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 Introduction 

 Pathogenic bacteria have evolved various strategies 
to invade their host, to acquire nutrients from diverse 
food sources and to establish themselves in one or sev-
eral microenvironments within the host. A distinct set 
of virulence factors is employed to promote growth and 
to allow the pathogens to compete with commensal bac-
teria, but, most importantly, to enable the bacteria to 
escape from host immune responses. The Gram-posi-
tive bacterium  Streptococcus pyogenes  is one of the most 
common and important human bacterial pathogens. 
Streptococcal infections include throat and skin infec-
tions, as well as invasive, life-threatening conditions 
such as necrotizing fasciitis and toxic shock syndrome 
 [1] . Mucocutaneous infections cause substantial mor-
bidity and considerable economic loss to society, as 
more than 600 million people are estimated to suffer 
from streptococcal pharyngitis alone  [2] . Streptococcal 
infections also harbor a risk for postinfectious sequelae, 
including serious inflammatory/autoimmune diseases 
such as acute rheumatic fever, rheumatic heart disease 
and post-streptococcal glomerulonephritis. In addition, 
other inflammatory autoimmune diseases, e.g. guttate 
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 Abstract 

 Survival of the important bacterial pathogen  Streptococcus 
pyogenes  relies on its ability to circumvent the antimicrobial 
actions of innate and specific immune responses and to 
modulate the inflammatory responses induced during the 
course of an infection. Inflammatory processes play key roles 
during streptococcal pathogenesis and streptococcal infec-
tions are accompanied by an intense inflammatory state. As 
an exclusively human pathogen,  S. pyogenes  has adapted to 
the various countermeasures employed by its host to fight 
bacterial infections, in particular to interfere with the effec-
tor functions of immunoglobulin G (IgG). For this purpose,  S. 
pyogenes  has evolved an IgG-specific endopeptidase, IdeS, 
which is highly specific for the lower hinge region of IgG. This 
review summarizes the current knowledge about this in-
triguing enzyme as well as its role in inflammation and in the 
attenuation of human immune responses towards strepto-
coccal infection.  Copyright © 2012 S. Karger AG, Basel 
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psoriasis, have also been associated with streptococcal 
infections  [3] , although the underlying molecular mech-
anisms are still elusive.

   S. pyogenes  infections are commonly associated with 
an intense inflammatory state  [4] , reflecting an increased 
vascular permeability and recruitment of neutrophils to 
the site of infection. However, to view inflammatory re-
sponses only as a host-protective measure to fight bacte-
rial infection does not give a justified picture of the com-
plex host-parasite relationship. Inflammatory responses, 
the activation of complement cascades and the degranu-
lation of neutrophils have, of course, protective func-
tions, but also lead to tissue damage and, in serious dis-
ease, to the loss of function of both tissues and organs. 
Increased vascular permeability, stimulated exudate flow 
and tissue damage are also important parameters for the 
spread of bacteria and supplying of nutrients. Thus, the 
survival of  S. pyogenes  does rely on its ability to modulate 
these inflammatory responses to a level that is beneficial 
for the bacteria at the same time as the bacteria have to 
avoid the various actions of host immunity. Although
asymptomatic carriage of  S. pyogenes  is common, as an 
exclusively human pathogen it is likely to eventually 
cause symptoms and to induce an immune response and 
protective immunity. Since protective immunity harbors 
the obvious risk of the extinction of the pathogen in host 
populations,  S. pyogenes  has not only to deal with innate 
immune responses but also with specific antibodies. IgA 
is the abundant antibody in mucosal surfaces and plays 
an important role by protecting mucosal surfaces against 
bacterial colonization and invasion, and also by interfer-
ing with the action of microbial virulence factors  [5, 6] . 
The effector functions of IgA depend on the structural 
integrity of antigen – and effector domains and many 
pathogenic bacteria including certain species of Strepto-
coccus secrete IgA1 proteases  [7] . The proteolytic activity 
of IgA proteases is not restricted to IgA, as the enzymes 
have also been shown to cleave other proteins, e.g. LAMP-
1, a phagosomal membrane glycoprotein  [8] .

