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factors pushes macrophages to gain a profibrotic pheno-
type and promote fibrocyte recruitment which both enforce 
tissue scarring. Ischemic scars are largely devoid of cytokines 
and growth factors so that fibrolytic macrophages that pre-
dominantly secrete proteases digest the excess extracellular 
matrix. Together, macrophages stabilize their surrounding 
tissue microenvironments by adapting different pheno-
types as feed-forward mechanisms to maintain tissue ho-
meostasis or regain it following injury. Furthermore, macro-
phage heterogeneity in healthy or injured tissues mirrors 
spatial and temporal differences in microenvironments dur-
ing the various stages of tissue injury and repair. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Defined cytokine stimuli induce different and distinct 
macrophage phenotypes in vitro  [1] . The inconsistency 
between in vitro macrophage studies and the heterogene-
ity of tissue macrophages in vivo should relate to their 
phenotype plasticity in complex microenvironments 
which are not adequately mimicked by in vitro conditions 
 [2] . As such in vivo studies never really display clear mac-
rophage phenotypes according to the M1/M2 paradigm 
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 Abstract 

 Current macrophage phenotype classifications are based on 
distinct in vitro culture conditions that do not adequately 
mirror complex tissue environments. In vivo monocyte pro-
genitors populate all tissues for immune surveillance which 
supports the maintenance of homeostasis as well as regain-
ing homeostasis after injury. Here we propose to classify 
macrophage phenotypes according to prototypical tissue 
environments, e.g. as they occur during homeostasis as well 
as during the different phases of (dermal) wound healing. In 
tissue necrosis and/or infection, damage- and/or patho-
gen-associated molecular patterns induce proinflammatory 
macrophages by Toll-like receptors or inflammasomes. Such 
classically activated macrophages contribute to further tis-
sue inflammation and damage. Apoptotic cells and an-
tiinflammatory cytokines dominate in postinflammatory
tissues which induce macrophages to produce more anti-
inflammatory mediators. Similarly, tumor-associated macro-
phages also confer immunosuppression in tumor stroma. In-
sufficient parenchymal healing despite abundant growth 
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 [1–3] . An understanding of this issue also involves the 
question of whether primed macrophages alter tissues or 
whether tissues use macrophage differentiation to meet 
tissue needs, a chicken-or-egg question?

  Terminology including the likes of ‘host defense’, ‘im-
mune effector cells’ or ‘collateral inflammatory tissue 
damage’ represent the underlying concept of the  stranger 
hypothesis   [4]  which implies that the immune system is 
in control of tissue damage. An alternative view is that the 
tissues use the immune system to maintain homeostasis 
by modulating immune cell phenotypes as necessary, 
probably via changing tissue environments which have 
the capacity to change immune cell phenotypes along the 
various stages of healing or persistent injury, the  danger 
concept   [5, 6] .

  Maintaining homeostasis is the ultimate goal of tis-
sues in multicellular organisms and means maintaining 
tissue morphology as well as tissue function  [5, 7] . Only 
a few tissues, such as muscles and bones, can structurally 
adapt to distinct functional requirements whilst most tis-
sues need to maintain their particular structure for full 
functionality, e.g. the brain, the kidney, the lung or heart. 
Traumatic, toxic, ischemic, metabolic, malignant or in-
fectious injuries affect tissue structure and function. A 
view into less complex multicellular organisms including 
sponges, plants or worms teaches us that tissues have 
multiple ways of addressing such dangers  [8, 9] . There-
fore, it is tempting to speculate that the growing complex-
ity of danger responses provided throughout the evolu-

tion of innate and adaptive immunity remains tightly 
controlled by the needs of tissue to maintain or regain 
homeostasis  [6] . In this review we will summarize the 
various functions of the different tissue macrophage phe-
notypes as they are defined by changing tissue environ-
ments during the injury and repair phase of tissue dam-
age.

