding of this com-
plex to the von Willebrand factor initiates the activation 
of the integrin  �  IIb  �  III  on platelets via ‘outside-in’ signal-
ing  [22] , resulting in shape change, spreading, secretion, 
and aggregation  [23] . GPIb �  is also a low-affinity ligand 
for P-selectin  [24] . Since its density on the platelet mem-
brane is very high, GPIb �  can mediate P-selectin-depen-
dent rolling on activated endothelium and platelet-platelet 
interactions  [25] . Furthermore, GPIb �  has been shown to 
be a ligand for the integrin  �  M  �  2  (Mac-1) on neutrophils 
and this interaction is physiologically relevant for the re-
cruitment of leukocytes  [26] . As activated platelets can 
bind to neutrophils, platelets adherent to the inflamed 
vascular endothelium may actively participate in the 
modulation of inflammation by acting as a bridge be-
tween leukocytes and endothelial cells.

  The classical leukocyte recruitment cascade was 
mainly established in the microcirculation of the cremas-
ter muscle by using intravital microscopy  [3] . However, 
recent studies suggest that recruitment mechanisms in 
the microcirculation of other organs substantially deviate 
from this paradigm ( table 1 ). This review highlights the 
available evidence for tissue-specific neutrophil recruit-
ment mechanisms in the lung, liver, and kidneys.

  Neutrophil Recruitment into the Lung 

 The lung tissue is characterized by its unique anatom-
ical architecture. The smallest functional unit is the air-
filled alveolus, which is separated by a thin interstitial 
tissue membrane from the microvascular bed that spans 
around the alveolus space and forms a huge system of 
small capillaries with a vascular diameter between 2 and 
15  � m. The lung is continuously exposed to exogenous 
pathogens and requires an intact and efficient immune 
surveillance to control infections  [27] . Neutrophil re-
cruitment into the lung occurs mainly in the small capil-
laries spanning the alveolar network and not in postcap-
illary venules as observed in the systemic circulation  [28, 
29] . Due to the small diameter of the lung capillaries, neu-
trophils have to change their shape to squeeze through 
the capillary bed  [28] . Furthermore, the blood flow veloc-
ity in the capillary network of the lung is relatively low 
 [30] . It is thought that the low blood flow velocity togeth-
er with the shape change of neutrophils accounts for the 
increased transit time of neutrophils through the lung 
and for the so-called ‘marginated pool of neutrophils’ in 
the pulmonary microvasculature under physiological 
conditions ( fig. 1 a)  [31] .
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  Acute lung injury (ALI) is a severe clinical disorder, 
which may be caused by direct insults (e.g. pneumonia or 
aspiration of gastric content) or by indirect insults (e.g. 
sepsis or transfusion)  [32] . The induced inflammation 
seen during the development of ALI causes neutrophil 
recruitment into the inflamed tissue, alveolar edema for-
mation, deposition of hyaline membranes, and a compro-
mised gas exchange, which may account for the high 
morbidity and mortality of this disease  [32] . The recruit-
ment of neutrophils is considered as a central element in 
the pathogenesis of ALI  [33] . The number of recruited 
neutrophils in the alveolar space is increased during ALI. 
In animal models, it has been shown that neutrophil de-
pletion dampens the development of ALI  [33, 34] . Chang-
es in the deformability of neutrophils caused by actin fi-
ber formation and rearrangement of the cytoskeleton fol-
lowing neutrophil activation have been implicated as one 
of the first steps of neutrophil recruitment from the mar-
ginated pool into the lung tissue during ALI ( fig. 1 a)  [35, 
36] . Inhibition of actin fiber formation may decrease neu-
trophil recruitment during ALI  [37] . Thus, the unique 
anatomical microarchitecture of the lung tissue deter-
mines neutrophil recruitment.

  Chemokines presented on the inflamed pulmonary 
endothelial cells are essential for neutrophil recruitment 
into lung during ALI  [38] . Binding of chemokines to 
their respective receptors on neutrophils induces an in-
tracellular signaling cascade leading to rearrangement 
of the cytoskeleton and integrin activation, important 
for leukocyte recruitment  [38] . In the lung, resident pul-
monary macrophages are able to produce and release 
chemokines in response to lung injury and are a major 
source of proinflammatory mediators, e.g. interleukin 
(IL)-8 (CXCL8), IL-1, tumor necrosis factor- �  (TNF- � ), 
and 12-hydroxyeicosatetraenoic acid (12-HETE)  [39, 
40] .

