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dependent escape mechanism by which H5N1 prevents an 
effective inflammatory response of monocytes blocking NF-
κB-dependent gene expression. 
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 Introduction 

 H5N1 belongs to the highly pathogenic avian influenza 
viruses (HPAIV) which have successfully overcome the 
host species barrier and are able to cause systemic infec-
tions in humans. In contrast to seasonal IAV that are usu-
ally restricted to the lung, HPAIV are able to evoke a sys-
temic inflammatory response syndrome upon infection 
and ultimately cause death by multiorgan failure. The 
highest viral loads are found in the lung and the alveolar 
epithelium. In the lung, strong infiltration of blood-de-
rived macrophages is observed in infected patients and cy-
tokine levels in blood and tissues are extremely enhanced. 
More than 60% of reported human cases of H5N1 infec-
tions are fatal  [1–4] . Besides epithelial cells, several cell 
types have been shown to be highly susceptible to IAV in-
fection  [3–12] . Neuro- and endothelial cell tropism have 
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 Abstract 

 Infections with highly pathogenic avian influenza viruses 
(HPAIV) in humans lead to systemic disease associated with 
cytokine storm and multiorgan failure. In this study we 
aimed to identify the role of monocytes for the host response 
to HPAIV infection. Using genome-wide microarray analysis, 
we surprisingly demonstrate a reduced immune response of 
human monocytes to HPAIV H5N1 compared to human in-
fluenza A viruses. In bioinformatic analyses we could reveal 
a potential role of the Rar-related orphan receptor alpha 
(RORα) for the gene expression pattern induced by H5N1. 
RORα is known as an inhibitor of NF-κB signaling. We provide 
evidence that in monocytes RORα is activated by H5N1, re-
sulting in inhibited NF-κB signaling. Using murine Hoxb8-
immortalized RORα –/– , monocytes rescued NF-κB signaling 
upon H5N1 infection, confirming the biological relevance of 
RORα as an H5N1-induced mediator of monocytic immuno-
suppression. In summary, our study reveals a novel RORα-
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been described for H5N1, contributing to systemic infec-
tions  [11, 13–15] . Recent studies by our group have re-
vealed specific response patterns to HPAIV infection in 
endothelial cells indicating that these cells may be impor-
tant mediators of cytokine burst and antiviral response 
mechanisms  [12, 16] . The pattern of gene expression in 
endothelial cells with strong induction of proinflammato-
ry and antiviral genes is strongly regulated by NF-κB and 
in the case of H5N1 infections specifically modulated by 
transcriptional regulators like HMGA1 and NFATC4  [12, 
16] . Very recent data published by Teijaro et al.  [17]  pres-
ent endothelial cells as key players of cytokine amplifica-
tion during influenza infection. Additionally, our group 
was able to reveal very distinct response patterns in influ-
enza-infected human blood-derived macrophages  [18] . 
Here we observed a suppression of inflammatory and an-
tiviral responses by HPAIV via inhibition of inflamma-
some activation indicating HPAIV to bypass a major 
source of first immune responses against viral infection. 

  Basically, monocytes represent another well-estab-
lished cellular source for cytokine production and antivi-
ral defense. Human monocytes have been shown to be 
principally susceptible to IAV infections since they pro-
duce type I interferons  [19]  as well as various cytokines 
like TNF-α, IL-6 and IL-1β, and chemokines such as CCL 
3, 4 and 5 upon infection with the H1N1 isolate A/PR8/34 
 [8, 20] . However, no investigations have demonstrated the 
infectibility of human peripheral blood monocytes with 
HPAIV. Hitherto existing publications focus on HPAIV 
infection of differentiated human macrophages. Results 
concerning cytokine production of human macrophages 
in response to H5N1 infection are rather inconsistent and 
depend very much on the type of H5N1 isolate  [4, 21, 22] .