  Tissue Needs for Regaining and Maintaining 

Homeostasis after Injury 

 In most tissues resident macrophages or a network of 
interstitial dendritic cells continuously process foreign 
and self-antigens and present them to the T cell reper-
toire of the adaptive immune system ( table  1 )  [10–12] . 
Under normal conditions autoantigen presentation sens-
es tolerogenic signals for immune tolerance, i.e. a central 
element of tissue homeostasis  [10] . Any kind of tissue in-
jury affects tissue integrity by damaging parenchymal 
cells with some need for repair. Restoring tissue integ-
rity when the injury is limited to the epithelial layer is 
often simple, achieved via compensatory proliferation of 
the surviving epithelial cells or local progenitors. For ex-
ample, abrasion of the epidermis or acute renal tubular 
injury often heals quickly and can be mimicked experi-
mentally with a scratch assay in monolayers of cultured 
epithelial cells  [13, 14] . However, nonsterile environ-
ments or more complex wounding involve other re-

Table 1. R esident macrophages and dendritic cells in various tissues

Organs/cell types Dendritic cells Macrophages

Skin Dermal DCs, Langerhans cells [3] Dermal macrophages [3]
Brain Microglia [3]
Lung Alveolar macrophages [3]
Stomach Lamina propria DCs [59] Intestinal macrophages [59]
Ileum Lamina propria DCs [59] Intestinal macrophages [59]
Colon Lamina propria DCs [59] Intestinal macrophages [59]
Liver Plasmacytoid DCs, cDCs [130] Kupffer cells [3]
Spleen iDCs, follicular DCs [131] Marginal zone macrophages,

red pulp macrophages [3]
Pancreas Dendritic cell precursors [132]
Kidney Interstitial DCs [133, 134]
Ovary/testis Ovarian macrophages [109]
Bone marrow Bone marrow macrophages [135]
Bone Osteoclasts [3]

D Cs = Dendritic cells.
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sponse mechanisms to address additional dangers to the 
host ( table 2 ).

  The first risk to control is that of fatal blood loss. 
Therefore, the injured tissue vasculature initiates a num-
ber of mechanisms to assure rapid clotting. The tissue 
environment at this stage is characterized by ischemia 
and the local release of multiple vasoactive molecules and 
platelet aggregates which massively release proinflamma-
tory mediators including CC-and CXC-chemokines  [15] . 
In this way coagulation already promotes inflammation, 
i.e. the second danger response program. Shortly after 
wounding, neutrophils enter the site of injury to prevent 
pathogen entry or spreading. However, the antimicrobial 
activity includes reactive oxygen species (ROS) produc-
tion and enzyme release which also contributes to tissue 
damage, referred to as immunopathology or collateral 
damage  [16] . During this phase the tissue environment is 
dominated by pathogen-associated molecular patterns 
(PAMPs) from microorganisms as well as by damage-as-
sociated molecular patterns (DAMPs) from dying paren-
chymal cells. PAMPs and DAMPs both activate innate 
pattern-recognition receptors of the resident immune 
cells as well as the infiltrating leukocytes for their full ac-
tivation and proinflammatory phenotype  [17] . Platelet-
derived growth factors and other as of yet poorly defined 
elements of the inflammatory response drive reepithe-
lialization to restore the barrier to pathogen entry, a
process that is of eminent importance to avoid persis-
tent colitis  [18] . The decreasing amount of DAMPs and 
PAMPs as well as the high number of apoptotic neutro-
phils represent a change in the tissue environment that 
promotes a different phenotype of tissue macrophages 
and the predominance of anti-inflammatory mediators 
as well as growth factors  [16] . This environment will drive 
parenchymal healing and finally restoration of tissue in-
tegrity. However, if parenchymal repair is hampered, e.g. 

due to an insufficient capacity of local progenitors or per-
sistent injuries, mesenchymal healing, i.e. fibrosis, will 
occur because the tissue environment remains dominat-
ed by growth factors that drive fibroblast proliferation 
and secretion of extracellular matrix (ECM) molecules 
 [19, 20] . At this stage microenvironments differ a lot 
within single organs in focal regions of sufficient or in-
sufficient parenchymal repair, e.g. in liver cirrhosis, pul-
monary fibrosis or focal segmental glomerulosclerosis of 
the kidney. Fibrotic tissues are largely ischemic and de-
void of growth factors or cytokines. However, this can 
activate macrophages to release matrix metalloproteinase 
(MMPs) that have a capacity to remove the fibrous matrix 
resulting in the smallest possible scar area necessary  [13, 
21] .