  Under inflammatory conditions, 12/15-lipoxygenase 
(12/15-LO) is expressed in the lung monocytes/macro-
phages and is involved in ALI. The product of 12/15-LO, 
the lipid mediator 12-HETE, is involved in the regulation 
of the vascular permeability and neutrophil recruitment 
into the lung after inducing LPS- or acid-induced ALI 
( fig. 1 b)  [40, 41] . It was demonstrated that 12/15-LO in 
hematopoietic cells is necessary for neutrophil recruit-
ment into the interstitial and intra-alveolar compartment 
of the lung, whereas the accumulation of neutrophils in 
the lung microvasculature is also regulated by nonhema-

Table 1. A dhesion molecules involved in neutrophil recruitment into different organs

Lung Liver K idney

PV sinusoids CV cortic al vessels glomeruli

Endothelial cells
Selectins
ICAM-1
VCAM-1
HA
CXCL1
CXCL2
TNF-�
IL-1
12-HETE

Neutrophils
PSGL-1
�2-Integrins
CXCR2
CD44

Green = Molecule is involved in leukocyte recruitment; yellow = molecule may be involved depending on the inflammatory stim-
uli; red = molecule is not involved; grey = no data available. PV = Portal venules; CV = central venules; VCAM-1 = vascular cell adhe-
sion molecule-1; HA = hyaluronic acid; CXCL1 = chemokine (C-X-C motif) ligand-1; CXCL2 = chemokine (C-X-C motif) ligand-2; 
PSGL-1 = P-selectin glycoprotein ligand-1; CXCR2 = chemokine (C-X-C motif) receptor-2.
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topoietic 12/15-LO  [41] . In addition, the vascular perme-
ability increase upon induction of ALI was abolished in 
12/15-LO-deficient mice and in WT mice after pharma-
cological blockade of 12/15-LO. 12/15-LO-deficient mice 
also showed improved gas exchange, reduced vascular 
permeability increase, and prolonged survival in the ac-
id-induced ALI model. Reconstitution experiments re-
vealed that 12-HETE regulates vascular permeability 
through a CXCR2-dependent mechanism ( fig.  1 b)  [40, 
41] . These data suggest that 12/15-LO-derived 12-HETE 
is a key regulator of chemokine and chemokine receptor 
balance.

  The human chemokine CXCL8 (IL-8) is a ligand for 
the chemokine receptors CXCR1 and CXCR2. In the mu-
rine system, CXCL1 (KC) and CXCL2 (MIP-2) are bind-
ing partners for murine CXCR2. The chemokine CXCL8 
accumulates in the BAL of patients during ALI  [42, 43] . 
During the development of the ALI, a chemokine gradi-
ent between the alveolar, interstitial, and intravascular 

space develops with the highest concentration of the che-
mokine in the alveolar space ( fig. 1 c)  [42, 44] . This che-
mokine gradient induces neutrophil migration towards 
the alveolar space. On the endothelial cells, different che-
mokines bind to and are presented by glycosaminogly-
cans expressed on endothelial cells ( fig. 1 c)  [45, 46] . The 
monomer-dimer equilibrium of CXCL8 is important for 
the binding of CXCL8 to glycosaminoglycans and affects 
its ability to recruit neutrophils  [47] . In animal models, it 
has been shown that the CXCR2 receptor on neutrophils 
is one of the most important chemokine receptors in-
volved in neutrophil recruitment into the lung ( fig. 1 c) 
 [48–51] . Pharmacological inhibition of the chemokine re-
ceptor CXCR2 on neutrophils reduced neutrophil re-
cruitment, vascular permeability, and improved gas ex-
change following induction of ALI  [51] . Furthermore, 
CXCR2 is also expressed on endothelial cells  [52] . The 
CXCR2 receptor on endothelial cells directly influences 
neutrophil recruitment and vascular permeability after 

a

b

c

  Fig. 1.  Neutrophil recruitment into the lung.  a  Neutrophils have 
to change their shape to squeeze through the small vessels of the 
pulmonary microcirculation. The increased transit time results in 
a marginated neutrophil pool in the lung. Neutrophil stiffening 
by cytoskeleton rearrangement after stimulation participates in 
neutrophil recruitment into the lung.  b  The lipid mediator 12-
HETE produced by 12/15-LO in lung macrophages modulates 

chemokine-chemokine receptor balance and increases vascular 
permeability and neutrophil recruitment in ALI.  c  A chemokine 
gradient with the highest chemokine concentration in the alveo-
lar compartment and the presentation of chemokines by glycos-
aminoglycans facilitate neutrophil recruitment into the alveolar 
compartment. 
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LPS stimulation, demonstrating that the chemokine-che-
mokine receptor axis is important in the development of 
ALI ( fig. 1 c)  [52, 53] . The activation of CXCR2 on endo-
thelial cells causes the generation of actin stress fibers, 
which leads to cell retraction and increased vascular per-
meability and may also contribute to the recruitment of 
neutrophils  [52] .