  Employing an unbiased genome-wide analysis of the 
gene expression patterns induced in monocytes after in-
fection with different influenza strains (H1N1, H7N7, 
H5N1, H1N1/v and WSN/33) we now provide evidence 
that HPAIV efficiently replicate but circumvent an effec-
tive inflammatory response in blood monocytes. We 
demonstrate that activation of the transcription factor 
RAR-related orphan receptor alpha (RORα) results in in-
hibition of NF-κB-mediated gene induction during H5N1 
infection. 

  Materials and Methods 

 Cell Preparation and Culture 
 Human monocytes were isolated from buffy coats of unrelated 

healthy blood donors as described earlier  [23, 24] . Cells were cul-
tivated in Teflon bags in McCoy’s modified medium (Biochrom 

AG, Berlin, Germany) supplemented with 1% glutamine, 1% pen-
icillin-streptomycin and 15% fetal bovine serum overnight. The 
next day human monocytes were transferred to uncoated culture 
dishes for experiments.

  Virus Preparation and Exposure to Human Monocytes 
 The HPAIV strain A/Thailand/KAN-1/2004 (H5N1) isolated 

from a fatal human case was used with permission from Dr. Pilai-
pan Puthavathana (Bangkok, Thailand). The avian influenza virus 
A/FPV/Bratislava/79 (H7N7, fowl plague virus) and the human 
influenza virus strain A/Puerto-Rico/8/34 (Giessen variant) were 
taken from the strain collection of the Institute of Molecular Virol-
ogy (Münster, Germany) and were initially provided by the Insti-
tute of Virology in Giessen, Germany. The low pathogenic human 
influenza strain A/WSN/33 was taken from the strain collection of 
the Institute of Molecular Virology (Münster, Germany). A/Ham-
burg/04/2009 (H1N1/v) was obtained from the German National 
Reference Centre for Influenza (Brunhilde Schweiger, Robert-
Koch-Institute, Berlin, Germany). The virus was isolated from 
clinical specimens. Viruses were propagated on Madin Darby ca-
nine kidney (MDCKII) cells. 

  In order to ensure comparable infection rates, human mono-
cytes were exposed to 0.5 MOI (multiplicity of infection) of virus 
and differentiated murine ER-Hoxb8 cells were infected with
5 MOI of virus for gene expression experiments. All infections 
were performed in serum-free McCoys modified monocyte cul-
ture medium (Biochrom AG) supplemented with 1% glutamine, 
1% penicillin-streptomycin and 3% bovine albumin. Viruses were 
added to the infection medium for the whole infection period. Af-
terwards cells were washed twice with PBS and used for further 
analysis.

  Quantitative Real-Time RT-PCR  
 Total cellular RNA was isolated using RNeasy kit (Qiagen, 

Hilden, Germany). cDNA was synthesized from 1 μg of total RNA 
using RevertAid H Minus M-MuLV Reverse Transcriptase (Fer-
mentas, St. Leon-Rot, Germany). Specific primers for each gene 
(for sequences see online suppl. table 1; for all online suppl. mate-
rial, see www.karger.com/doi/10.1159/000346706) were designed 
using the Primer Express software package (Applied Biosystems, 
Foster City, Calif., USA) and obtained from MWG Biotech (Ebers-
berg, Germany). qRT-PCR was performed using the QuantiTect 
SYBR Green PCR kit (Qiagen)  [12]  and data acquired with the ABI 
PRISM 7900 (Applied Biosystems) provided by the Integrated 
Fuctional Genomics department of the University of Münster, 
Germany. Gene expression was normalized to the endogenous 
housekeeping control gene GAPDH and relative expression of re-
spective genes was calculated using the comparative threshold cy-
cle method  [25] .