  Macrophages contribute to most stages of the wound 
healing process as outlined in  table 2   [22–25] . In the fol-
lowing sections we discuss how the different environ-
ments during the phases of tissue injury and repair deter-
mine tissue macrophage phenotypes and claim that mac-
rophages are mainly amplifiers of their surrounding 
environment.

  Tissue Environments Dominated by PAMPs and/or 

DAMPs 

 During infections PAMPs ligate Toll-like receptors 
(TLR) on tissue parenchymal cells and local dendritic 
cells leading to the secretion of proinflammatory cyto-
kines and chemokines which create inflammatory tissue 
environments  [26, 27] . DAMPs have a similar potential to 
ligate TLRs, inflammasomes and other pattern-recogni-
tion receptors  [17] . In fact, these receptors represent rec-
ognition platforms for infectious and sterile forms of 
danger that disrupt tissue homeostasis  [28] . Activation

Table 2. T he five phases of danger control

Clotting Inflammation Epithelial
healing

Mesenchymal
healing

Fibrolysis

Time scale Minutes Hours to days Days to weeks Weeks to months Months
Danger to control Bleeding Sepsis Chronic inflammation Tissue instability Fibrosis
Macrophage
contribution

Secretion of tissue 
factor promotes 
coagulation

Pathogen killing, secretion 
of proinflammatory
mediators

Secretion of anti-inflam-
matory mediators/
growth factors

Secretion of profi-
brotic mediators

Protease secretion 
and ECM
clearance

Side effects Vascular disease Collateral tissue damage Epithelial hyperplasia Fibrosis/sclerosis Tissue instability?
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of innate immunity subsequently involves the recruit-
ment of leukocytes including macrophages as well as 
IFN- � -secreting natural killer cells. Upon arrival the in-
filtrating macrophages become exposed to the PAMP- 
and/or DAMP-rich environment. Macrophages are well 
equipped with pattern-recognition receptors  [28, 29] ,
hence PAMPs and DAMPs will lead to their full activa-
tion through a process similar to what has been referred 
to as ‘classical-M1 macrophage activation’ in in vitro 
studies  [1] . Inflammatory macrophages secrete IL-1, IL-
12, IL-23, tumor necrosis factor (TNF)- �  and ROS, and 
express inducible nitric oxide synthase (iNOS), major his-
tocompatibility complex class II (MHCII hi ), IL-1R, which 
mirrors what has been classified as an ‘M1’ macrophage 
by in vitro stimulation with IFN- � , TNF- � , lipopolysac-
charide or granulocyte macrophage colony-stimulating 
factor (GM-CSF)  [1] . This bactericidal macrophage phe-
notype appears in early phases of tissue injury shortly af-
ter the recruitment of neutrophils to enforce local host 
defense against pathogens. In PAMP-rich environments 
proinflammatory macrophages are potentially life-saving 
which outweighs the associated unspecific toxicity of the 
secreted mediators that cause collateral tissue damage  [1, 
16] . By contrast, in DAMP-rich but PAMP-free sterile in-
juries proinflammatory macrophages account for unnec-
essary tissue damage  [30] . M1 macrophage polarization 
requires IFN-related factor (IRF)5 for NF- � B signaling 
and subsequent secretion of proinflammatory cytokines 
and chemokines, ROS and other proinflammatory media-
tors which define the classically activated, proinflamma-
tory (M1) macrophage phenotype  [31] . Classically activat-
ed macrophages release MMPs to enable their migration 
through basement membranes and interstitial ECM net-
works. However, ECM digestion results in small ECM 
peptides and glycosaminoglycans which themselves can 
act as immunostimulatory DAMPs and fuel into the pro-
inflammatory microenvironment  [32] .