  The role of selectins in neutrophil recruitment during 
ALI varies in different murine models and depends on 
the underlying cause of ALI. Depending on the inflam-
matory stimulus, neutrophil recruitment into the in-
flamed lung can be selectin dependent or independent. 
Intratracheal administration of LPS from  Escherichia 
coli  causes E-selectin-dependent neutrophil recruitment 
 [20] . Selectins are also necessary for neutrophil recruit-
ment in murine models of ALI following administration 
of IgG and complement activation  [54, 55] . However, 
neutrophil recruitment following administration of LPS 
from  Streptococcus pneumoniae  or  Salmonella enteritidis  
is selectin independent  [56] . Similar to selectins, the in-
fluence of  �  2 -integrins on neutrophil recruitment in ex-
perimental models of ALI varies and depends on the 
type of insult. For example, neutrophil recruitment was 
found to be integrin dependent in ALI models caused by 
IL-1 and  E. coli , whereas neutrophil recruitment was in-
tegrin independent following the induction of the ALI by 
instillation of C5a or during  S. pneumoniae   [57–60] .

  Platelets play an important role in neutrophil recruit-
ment into the lung. It has been shown that platelets inter-
act with neutrophils in the blood during the development 
of acid-induced ALI  [61] . P-selectin expressed on platelets 
is required for this cell-cell interaction, as blocking P-
selectin by a monoclonal anti-P-selectin antibody abol-
ishes platelet-neutrophil aggregates and also reduces neu-
trophil recruitment, vascular permeability, and improves 
gas exchange during acid-induced ALI  [61] . In addition, 
activated platelets secrete proinflammatory mediators, 
such as chemokines and lipid mediators including throm-
boxane A 2   [18, 61] . Binding of locally produced throm-
boxane A 2  to thromboxane receptors on endothelial cells 
causes upregulation of intercellular adhesion molecule-1 
(ICAM-1) on the cell surface and may indirectly modu-
late neutrophil recruitment  [62] . It has been shown that 
platelet depletion improves gas exchange, reduces vascu-
lar permeability, and increases survival  [61] . Grommes et 
al.  [63]  reported that the CCL5-CXCL4 heterodimer re-
leased from platelets in LPS-, acid-, and sepsis-induced 
ALI is involved in neutrophil recruitment and disruption 
of this heterodimer decreased neutrophil recruitment 
and improved ALI.

  Neutrophil Recruitment into the Liver 

 The liver is the central metabolic organ and it fulfills 
many synthetic and excretory functions, e.g. carbohy-
drate, lipid and protein metabolism, energy storage by 
production of glycogen, and excretion of fats, drugs and 
metabolic waste products via secretion of bile. The liver 
can be affected by numerous infectious and noninfec-
tious pathologies causing tissue inflammation and inju-
ry. However, there is evidence that the recruitment of 
neutrophils into the liver deviates from the classical leu-
kocyte recruitment cascade  [64] .