  Although  S. pyogenes  frequently colonizes mucosal 
surfaces, the bacteria apparently lack IgA proteases but 
employ an IgA-binding M protein to interfere with the 
binding of IgA to its receptors  [9] . However, as mentioned 
above, upon infection and inflammation, a plasma-exu-
dative response is mounted  [10]  and the pathogen has to 
deal with both specific immunoglobulin G (IgG) and 
neutrophils that are recruited to the infection site.

   S. pyogenes  has evolved a highly specific IgG endopep-
tidase to accomplish this task. This enzyme, designated 
IdeS, has unique properties in that it not only degrades 

IgG, but also directly and indirectly represses innate im-
mune responses to promote streptococcal survival in an 
inflammatory environment.

  Streptococcal IgG-Degrading Enzyme of  S. pyogenes  

 Ig-degrading activity is a rather common strategy em-
ployed by pathogenic bacteria to avoid the detrimental ac-
tivity of specific IgG  [11] . In  S. pyogenes , the classic cyste-
ine protease SpeB  [12]  has been described as cleaving IgG 
and IgA in the flexible hinge region  [13, 14]  and thereby 
interfering with the effector functions of IgG. However, 
proteolytic cleavage of IgG by SpeB is very slow and ap-
pears not suitable to deal with specific antibodies  [15] . A 
much more powerful IgG-cleaving activity was discov-
ered when investigating proteolytic activities in strepto-
coccal growth medium supplemented with human plas-
ma  [16] . Proteolytic activity against IgG was assigned to a 
secreted 35 kDa protein and called IgG-degrading en-
zyme of  S. pyogenes  (IdeS)  [16] . IdeS was found to be iden-
tical to streptococcal Mac-1, a protein that had been pro-
posed to inhibit phagocytosis by inhibiting Fc receptor 
(CD16) recognition of IgG and/or complement disposi-
tion  [17, 18] . Subsequent studies revealed that IdeS/Mac-1 
can indeed inhibit certain neutrophil effector functions, 
i.e. the production of reactive oxygen species (ROS), inde-
pendently from IgG endopeptidase activity, but also that 
this inhibition per se is not sufficient to mediate strepto-
coccal survival in bactericidal assays  [19]  (see below).

  Two allelic variants of the  ides  gene have been de-
scribed  [20]  and one or the other of the two variants is 
encoded in all  S. pyogenes  strains investigated  [16, 18, 21, 
22] , including clinically important serotypes, e.g. M1, 
M3, M4 and M12 as well as more recently validated sero-
types, like M122  [20, 21] . The fact that the protease is con-
servatively encoded in  S. pyogenes  indicates an important 
role of IdeS for streptococcal pathogenicity. Although the 
two variants differ more than 50% in amino acid se-
quences in the middle third of the protein (amino acids 
112–205)  [20] , both forms encode enzymes with pro-
nounced IgG-specific endopeptidase activity  [19] . To dis-
tinguish the two allelic forms, the first variant is now 
commonly designated IdeS (sometimes Mac-1), while the 
second variant is called Mac-2. Enzymatic activity of 
Mac-2 proteins is indistinguishable from the enzymatic 
activity of IdeS proteins  [19]  and an earlier report of only 
weak IgG endopeptidase activity for Mac-2  [20]  is only 
valid for proteins of the streptococcal M28 serotype  [21] . 
Mac-2 proteins of this serotype represent an unique ex-
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ception in that the presence of a second cysteine residue 
mediates the formation of a disulfide bond to the cata-
lytic site cysteine of Mac-2 M28 , thereby interfering with 
substrate recognition and/or cleavage  [19] . Thus, with the 
exception of Mac-2 M28 , both IdeS and Mac-2 protein vari-
ants are bifunctional proteins that combine both Fc re-
ceptor-binding activity and IgG endopeptidase activity 
to achieve efficient protection against IgG-mediated 
phagocytosis  [19] .