  As such the association of M1 macrophages with tissue 
inflammation is based on macrophage priming by PAMPs 
and DAMPs in the tissue. In turn, classically activated 
M1 macrophages further contribute to tissue inflamma-
tion and damage. Hence, such inflammatory macro-
phages amplify the tissue environment they found on ar-
rival. This autoamplifying loop is necessary and contin-
ues until control of pathogen growth is achieved  [3, 16] . 
In PAMP-free sterile injuries the duration of this phase 
depends upon the trigger and can be short lasting, e.g. 
after transient ischemia reperfusion or toxin exposure 
 [33] . By contrast, inflammation persists when ischemia or 
toxin exposure continues. For example, fetal dermal 

wound healing occurs in a sterile environment. Hence, 
much less proinflammatory macrophages are recruited 
to the site of injury which, besides the high proliferative 
capacity of the fetal epithelium, may be a reason why fetal 
wounds heal faster  [34] . Also, keeping wounds sterile in 
adults is a way to keep them PAMP-free which limits the 
inflammatory response and promotes wound healing 
 [13] . This can be mimicked in mouse models of sterile 
wounding. In the early phase of healing macrophages are 
completely dispensable, the depletion of these otherwise 
proinflammatory primed macrophages in fact ultimately 
leads to reduced scar areas  [35] . Consistently, in situations 
of prolonged inflammation, unrestrained inflammatory 
macrophages severely impair wound healing. For exam-
ple, erythrocyte-derived iron serves as a DAMP that, in 
the absence of any PAMP, primes the infiltrating macro-
phages towards an inflammatory phenotype that has, in 
the absence of any infection, detrimental effects on the 
healing  [36] . However, some studies also document that 
the macrophage capacity for microbial killing can be in-
dispensable. For example, wound closure and granula-
tion tissue formation are significantly delayed upon early 
macrophage depletion, which could only be compensated 
by a subsequent influx of macrophages  [35] .

  DAMP-/PAMP-Rich Environments in Solid Organs 
 The same biological program occurs inside solid or-

gans, even though PAMPs are mostly absent in the heart, 
kidney, brain and glands  [37–39] . These organs suffer 
from DAMP-driven proinflammatory macrophage infil-
trates and the associated ‘collateral damage’ often out-
weighs the needs of tissue to restore homeostasis ( table 3 ). 
Thus, blocking the recruitment or the activation of pro-
inflammatory macrophages drastically reduces tissue 
damage and dysfunction in such sterile injuries. For ex-
ample, a classically activated proinflammatory macro-
phage phenotype amplifies inflammation and loss of pa-
renchymal cells in a variety of kidney diseases such as in 
anti-glomerular basement membrane glomerulonephri-
tis  [40] , lupus nephritis  [41–46] , antigen-induced im-
mune complex glomerulonephritis  [47] , renal allograft 
injury  [48] , ischemia reperfusion injury  [33, 49–51]  and 
adriamycin nephropathy  [52] . The impact of in vivo mac-
rophage reprogramming on disease outcomes has been 
demonstrated  [53] . For example, Met-RANTES and AOP-
RANTES, two chemokine mutants, block macrophage 
recruitment but activate those tissue macrophages to-
wards a proinflammatory phenotype which is sufficient 
to aggravate glomerular pathology in immune complex 
glomerulonephritis  [47] . Vice versa, blocking the recruit-
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ment and activation of proinflammatory macrophages by 
interfering with the CC-chemokine ligand CCL2 and its 
chemokine receptor substantially reduces the numbers of 
proinflammatory macrophages in inflamed tissues, an 
effect that was shown to reduce immunopathology in a 
large number of inflammatory kidney disease models 
 [54, 55] . These observations do not only apply to the kid-
ney, but also to autoimmune diseases of the central ner-
vous system  [56, 57] . Infiltrating macrophages are crucial 
for the full phenotype of experimental autoimmune en-
cephalitis (EAE) and impairment of macrophage recruit-
ment by CCR2-knockout (KO) strongly attenuated the 
EAE phenotype  [57] . Similar data are available for CCl4-
induced liver injury and several other infectious and non-
infectious types of inflammation in solid organs such as 
those listed in  table 3 . For example, the mucosal surfaces 
of the intestines resemble the PAMP-rich epithelial envi-
ronment of skin, but there are also immunoprivileged 
sites in the gut  [7, 58] . There is a complex interplay of the 
gut flora, enterocytes and resident immune cells in which 
resident macrophages remain unresponsive to PAMPs 
from gut flora and danger signaling is rather provided by 
fully responsive infiltrating macrophage precursors, as 
recently reviewed elsewhere  [59] .