  The liver has a unique, dual blood supply. It receives 
arterial blood from the hepatic artery supplying the or-
gan with oxygenated blood. In addition, the portal vein 
drains large portions of the splanchnic organs, e.g. the 
spleen and the intestines, and transports this nutrient-
rich blood to the liver. The two blood supplies merge at 
the hepatic sinusoids and are drained via the central, 
postsinusoidal venules. The liver’s sinusoidal endotheli-
um has a unique architecture. The sinusoidal endothelial 
cells lack a common basal lamina and tight junctions and 
rather form a mesh with numerous holes with an average 
diameter of about 0.1  � m instead of a tightly sealed cell 
layer ( fig. 2 )  [65] . In addition, the sinusoidal endothelial 
cells express low levels of vascular cell adhesion mole-
cule-1 and they do not express CD31, CD34, and VE-cad-
herin  [66] . In contrast, ICAM-1 is expressed in much 
higher levels than on endothelial cells in the systemic mi-
crocirculation  [66, 67] . While neutrophil recruitment in 
the portal and central venules of the liver shares many 
similarities with the classical paradigm of neutrophil re-
cruitment in the systemic microcirculation, the recruit-
ment mechanisms are substantially different in sinu-
soidal vessels  [64, 68] . The unique ultrastructural and 
molecular features of the endothelial cells in the liver si-
nusoidal vessels may explain the differences in neutro-
phil recruitment during liver inflammation  [69] . The 
compartment between the endothelial cells and the hepa-
tocytes is known as the Disse space ( fig. 2 )  [70] . The fen-
estration of the endothelial cells in combination with the 
absence of the basal lamina allows an easy exchange of 
fluids and solutes between the Disse space and the intra-
vascular space. The sinusoids are small vessels and their 
diameter (15–30  � m) is generally just slightly bigger than 
the diameter of neutrophils  [71] . The sinusoidal endothe-
lial cells in the liver do not produce Weibel-Palade bodies 
and lack E- and P-selectin  [66, 67, 72] . Thus, selectin-me-
diated neutrophil rolling is not observed in the liver sinu-
soids  [64, 68] . This fact is strengthened by the finding that 
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the recruitment of neutrophils into the liver in response 
to fMLP administration was not affected in knockout 
mice lacking E- and P-selectin. In vivo studies investigat-
ing neutrophil recruitment in LPS- or TNF- � -induced 
liver injury could also demonstrate the absence of selec-
tin-mediated rolling in liver sinusoids, while neutrophil 
recruitment in the portal (presinusoidal) venules was se-
lectin dependent  [64, 68] . Recent research has demon-
strated that neutrophil recruitment in the liver sinusoids 
depends on the binding of CD44 on neutrophils to hyal-
uronic acid on sinusoidal endothelial cells, which is ex-
pressed in liver tissue under basal conditions with a dis-
tinctive increase in response to inflammatory stimuli 
( fig. 2 )  [73] . Another known mechanism of neutrophil re-
cruitment in the liver sinusoids is chemokine-mediated 
arrest as demonstrated by in vivo studies ( fig. 2 )  [74–76] . 
Chemokines and cytokines are implicated in neutrophil 
adhesion to sinusoidal endothelial cells, including TNF-
 �  and the CXC chemokines CXCL1 and CXCL2 in mice 
 [77, 78] . While the chemokine presentation on the sinu-
soidal endothelial cells mediates the initial intravascular 
arrest of neutrophils, a recent study demonstrated that 
fMLP released from necrotic cells triggers neutrophil 
chemotaxis to inflamed liver tissue ( fig. 2 )  [76] . 

  The participation of platelets in hepatic neutrophil re-
cruitment during systemic endotoxemia by cecal ligation 

and puncture in rats has been described  [79] . Apart from 
a possible direct interaction with neutrophils, platelets 
contribute to the generation of an inflammatory micro-
environment by modulating chemokine presentation, 
and platelet depletion significantly reduced the recruit-
ment of neutrophils in an inflammatory model of bile 
duct ligation-induced cholestasis  [80] .

  Neutrophil Recruitment into the Kidney 

 The kidneys are organs that are essential in the uri-
nary system and also serve homeostatic functions such as 
the regulation of electrolytes, the maintenance of the ac-
id-base balance, and the regulation of blood pressure. In 
producing urine, the kidneys excrete wastes such as urea 
and ammonium, and they are also responsible for the re-
absorption of water, amino acids, and glucose. The kid-
neys also produce hormones including erythropoietin, 
calcitriol, and the enzyme renin. In contrast to other tis-
sues, the kidney has two distinct capillary networks. The 
first capillary network is located in the glomeruli and 
participates in the production of plasma ultrafiltrate 
which enters the nephron. After leaving the glomeruli, 
the blood enters the second renal capillary network sur-
rounding the nephrons in the renal medulla. This second 

  Fig. 2.  Neutrophil recruitment into the liver. Neutrophils are recruited in the sinusoids of the liver by chemo-
kines and by binding of CD44 to hyaluronic acid on sinusoidal endothelial cells. The release of inflammatory 
mediators, such as fMLP, participates in the recruitment of intravascular neutrophils to sites of liver injury. 
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capillary network participates in the process of fluid re-
covery from the ultrafiltrate and urine concentration.