  DNA Microarray Hybridization and Statistical Data Analyses 
 Total cellular RNA was isolated from 3 independent experi-

ments. Samples were processed for microarray hybridization using 
Affymetrix Human Genome 133 Plus 2.0 Gene Arrays as described 
earlier  [12]  with the kind help of the Integrated Functional Genom-
ics department of the University of Münster, Germany. Principal 
component analyses, gene clustering and promoter analyses were 
performed as described before  [12, 16] . Microarray data are MI-
AME compliant and deposited in GEO (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?token=zhmdlsiqskwsgjk&acc=GSE35283).
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  Western Blot 
 Cells were lysed in RIPA buffer containing protease and phos-

phatase inhibitors  [26] . For nuclear and cytosolic extract prepara-
tion, incubation with a high salt buffer was followed by incubation 
with a buffer containing low concentration of NaCl. SDS-PAGE 
and Western blot staining was performed as described earlier  [27]  
using mouse mAB M1 (GA2B, AbD Serotec, Oxford, UK), rabbit 
pAB NF-κB p65, rabbit pAB RORα (both Abcam, Cambridge, 
Mass., USA), rabbit pAB IκBα (c-21, Santa Cruz Biotechnology, 
Heidelberg, Germany), mouse mAB α-tubulin (ICN, Solon, Ohio, 
USA), goat pAB lamin B (Santa Cruz Biotechnology) and mouse 
mAB β-actin (Sigma, Munich, Germany). The protein bands were 
visualized using the ECL (200 μl 250 m M  Luminol, 90 μl 90 m M   p -
cumar acid, 2 ml 1M Tris pH 8.5, 7.1 μl 35% H 2 O 2 ) system. 

  Intracellular FACS Staining 
 5 × 10 5  monocytes were harvested, washed and fixed with 4% 

paraformaldehyde at room temperature for 20 min. Pellets were 
treated with permeabilization buffer (0.1% saponin, 1% FCS, PBS) 
for 10 min at room temperature followed by incubation with 
FITC-labeled anti-NP antibody (mouse mAB, MCA400, clone 
AA5H, Serotec, Oxford, UK) for 1 h at room temperature. The 
samples were washed once with permeabilization buffer and fluo-
rescence was determined in the Fl3 channel using a FACScalibur 
(Becton Dickinson, Franklin Lakes, N.J., USA).

  Plaque Assay 
 Plaque assays were performed as described earlier  [12] . For 

quantification of viral particle release in the supernatants of in-
fected monocytes a very low MOI of 0.001 was used in order to 
ensure cell survival over longer time periods. In the case of Hoxb8 
cells 0.5 MOI were used. Virus-induced plaques were visualized by 
staining with neutral red.

  Mice 
 Heterozygous (RORα sg/J ) male mice were purchased from Jack-

son Laboratories (Bar Harbor, Me., USA) and paired with female 
C57/Bl6 mice (Jackson Laboratories). RORα +/sg  pairs were bred at 
the Institute of Pharmacology, University of Münster, Germany, 
and offspring was genotyped by PCR of tail DNA according to the 
instructions provided by Jackson Laboratories. RORα sg/J  pairs 
were then bred to obtain knockout fetuses. Wt littermates of the 
same age were bred for wt fetuses. 

  ER-Hoxb8 RORα –/–  Monocyte Cell Line Establishment and 
Infection 
 We isolated liver stem cells from RORα knockout fetuses on 

day 14.5–16.5 and cultivated them in RPMI + 15% FCS, 20 ng/ml 
IL-6, 10 ng/ml IL-3 and 1% SCF for 4 days. Cells were transfected 
with ER-Hoxb8 retrovirus, selected and cultivated as described
before  [28, 29] . Stem cells were isolated from bone marrow of 
C57BL/6 wt mice and processed in the same manner. Cells were 
differentiated in petri dishes in the absence of estradiol for 3 days 
before performance of experiments. Cells were infected with
5 MOI of influenza viruses for most experiments in the same man-
ner described for human cells.

  Ethics Statement 
 The taking of blood samples from humans and cell isolation 

were conducted with approval of the local ethics committee (ethics 

advisory board of the Ärztekammer Westfalen-Lippe and Medical 
Faculty of Westfaelische Wilhelms-Universitaet Münster). Hu-
man blood samples were taken from healthy blood donors who 
provided written informed consent for the collection of samples 
and subsequent cell isolation and analysis. All animals were han-
dled in strict accordance with good animal practice and animal 
keeping. Experiments were supervised by the veterinary office of 
Münster (Veterinary Bureau of Münster) and performed accord-
ing to approved protocols of the animal welfare committee of the 
University of Münster (Münster, Germany). All experiments were 
performed with the approval of the State Review Board Nord-
rhein-Westfalen (Germany) according to the German law for ani-
mal welfare (Tierschutzgesetz).