  Tissue Environments Dominated by Apoptotic Cells 

and Anti-Inflammatory Cytokines 

 Some pathogens cannot be easily eliminated by IFN-
 � -driven innate immunity and Th1 T cell responses. For 
example, chronic helminth infections include repetitive 
life cycles of the parasite which involve ongoing damage 
to many different organs. During evolution Th2 respons-
es developed to limit the growth of extracellular parasites 
and to provide permanent healing of persistent mucosal 
barrier injuries  [60] . In this context downregulation of 
Th1 cytokines is linked to alternative macrophage activa-
tion involving Th2 cytokines like IL-4, IL-5, IL-10 and 
IL-13  [61, 62] . Triggering such responses is in the interest 
of the pathogen for sustained parasitism while they allow 
the host to somehow limit the consequences of persistent 
infection, inflammation and immunopathology  [60] .

  We can find the same type of responses in other tissue 
abnormalities that lack pathogen entry or cell necrosis, 
like tumor environments, degenerative lesions or slowly 
accumulating toxins. These microenvironments are 
dominated by programmed forms of cell death such as 
apoptosis  [63] . Apoptotic cell death and the clearance of 
apoptotic cells by macrophages are important elements 

of tissue homeostasis and immune tolerance, hence they 
are usually not associated with immune activation and 
can stimulate epithelial healing  [63, 64] . In fact, apopto-
sis of activated neutrophils and T cells is a mechanism 
that prevents inappropriate or persistent immunopa-
thology  [64] . This becomes important also in postin-
flammatory phases of infections or sterile injuries. For 
example, transient ischemia/reperfusion is associated 
with cell necrosis, DAMP release followed by the influx 
of neutrophils and classically activated macrophages, 
but only for 2–3 days  [33] . The microenvironment chang-
es when the neutrophils undergo apoptosis and macro-
phages change their phenotype upon the excessive 
phagocytosis of apoptotic neutrophils which turns them 
into cells that release anti-inflammatory cytokines such 
as transforming growth factor (TGF)- �  and IL-10  [65] . 
Serum amyloid-P, also named pentraxin-2, opsonizes 
apoptotic cells which further promotes the anti-inflam-
matory macrophage phenotype  [66] . Immunosuppres-
sive (‘regulatory’) T cells further promote the polariza-
tion towards anti-inflammatory macrophages via re-
lease of IL-10 and TGF- �  and by suppressing the response 
of T effector cells  [67] . An integration of these different 
environmental signals for the deactivation of the macro-
phage occurs at the level of the transcription factor IRF4 
which also acts as an intracellular competitor of IRF5, 
and thereby blocks TLR and IL-1R signaling  [68–71] . 
Macrophage classifications that are based on in vitro 
studies have not yet integrated apoptotic cells as a stimu-
lus of differentiation but the phenotype of cultured mac-
rophages stimulated with IL-10 and TGF- �  (or glucocor-
ticoids), referred to as the M2c type, shares similarities 
with anti-inflammatory macrophages ( table  3 )  [1, 72–
77] . These cells themselves produce large amounts of IL-
10 illustrating that macrophages are able to amplify local 
environments by secreting similar cytokines in a feed-
forward loop  [2] . Again dermal wound healing can serve 
as a paradigm for such non- or post-inflammatory tissue 
injuries  [21] . Macrophage depletion from sterile wounds 
delays wound healing but also leads to severe hemor-
rhage, apoptosis of endothelial cells and detachment of 
the neuroepithelium from the dermis  [35] . Thus, macro-
phages amplify the wound microenvironment for tissue 
stability as well as endothelial and epithelial repair. In 
addition, anti-inflammatory macrophages suppress in-
flammation in the wound because their depletion leads 
to increased and prolonged TNF- �  expression inside the 
wound  [78] .
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  Postinflammatory Environments in Solid Organs 
 The same anti-inflammatory responses occur inside 