  The IdeS Protease Family 

 IdeS homologs have been identified in other strepto-
coccal species:  S. equi  ssp  equi  and  S. equi  ssp  zooepi-
demicus  encode two alleles designated  ide E and  ide E2 
and  ide Z and  ide Z2, respectively  [23, 24] . The  S. equi  ho-
mologs IdeE and IdeZ share 99% amino acid sequence 
identity with each other and are more closely related to 
the Mac-2 protein of  S. pyogenes  than to IdeS  [20] . IdeE2 
and IdeZ2 share 70% sequence identity with each other, 
but only about 25% with IdeE, IdeZ, IdeS or Mac-2  [24] . 
All four alleles encode proteins with IgG endopeptidase 
activity, although to different degrees and specificities 
 [24] . Interestingly, IdeE and IdeZ exhibit only weak pro-
teolytic activity towards horse IgG, but are efficient in 
cleaving human IgG  [23] . Furthermore, they are also 
weakly active against mouse IgG. They are equally effi-
cient at cleaving horse and human IgG, but lack the abil-
ity to cleave IgG from mouse, rabbit and sheep  [24] . An 
IdeS-like domain is also present in the approximately 110 
kDa Mac family protein from  S. suis   [25] , but putative ac-
tivities and functions of this protein have so far not been 
characterized. An IdeS-like domain has been iden tified 
in the IdeT protein of  Treponema denticola , a Gram-
negative oral spirochete frequently associated with
chronic periodontitis  [26] . The IdeS-like domain has been
designated dentipain and exhibits approximately 25% 
identity to IdeS and IdeE but lacks Ig-degrading activ-
ity. However, dentipain has proteolytic activity as an ol-
igopeptidase  [26] .

  Hydrolysis of IgG 

 IgG hydrolysis occurs at one defined site between the 
two glycine residues in positions 236 and 237 in the low-
er hinge region of the IgG heavy chain. The lower hinge 
region of IgG has been implicated as being important for 
Fc receptor recognition and complement binding  [27, 28] . 

Thus, proteolytic cleavage in this region will not only ef-
fectively prevent the IgG-mediated recruitment of im-
mune cells to the bacteria, but is also likely to interfere 
with the recognition of IgG (fragments) by complement 
and/or Fc receptors (see below). As a consequence of 
cleavage in the lower hinge region, IdeS generates one 
F(ab � ) 2  fragment and two identical ½Fc fragments  [16] , 
which is in contrast to the activity of papain that cleaves 
in the upper hinge region of IgG, yielding a 50 kDa
Fc papain  fragment. The papain derived 50 kDa Fc papain  
fragment is, to date, the smallest known substrate of IdeS 
 [29] . Cleavage of IgG occurs in two steps, where cleavage 
of one heavy chain is significantly faster than cleavage of 
the second heavy chain  [30, 31] . Single-cleaved IgG is in 
a physiological environment indistinguishable from in-
tact IgG and has the same half-life in vivo as uncleaved 
IgG  [31] . However, most importantly, single-cleaved IgG 
has a significantly lower affinity for Fc �  receptors and 
can no longer mediate the effector functions of IgG  [31] . 
Enzyme kinetic analysis of IdeS activity towards IgG 
demonstrated a non-Michaelis-Menten-like velocity 
curve over a broad concentration range of the enzyme 
 [29, 32] . The sigmoidal-shaped curves might be explained 
by the presence of two cooperative binding sites  [29] . Two 
binding sites acting together in substrate recognition can 
be accomplished either by two recognition motifs present 
in monomeric IdeS, i.e. the catalytic site and a second so-
called exosite, located in different parts of the IdeS mol-
ecule, or by the assumption that the catalytic sites of two 
IdeS molecules act together in a dimeric form of IdeS  [29, 
33] . Dimeric molecules have, in fact, been reported for 
crystal forms of IdeS  [30] , but bioinformatic analyses and 
experimental evidence strongly suggest that the dimeric 
form of IdeS is rather due to crystal packaging than rep-
resenting a biological active form  [34]  (Vindebro et al., 
unpubl. data). The crystal structure of IdeS  [35]  reveals 
the typical structural fold of the papain superfamily of 
cysteine proteases, in which the active site is embedded 
in a distinct cleft between two globular domains  [35] . The 
active site encompasses a classic catalytic triad in which 
the catalytic Cys94 is hydrogen-bonded to His262 and 
completed by a hydrogen bond between Asp284 and 
His262. This conformation, together with Lys84 and 
Asp286, forms a negatively charged region that has been 
implicated as being important for the proper positioning 
of IgG in the active site  [35] . These data are consistent 
with previous results from enzymatic assays that revealed 
His262, Asp284 and Asp 286 to be important for the en-
zymatic activity of the enzyme  [36] . Interestingly, IdeS 
carries an Arg-Gly-Asp motif  [20] . The motif is located 
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on a surface loop in the N-terminal region of IdeS, indi-
cating that this classic integrin-binding motif does not 
interfere with proteolytic activity  [33] . Instead, the Arg-
Gly-Asp motif of IdeS and Mac-2 mediates interaction 
with  � V � III and  � IIb � 3 integrins in experimental as-
says, although the putative role of this interaction is still 
unknown  [20] .