  Statistical Analyses 
 The results of all qRT-PCR experiments were assessed by rank-

sum test and are shown as means ± SEM.

  Results 

 Primary Human Blood Monocytes Are Susceptible to 
Influenza Infection 
 We infected primary human blood monocytes with 

three different influenza virus strains, a low pathogenic 
human strain, A/PR8/34 (H1N1) and two HPAIVs, A/
FPV/Bratislava/79 (H7N7) and A/Thailand/KAN-1/2004 
(H5N1). The infectibility of monocytes with these viruses 
was confirmed by intracellular flow cytometric analysis of 
viral nucleoprotein (NP) expression. Efficient viral infec-
tion after 5 h was obtained using a viral dosage of 0.5 
MOI. These experimental conditions led to about 40% of 
infected monocytes. An MOI of 1 resulted in further in-
crease of infection rates up to 80% ( fig. 1 a) but led to high-
er cell death rates during the course of infection (data not 
shown). We chose 0.5 MOI as the condition for further 
gene expression experiments. Additionally, efficient in-
fection was confirmed by immunoblotting of the viral 
protein M1 ( fig. 1 b). Similar amounts of M1 protein could 
be detected after the first replication cycle (8 h) indicating 
that all three virus strains are able to replicate and to in-
duce protein translation in human monocytes.

  The supernatants of infected monocytes were analyzed 
in a plaque assay in order to detect viral replication in the 
cells. Cells were infected with 0.001 MOI ensuring their 
survival for longer infection times. The replication rate 
was measured 16 and 24 h postinfection (p.i.) and we ob-
served a significant viral replication rate of all three virus 
strains 24 h p.i. ( fig. 1 c). Taken together, our results show 
that human blood monocytes are susceptible to influenza 
infection and that influenza viruses efficiently propagate 
in these host cells. 
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  Immune Responses of Human Monocytes Are 
Suppressed during HPAIV Infection 
 Human monocytes isolated from three independent 

blood donors were analyzed 5 h p.i. with H1N1, H7N7 
and H5N1 in a genome-wide comparative systems biol-
ogy approach. As downregulation of genes is significant-
ly influenced by ‘cap-snatching’ mechanisms and not 
representative for a specific antiviral host response  [30, 
31] , we restricted our analyses to upregulated genes. The 
threshold used for analysis of upregulated genes was a 
fold change of 2.0 and a p value of 0.05. Principal compo-
nent analysis (PCA) of upregulated genes data, performed 

as described earlier  [16, 32] , allowed the unbiased display 
of four gene expression patterns obtained from uninfect-
ed control cells and cells infected with H1N1, H7N7 and 
H5N1 IAV, respectively ( fig. 2 a). PCA clearly showed the 
reproducibility of gene expression changes induced by 
the respective viral strain in human monocytes of differ-
ent donors. Moreover, H1N1, H7N7 and H5N1 IAV in-
fection led to specific gene expression patterns distinc-
tively located within the three-dimensional vector space. 

  We found a total of 1,981 genes induced by H1N1, 1,127 
(56.8%) of them specifically only by H1N1 and not by 
H7N7 and H5N1. 2,715 genes were induced by H7N7, 
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1,739 (64.1%) of them specifically. H5N1 led to upregula-
tion of only 716 genes, 89 (12.4%) of them were H5N1 spe-
cifically induced ( fig. 2 b). Compared to H1N1 and H7N7, 
the number of H5N1-induced genes is strikingly low. 