solid organs following transient sterile inflammation 
 [64] , such as ischemia/reperfusion ( table 3 ). In the heart, 
where this phenomenon occurs during myocardial in-
farction, macrophages have been shown to be recruited 
 [79]  and improve myocardial remodeling  [79] . After re-
nal ischemia/reperfusion injury the phenotypic switch 
from proinflammatory towards anti-inflammatory 
macrophages is driven by tubular epithelial cell-derived 
factors as well as by the uptake of apoptotic neutrophils 
 [50, 80] . Lack of IRF4 enables macrophages to undergo 
this M1-M2 phenotype switch  [69]  and therefore the ag-
gravated postischemic inflammation continues tubular 
cell necrosis  [81] . In addition, direct IL-4/IL-10 treat-
ment or genetically modified or transfused IL-10-stimu-
lated macrophages help to resolve renal inflammation 
 [72–75, 82] . Steroid-based treatments seem to suppress 
kidney inflammation by inducing anti-inflammatory 
macrophages  [83, 84] . Even if initially recruited, mono-
cytes display a proinflammatory phenotype and are rap-
idly primed towards anti-inflammatory capacities after 
injury in skeletal muscle tissue  [85] . Anti-inflammatory 
macrophage functions are crucial for regeneration, as 
macrophage depletion leads to a significantly reduced 
diameter of the individual regenerating muscle fibers 
 [85] . In the central nervous system, axonal regeneration 
after spinal cord injury is impaired upon depletion or 
blocking of the recruitment of macrophages  [86] . In ad-
dition, their anti-inflammatory and therefore regenera-
tive capacities were shown to be entirely IL-10-depen-
dent. It is important to note that all these models involve 
sterile environments. Another example of healing dur-
ing sterile organ dysfunction is toxic liver disease. CCl 4  
injection induces apoptosis of hepatocytes which are 
subsequently phagocytosed by Kupffer cells, which re-
sembles efficient DAMP clearance and suppresses in-
flammation  [87] . In hepatic ischemia/reperfusion injury 
IL-10 expression was crucial for anti-inflammatory ca-
pacities of macrophages  [88] . In a PAMP- and DAMP-
driven model of schistosomiasis liver injury, macro-
phage-specific deletion of the IL-4R �  was accompanied 
by 100% mortality due to septicemia  [89] , which involves 
direct and indirect effects of IL-10 produced by alterna-
tively activated macrophages in the gut and the liver, re-
spectively  [90] . Although this supports the importance 
of the anti-inflammatory capacities of macrophages, in 
contrast to sterile inflammation models, these proper-
ties were shown to be IL-10-independent. Taken togeth-
er, these findings emphasize once more that it is the mi-

croenvironment, in this case particularly the presence or 
absence of PAMPs, that is influenced by infiltrating or 
resident macrophages.