  Powering IdeS Activity 

 Although secreted IdeS is a highly active and efficient 
IgG endopeptidase, considering the vast excess of IgG in 
the circulation, protection against specific IgG appears to 
be an overwhelming task. While it can easily be imagined 
that IdeS concentrations are sufficiently high to mediate 
fast proteolysis of specific IgG in the vicinity of the infec-
tion focus, exudate influx and radial diffusion of the en-
zyme will increasingly dilute enzyme concentrations. If 
enzyme concentrations become too diluted, IdeS activity 
is not sufficient to maintain effective protection. Under 
such conditions, endogenous protease inhibitors, like the 
ubiquitous human protease inhibitor cystatin C  [37] , are 
expected to counteract IdeS activity (as previously de-
scribed for other microbial proteases)  [36–40] . This is, 
however, not the case: instead, human cystatin C was 
identified as a natural, facultative cofactor of IdeS. IdeS 
activity is not dependent on cystatin C, but the latter sig-
nificantly accelerates the enzymatic velocity of the prote-
ase  [32]  ( fig. 1 A). As cystatin C is widely distributed in 
body liquids and tissues,  S. pyogenes  has the ability to 
maintain a high activity of IgG endopeptidase and pro-
tection against specific IgG even at low enzyme concen-
trations, e.g. at a distance from the infection focus or ear-
ly on in infection. Acceleration of a streptococcal cysteine 
protease by an abundant human cysteine protease inhib-
itor is a unique example of the coevolutionary processes 
between  S. pyogenes  and the human host  [32] . The origi-
nally proposed model for the stimulatory activity of cys-
tatin C was a mechanism where the inhibitor would pro-
mote IdeS dimerization  [32] , which in turn was suggested 
to be increasing IgG endopeptidase activity  [33] . In the 
light of recent experimental results, however, it is not like-
ly that IdeS forms a dimer (Vindebro et al., unpubl. data) 
or that a putative dimer would be enzymatically more ac-
tive than monomeric IdeS. Acceleration of enzyme activ-
ity is not due to increased substrate recognition or prod-
uct dissociation  [33] , and alternative explanations for the 
stimulatory activity of cystatin C on IdeS are currently 
under investigation.