  Leukocyte recruitment into the kidney occurs in cap-
illaries of the renal glomeruli and in postcapillary ve-
nules of the renal cortex  [81, 82] . The neutrophil depen-
dence of acute kidney injury has been demonstrated in 
various mouse models, including ischemia-reperfusion 
injury (IRI) and cisplatin-induced kidney injury  [83, 
84] . Following IRI, selectins play an important role for 
neutrophil recruitment  [85] . The blockade of E-selectin 
with a monoclonal antibody protected mice from acute 
kidney injury after IRI and reduced postischemic neu-
trophil infiltration into the kidney parenchyma  [82, 85] . 
Likewise, P-selectin-deficient mice had less neutrophil 
infiltration and a decreased severity of acute kidney in-
jury after IRI  [86] . However, P-selectin is not just ex-
pressed by endothelial cells but also by platelets. Studies 
with bone marrow-chimeric mice revealed that P-selec-
tin on platelets rather than endothelial P-selectin is nec-
essary for neutrophil recruitment into the kidney after 
IRI  [87] . Recently, we demonstrated by intravital mi-

croscopy that neutrophil recruitment in the postcapil-
lary venules of the cortex of the kidney depends on E-
selectin following IRI. Furthermore, we demonstrated 
that the two signaling molecules Slp76 (SH2 domain-
containing leukocyte phosphoprotein of 76 kDa) and 
ADAP (adhesion- and degranulation-promoting adap-
tor protein) in neutrophils are both implicated in selec-
tin-mediated integrin activation and neutrophil recruit-
ment into the injured kidney ( fig. 3 a)  [82] . In addition, 
the binding of endothelial CD44 to hyaluronic acid on 
neutrophils contributes to neutrophil recruitment into 
the kidney after IRI  [88] . CD44 is weakly expressed un-
der physiological conditions, but CD44 expression on 
endothelial cells sharply increases after induction of IRI 
 [88] . Awad et al.  [89]  described the spatiotemporal orga-
nization of neutrophil recruitment into the kidney after 
IRI as a process of intravascular neutrophil margination 
and transendothelial migration with a negative regula-
tory role of the adenosine 2A receptor on neutrophil re-
cruitment. Due to technical difficulties in the visualiza-
tion of leukocyte recruitment into the injured kidneys, 

a b

  Fig. 3.  Neutrophil recruitment into the kidney.  a  Neutrophil recruitment in the cortical vessels of the kidney is 
E-selectin dependent and involves selectin-mediated capturing and the transition from rolling to slow rolling 
by the binding of the  �  2 -integrin LFA-1 on neutrophils to ICAM-1 on endothelial cells.  b  Neutrophil recruit-
ment in the glomerular capillaries is mediated by the interaction of P-selectin binding to PSGL-1 on neutrophils 
and results in chemokine-triggered  �  2 -integrin-dependent arrest without prior rolling. 
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it is noteworthy to mention that most of the published 
in vivo   data were acquired in a mouse model of hydro-
nephrotic kidneys, which were subsequently rendered to 
inflammatory stimuli  [90] . Using this model, it could be 
demonstrated that leukocyte recruitment in the in-
flamed glomerular capillaries following administration 
of an antibody against the glomerular basement mem-
brane occurs via immediate arrest requiring endothelial 
P-selectin and ICAM-1 and leukocyte PSGL-1 and  �  2 -
integrins, but does not involve rolling ( fig. 3 b)  [91] . In 
addition to selectins, cytokines and chemokines play an 
important role in neutrophil recruitment into the kid-
ney  [92] .

  Similar to the lung, platelets are also involved in the 
recruitment of immune cells into the kidney. Recent
intravital microscopy studies could show that platelets 
accumulate in glomerular capillaries after inducing in -
flammation by administration of an antibody direct-
ed against the glomerular basement membrane. Platelet 
recruitment occurred via an  �  IIb  �  III /GPVI-dependent 
pathway  [93] . Interestingly, leukocyte recruitment was 
platelet dependent and the depletion of neutrophils also 
led to a reduced number of accumulated platelets, indi-
cating a cooperative mechanism of heterotypic interac-
tion between platelets and neutrophils  [91, 93] .

  Conclusions 

 The mechanisms of neutrophil recruitment have been 
investigated over the past decades. Although the gener-
ally accepted steps of the neutrophil recruitment cascade 
are well defined and the underlying molecular mecha-
nisms of this process have been unveiled to a certain ex-
tent, it has to be kept in mind that these results were most-
ly obtained in the cremaster muscle and the systemic mi-
crocirculation. Although these general principles might 
be valid for a lot of tissues, it has become evident that the 
recruitment of neutrophils into different organs may de-
viate from this general idea. In addition, the recruitment 
mechanisms in the same organ may vary with different 
inflammatory stimuli. The understanding of the precise, 
tissue-specific molecular mechanisms involved in the re-
cruitment of neutrophils from the circulation has evolved 
over the past decade. An improved knowledge of the tis-
sue specificity of neutrophil recruitment might aid in the 
development of future tissue-specific therapeutic ap-
proaches in the treatment of inflammatory diseases.
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