  Tissue Environments Dominated by Parenchymal 

Atrophy and Growth Factors 

 Most body compartments have an enormous capacity 
for rapid and complete wound healing when the damage 
is limited to the epithelium and local progenitor cells sur-
vive the insult, and the repair is not compromised by in-
fection or by persistent or remitting injuries  [85] . The bal-
ance of factors that promote or compromise regeneration 
determine whether wound healing is rapid and scarless 
or delayed and associated with atrophy and fibrosis. In 
sterile injuries to mesenchymal structures the microen-
vironment is dominated by growth factors to promote 
tissue repair and scarring  [13, 21] . In fact, epithelial cells 
and noninflammatory macrophages are major sources of 
profibrotic cytokines  [91] . In vitro, IL-4 and IL-13 induce 
STAT6 signaling to promote a macrophage phenotype 
that predominantly releases fibronectin and other ECM 
molecules and that expresses mannose and scavenger re-
ceptors, IL-1R11, FIZZ, and YM-1  [1] . These cells have 
been classified as M2a macrophages  [1] . So far it is not 
clear whether anti-inflammatory and profibrotic macro-
phages can be clearly distinguished in vivo and it appears 
likely that macrophage plasticity creates a mixture or 
continuous variant shifts during wound healing  [16] . Fi-
brocytes seem to represent the ultimate profibrotic mac-
rophage that itself produces large amounts of collagen 
and shares phenotypic similarities with macrophages as 
well as fibroblasts  [92–96] . The quantitative significance 
of this phenomenon remains under debate  [97, 98] . For 
example, green fluorescent protein lineage tracing using 
the collagen 1 � 1 promoter found this to be a rather rare 
phenomenon during renal fibrogenesis upon ureteral ob-
struction in mice  [99] . The chemokine receptor CCR1 
seems to be essential for the recruitment and activation 
of profibrotic macrophages and fibrocytes because a lack 
of CCR1 or CCR1 antagonism prevents progressive tissue 
fibrosis in many disease states and organs  [100–109] . The 
first reports to document macrophages contributing to 
dermal fibrosis date back to the mid-seventies  [110] . More 
recently, it has been shown that CXCR3+ macrophages 
might be the subset responsible for scar formation/fibro-
sis  [111] . In a mouse model of diabetic chronic leg ulcer 
where scar formation regularly does not occur due to im-
paired macrophage activation, it can be induced by ad-
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ministering GM-CSF  [112] . Interestingly, also in this set-
ting in vivo conditions do not consistently match in vitro  
 observations. According to the M1/M2 paradigm, profi-
brotic macrophages would be expected to be M2 polar-
ized, whereas actually GM-CSF polarizes macrophages 
towards M1, and indeed fibrosis was found to be accom-
panied by an induction of proinflammatory cytokines 
within the wound  [112] . As pointed out before, macro-
phage-mediated fibrosis (i.e. mesenchymal healing) rep-
resents a necessary step of fast and durable skin wound 
healing, but in sharp contrast to focal wounding of the 
skin or solid organs, it is detrimental in diffuse disease 
processes such as in progressive scleroderma or intersti-
tial fibrosis of parenchymal tissues  [97, 113] .

  Solid Organ Fibrosis 
 Progressive fibrosis and subsequent loss of solid organ 

function involves macrophages in multiple tissues ( ta-
ble  3 ). For example, decreased liver fibrosis was noted 
when macrophage infiltration was blocked by targeting 
the MCP-1/CCR2 axis  [114, 115] , as well as by deficiency 
in CCR1/CCR5  [106] . Some data are available for renal 
fibrosis  [100, 103, 104, 116–119] . In the lung CCR2 defi-
ciency attenuated bleomycin-induced fibrosis  [120] , a 
process involving subsequent IL-13 signaling through
IL-13-R � 1 and IL-13-R � 2 on macrophages to ultimately 
induce TGF- �   [121] . In addition to profibrotic macro-
phages, so-called fibrocytes, myofibroblasts of bone mar-
row origin, also contribute to fibrosis. This has been 
shown, amongst other sites, for the liver  [122] , the lung 
 [123] , the heart  [124] , as well as the kidney  [20, 95]  ( ta-
ble 3 ).

  Fibrotic Tissue Environments Dominated by ECM 

 Organ fibrosis is characterized by loss of parenchymal 
cells and partial replacement by fibrous tissue, e.g. in pro-
gressive liver cirrhosis, lung fibrosis or renal interstitial 
fibrosis. However, fibrosis does not always lead to end-
stage organ failure  [110] . More often fibrosis is a transient 
process to stabilize tissue integrity. For example, dermal 
wound healing ends in the smallest possible scar, like af-
ter a cut of the skin. Evidence for fibrolysis in the skin 
comes from recombinant TGF- � 3 application in humans 
as well as preclinical models  [125]  TGF- � 3 application 
prevents excessive proliferation of myofibroblasts and 
changes their migration towards a pattern normally seen 
only in the fetal stage where scarless healing occurs  [125] . 
It remains to be proven exactly what role macrophages 

play in this process and so far little evidence is available 
on the macrophage phenotype in microenvironments 
dominated by the ECM.