  IdeS Activity and Nonimmune Binding of IgG 

  S. pyogenes  has evolved M protein and M-like proteins 
that are major virulence factors and act as bacterial Fc 
receptors at the streptococcal cell surface. Nonimmune 
Fc binding mediates the immune evasion of specific IgG 
by counteracting signaling to immune cells and comple-
ment factors, i.e. by blockage of Fc �  receptor binding  [41, 
42]  and by inhibition of complement activation through 
the classic pathway  [43] . However, in light of the vast 
amounts of IgG present in the circulation, the capacity of 
 S. pyogenes  to bind IgG is limited and the majority of Fc 
binding sites at the streptococcal surface are occupied by 
nonspecific IgG, leaving the bacteria vulnerable to the 
detrimental action of specific antibodies. In addition, 
binding of IgG to the streptococcal M proteins is in equi-
librium and thus, per se, not designed to mediate long-
term protection against specific antibodies  [44] . Such an-
tibodies will eventually dissociate and hence be able to 
opsonize the bacterium and mediate its killing. A long-
lasting and more efficient evasion of specific IgG be-
comes possible through the secretion of IdeS ( fig. 1 B, a). 
The protease potentiates the effect of nonimmune bind-
ing of IgG in various ways: (1) in an environment with low 
amounts of IgG, the proteolytic activity of IdeS will be 
sufficient to diminish the overall load of specific IgG in 
the vicinity of the bacteria and hence increase the prob-
ability of quantitative binding of specific IgG in a nonim-
mune fashion ( fig. 1 B, b) and (2) nonimmune binding of 
IgG by M proteins is followed by the proteolytic cleavage 
of the bound antibody. IdeS-generated ½Fc fragments 
have a low affinity for M protein and do not compete ef-
ficiently with intact IgG in binding to the bacterial sur-
face. Thus, rapid dissociation of ½Fc allows the binding 
(and inactivation) of new IgG ( fig. 1 B, c). The cooperative 
binding and cleavage of IgG increases the probability that 
the bacteria resist specific IgG, despite the presence of a 
large excess of nonspecific IgG in the circulation.

  Effects of IgG Degradation Products 

 The extensive cleavage of IgG by IdeS results in the 
formation of high amounts of circulating ½Fc and F(ab�) 2  
fragments. F(ab�) 2  fragments derived from specific anti-
streptococcal antibodies retain the ability to bind to sur-
face antigens, but lack the ability to signal to immune 
cells or to activate the complement system. Thus, when 
bound to the streptococcal surface, these fragments in-
terfere with the recognition of streptococcal surface an-
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tigens by specific, uncleaved antibodies, exerting a pro-
tective effect. However, cleavage of unspecific IgG also 
generates F(ab�) 2  fragments that are released in the circu-
lation, but whether these fragments have a further bio-
logical effect has still to be determined. More informa-
tion is available on the action of released ½Fc fragments; 
in an experimental setting in nonimmune blood, strep-
tococcal survival decreased significantly when blood was 
preincubated with them  [44] . This effect is accounted for 
by a mechanism known as ‘priming’, which is defined as 
PMN activation by a second stimulus with an enhanced 
rate and extent of ROS production by NADPH oxidase 
 [45–47] . Upon activation of PMNs with opsonized latex 
beads, not only an increased maximum, but also a much 
earlier peak of ROS production was obtained in ½Fc-
primed samples ( fig.  1 B, d). The response from ½Fc-
primed PMNs is more powerful and considerably faster 
when compared to nonprimed cells. Thus, while the 
priming of PMNs by ½Fc fragments leads to the increased 
killing of  S. pyogenes  in experimental bactericidal assays, 
in the human host ½Fc-priming represents an important 
mechanism to promote bacterial survival during infec-
tion. In vivo, these fragments can freely diffuse from the 
site of bacterial colonization and thus prime PMNs at a 
distance from the site of infection. Once activated e.g. by 
immunocomplexes, these PMNs will discharge at a dis-

tance from the bacteria without being harmful to the 
pathogen ( fig. 1 B, e). Activated PMNs will thereby con-
tribute to inflammatory processes that facilitate the 
spread of  S. pyogenes  to new infection sites. Interestingly, 
to prevent PMNs from discharging close to the bacteria, 
IdeS itself interacts with PMNs, leading to the efficient 
suppression of ROS production  [19] . The precise mecha-
nism so far remains elusive, but it is not dependent on the 
IgG endopeptidase activity of IdeS  [19] , and might be me-
diated by interaction with Fc � R  [18] . Thus, close to the 
focus of infection, where IdeS concentrations are high, 
IdeS itself prevents ROS production in neutrophils and 
counteracts the priming effect of IgG ½Fc fragments.