  Evidence for Fibrolysis from Solid Organs 
 Macrophages are capable of digesting ECM deposits 

via the secretion of selected MMPs which limit or even 
reverse fibrogenesis, e.g. in the kidney  [125] . For example, 
macrophage depletion in the late phase of toxic liver fi-
brosis delays the clearance of liver scars  [126] , a process 
associated with MMP13 release by scar-associated mac-
rophages  [127] . Surprisingly, even at this stage of the dis-
ease macrophages recruit neutrophils to the liver which 
contribute to fibrotic matrix degradation  [128] . In addi-
tion, antifibrotic macrophages are a possible source of 
CXCL10, a chemokine that, independent of ligation to its 
receptor, CXCR3, blocks the proliferation of fibroblasts 
in bleomycin-induced fibrosis  [129] . It is therefore in-
triguing to speculate that a macrophage subtype with 
predominant fibrolytic activity exists in the ischemic en-
vironment of scar tissue that has the potential to digest 
ECM without concomitant secretion of proinflammatory 
cytokines ( fig. 1 ). Surface markers that identify fibrolytic 
macrophages have not yet been described, but it should 
be technically feasible to isolate macrophages from fi-
brous lesions to characterize their phenotypic character-
istics. Although the fibrolytic macrophage might be rare 
and hard to retrieve from fibrous lesions, it should be in-
strumental in understanding more about their potential 
to limit or to reduce tissue fibrosis. It is of note that MMP-
secreting macrophages can also contribute to further tis-
sue by degrading basement membranes and subsequent 
epithelial atrophy such as in the kidney  [129] . Therefore, 
fibrolytic macrophages may also represent basement 
membrane-degrading macrophages which contribute to 
tissue atrophy. In fibrotic livers, however, transfer of bone 
marrow-derived macrophages has been shown to reverse 
hepatic fibrosis and to improve regeneration and func-
tion of the liver  [129] .

  Summary and Conclusions 

 Macrophage plasticity gives rise to heterogeneous 
macrophage phenotypes in different and complex tissue 
environments and these, therefore, will never meet sim-
plistic classifications. However, distinct tissue environ-
ments can induce prototypes of tissue macrophage phe-
notypes conceptually similar to those described in in
vitro studies. For conceptual reasons we propose the clas-
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sification of tissue macrophages according to their pre-
dominant roles during the different stages of wound heal-
ing, a series of danger response programs that have been 
positively selected during the early evolution of multicel-
lular organisms. As such, PAMP- and DAMP-rich (ne-

crotic) environments prime proinflammatory (M1) mac-
rophages that provide host defense but also inflamma-
tory tissue damage. Postinflammatory environments 
including tumor stroma are dominated by apoptotic cells 
including neutrophils which induce a phenotype switch 
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  Fig. 1.  Tissue microenvironments and predominant macrophage 
phenotypes. Acute tissue injury induces cell necrosis, hence the 
local microenvironment will be dominated by DAMPs. In non-
sterile organs or during infections, PAMPs add to a tissue environ-
ment rich in factors that ligate pattern recognition receptors and 
drive macrophage polarization towards the M1-like proinflamma-
tory phenotype. After the inflammatory response has cleared the 
sources of PAMPs and DAMPs, pentraxins and apoptotic cells, e.g. 
neutrophils, dominate the tissue environment which promotes 
macrophage polarization towards an anti-inflammatory M2-like 
phenotype that produces anti-inflammatory mediators which en-
rich the anti-inflammatory and proregenerative tissue environ-
ment. Once inflammation has completely ceased, the microenvi-

ronment is dominated by growth factors that promote wound 
healing, especially in conditions of incomplete or insufficient epi-
thelial repair. This environment drives macrophage polarization 
towards a profibrotic phenotype that contributes to the secretion 
of additional growth factors as well as ECM components. The is-
chemic environment of scar tissue is largely devoid of cytokine and 
growth factors which drives the few macrophages in place to pre-
dominately secrete proteases that have the potential to remove 
connective tissue, i.e. the fibrolytic macrophages. In vivo all four 
types of macrophages can coexist in different areas of the same 
organ with focal lesions of active inflammation, early and late re-
pair, as well as scar formation. This needs to be considered while 
characterizing macrophage phenotypes from tissue biopsies.   
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