  Host Immune Response to IdeS 

 Analysis of the acute-phase serum samples of patients 
suffering from streptococcal disease demonstrated the 
presence of detectable antibody levels against IdeS  [17, 18, 
22, 48] . These results correlate well with the fact that an-
tibodies specific for IdeS are also widely distributed in the 
healthy population  [22]  and reflect a pre-existing im-
mune response caused by previous  S. pyogenes  infections. 
In the majority of these patient samples, neutralizing ac-
tivities could be detected in acute-phase serum, an im-
portant finding, as the level of neutralizing antibodies i.e. 
the antibody quality, has been suggested to be clinically 
more relevant than the quantity  [49, 50] . Furthermore, 
when investigating paired acute- and convalescent-phase 
serum samples from patients suffering from streptococ-
cal tonsillitis or erysipelas, it was found that all patients 
that seroconvert to IdeS, i.e. those who developed anti-
bodies towards IdeS, also obtained IgG antibodies with 
the ability to neutralize IdeS enzymatic activity  [21] . 
 Although no direct correlation between the presence or 
absence of neutralizing antibodies and the severity of in-
vasive disease/disease outcome could be observed, neu-
tralizing antibodies interfered with IdeS-mediated strep-
tococcal survival ex vivo and significantly affected the 
ability of IdeS to interfere with Fc-mediated host defense 
mechanisms  [21] . The importance of specific antibodies 
is underlined in two papers that used recombinant IdeS
or the  S. equi  homologs IdeE and IdeE2 in immuniza-
tion studies to successfully induce protective immunity 
against streptococci in mice  [24, 48] . As mouse IgG is 
only poorly, if at all, cleaved by these enzymes  [24, 51] , the 
protective effect of immunization appears to act in a dif-
ferent manner on IdeS. One hypothesis might be that IdeS 
is surface-associated or retained at the streptococcal sur-

  Fig. 1.  Overview of features and functions of streptococcal IdeS. 
 A  Powering IdeS activity. Interaction of IdeS with the abundant 
cysteine protease inhibitor cystatin C accelerates IgG endopepti-
dase activity.  B  IdeS biological activity.  a   S. pyogenes , recognized 
by specific IgG and/or binding IgG to M protein at the streptococ-
cal surface, secrete active IdeS.  b  In the circulation, IdeS cleaves 
IgG in the hinge region, generating single-cleaved inactive IgG, 
F(ab�) 2  fragments and two identical ½Fc fragments.  c  Specific IgG 
at the streptococcal surface is efficiently cleaved by IdeS, leaving 
antigen bound F(ab�) 2  fragments that protect streptococcal sur-
face antigens and releasing ½Fc fragments. Fc-bound IgG is also 
cleaved, releasing F(ab�) 2  fragments and, due to their low affinity 
for M-protein, ½Fc fragments into the circulation. Free binding 
sites at M protein can bind new IgG.  d  Circulating Fc fragments 
prime polymorphonuclear leukocytes (PMN) to an increased and 
fast production of ROS by binding to a yet-unknown receptor. 
Upon activation by immunocomplexes, these PMNs discharge 
and degranulate at a distance from the infection site without 
harming the bacteria.  e  Suppression of ROS production by IdeS 
to prevent PMNs to discharge close to the bacteria; IdeS suppress-
es ROS production, independently from its IgG endopeptidase 
activity. The precise mechanism so far remains elusive, but might 
be mediated by interaction with Fc � R.   
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face, so that specific antibodies opsonize the pathogen 
and mediate bacterial killing  [24] . In fact, IdeS has been 
shown to be associated with the streptococcal surface in 
physiological environments (von Pawel-Rammingen, un-
pub. data). Another hypothesis might be that specific an-
tibodies interfere with functions other than endopepti-
dase activity, e.g. the inhibition of ROS production  [18, 
44] , or novel, as yet undiscovered activities of the protein. 
For instance, IdeS (designated Sib35  [52] ) has been impli-
cated as exerting a stimulatory mitogenic effect on B lym-
phocytes in an experimental mouse model  [53] .

  Counteracting IdeS Activity 

 Endogenous protease inhibitors exert a tight control 
on proteolytic activities that might potentially become 
harmful for the living organism  [37] . Several studies have 
shown that IdeS is active in physiological settings, e.g. in 
saliva, serum and plasma samples  [21, 32, 54] , and it ap-
pears that endogenous inhibitors are not effective or at 
least not present in concentrations high enough to inter-
fere with IdeS activity in these environments. On the con-
trary, as mentioned above, protease activity was found to 
be markedly accelerated in the presence of human cys-
tatin C and no endogenous, nonimmune inhibitor has yet 
been identified. Considering that IdeS has a powerful 
ability to interfere with IgG-mediated immune respons-
es, there is potential medical interest to identify effective 
and specific inhibitors for this cysteine protease. How-
ever, to accomplish specific inhibition is not a simple task, 
due to the conserved structural similarity of papain-like 
proteases that include essential human cysteine proteases 
e.g. members of the cathepsin family. Despite these struc-
tural similarities to other papain-like protease, IdeS ex-
hibits some distinct features that might allow the design 
of unique and specific inhibitors. Firstly, in contrast to 
most other eukaryotic and prokaryotic cysteine proteas-
es, IdeS is not inhibited by the classic cysteine protease 
inhibitor E64  [16, 32] , and secondly, it does not catalyze 
the hydrolysis of synthetic or natural peptides containing 
amino acids in the P 4 –P 1  positions preceding the IdeS 
cleavage site within the IgG hinge region  [32] . These find-
ings suggest a more complex substrate recognition mech-
anism  [32]  and might present a target for inhibitory com-
pounds. So far, two studies addressed the identification 
of specific inhibitors to IdeS. One employed analogs to 
the well-known serine protease inhibitors TPCK (tosyl 
phenylalanyl chloromethyl ketone) and TLCK (tosyl lysyl 
chloromethyl ketone) to demonstrate the reversible inhi-

bition of IdeS by replacing the active  � -chloro-ketone by 
aldehyde  [55] . In another study, peptide analogs based on 
the P 4 -P� 4  residues of IgG and carrying a piperidine moi-
ety in one of the two glycine residues of the cleavage site 
were investigated for their inhibitory activity on IdeS 
 [56] , with several being found to have significant inhibi-
tory capacity independently of  N -terminal or  C -terminal 
amino acid extensions  [56] . Importantly, different inhib-
itory profiles towards the classic streptococcal cysteine 
protease SpeB or papain  [56]  identified compounds that 
are putative specific inhibitors of IdeS and thus only have 
weak effects on papain and SpeB. Such inhibitors might 
be a first step towards the generation of compounds that 
have the potential to act specifically against IdeS and not 
against other cysteine proteases and could therefore have 
therapeutic potential  [56] .

  Therapeutic Use of IdeS 

 Despite its essential role in fighting invading microor-
ganisms, IgG is also largely involved in various autoim-
mune diseases. In these cases, IgG autoantibodies, i.e. an-
tibodies reacting against human antigens, interfere with 
important cellular functions, misdirecting an immune re-
sponse towards the body’s own cells. Furthermore, al-
though performing according to its intended function, the 
action of IgG is not desirable during organ transplantation 
where antibodies are involved in acute transplant rejec-
tion by the recipient. Thus, the efficient removal of patho-
genic IgG is an important clinical challenge. Due to the 
unique substrate specificity of IdeS and its fast and effi-
cient enzymatic reaction, the streptococcal protease har-
bors the potential to function as a therapeutic drug for 
clinical conditions involving pathogenic IgG. Animal 
models have been used to demonstrate that IgG can effi-
ciently be removed from the circulation in vivo  [57] , as 
would be required for the treatment of acute transplant 
rejections. Animal models have also been employed for 
experimental IgG-mediated arthritis  [58] , glomerulone-
phritis  [59]  and thrombocytopenic purpura  [57] , to pro-
vide proof of principle for the use of IdeS as a therapeutic 
agent for treatment of IgG-mediated autoimmune disease.

  Conclusions 

 Almost 10 years since the discovery of a powerful IgG 
endopeptidase activity in  S. pyogenes , research on IdeS 
continues to reveal intriguing findings, gaining knowl-
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