  We next performed a ‘functional clustering’ analysis 
 [12, 16]  to characterize differences in gene expression 
patterns ‘qualitatively’ on a statistically proven basis. We 
focused on the group of specifically induced genes, re-
spectively, and assigned them to gene ontology groups 
based on guidelines of the Gene Ontology Consortium. 
We found that genes belonging to interferon, immune, 
defense and antiviral response were clearly overrepre-
sented in the spectrum of specifically H1N1-induced 
genes ( fig. 3 a). In contrast, infection with highly patho-
genic influenza virus H5N1 led to a rather unspecific pat-
tern of overrepresented functionally related gene clusters 
(mRNA splicing, cell cycle control) which could not be 
related to inflammatory and antiviral responses ( fig. 3 c). 
Functional clustering of the H7N7-induced gene expres-
sion revealed an intermediate pattern of overrepresented 
genes involved in nucleosome assembly, inflammatory 
response and signaling ( fig. 3 b). 

  In summary, our results point to a reduced immune 
and antiviral response of human monocytes during in-
fection with HPAIV, especially upon H5N1 infections. 
Quantitative RT-PCR experiments confirmed this re-
sponse pattern and revealed stronger mRNA inductions 

of antiviral genes like type  IFNA2  and  IFNB1  as well as 
chemokines like  CCL8 ,  CXCL11  and  CXCL9  by H1N1
5 h p.i. compared to H7N7 and H5N1 ( fig. 4 ). With re-
spect to these inflammatory genes, diminished induction 
was comparable between H7N7- and H5N1-infected 
monocytes. For confirming the HPAIV-specific inhibi-
tion of the immune response in human monocytes, we 
performed experiments with two further human influ-
enza A viruses, A/Hamburg/04/2009 (H1N1/v) and A/
WSN/33. Both strains showed significantly stronger gene 
induction than HPAIV, confirming the HPAIV-specific 
reduction of proinflammatory and antiviral responses in 
human blood monocytes.

  H5N1 Infection Activates RORα in Human Monocytes 
 To identify virus-specific transcription factors eventu-

ally mediating immunosuppression in HPAIV-infected 
human monocytes we performed promotor analyses 
(CARRIE). This in silico approach searches for transcrip-
tion factor binding sites overrepresented in the promotors 
of H1N1-, H7N7- or H5N1-upregulated genes compared 
to all genes represented on the microarray (transcription 
factor profiles;  table 1 ). Among all transcription factors 
identified, the nuclear receptor RORα was the only one 
known to exert inhibitory effects on immune response 
programs  [33, 34] . Moreover, RORα-binding sites were 
computed to be only overrepresented in the promotors of 
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Data are based on microarray analyses of three independent ex-
periments.  
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H5N1-induced genes suggesting that particularly for this 
strain, which is the most pathogenic for humans out of the 
three strains tested, RORα might play a crucial role in in-
hibiting the immune response of monocytes.

  RORα protein was well expressed in uninfected as well 
as in IAV-infected monocytes ( fig. 5 a). However, nuclear 
translocation of RORα was strongest in H5N1-infected 
monocytes, poor after H7N7 infection and virtually un-
detectable in H1N1-infected monocytes. This finding
of strong activation of the RORα signaling pathway
by H5N1 virus supports our hypothesis of RORα being 
essentially involved in regulating the immune response 
program elicited by H5N1 in human monocytes.

  H5N1 Inhibits NF-kB Signaling in Monocytes and 
Activates RORα  
 Since RORα has been shown to exert its immunosup-

pressive effect by impeding the translocation of the p65-
subunit of NF-κB into the nucleus  [33]  we analyzed p65 
translocation in our settings ( fig. 5 b). Lipopolysaccharide 
(LPS)-treated monocytes served as a positive control 
showing strong nuclear p65 accumulation. In nuclear ex-
tracts of monocytes infected with H1N1 p65 was detect-
able, whereas in H7N7 and H5N1-infected monocytes 
virtually no p65 could be detected in the nucleus. Obvi-
ously, HPAIV inhibit the translocation of NF-κB depend-
ing on the ability to activate RORα, which is best achieved 
by H5N1 virus ( fig. 5 a). 

  Subsequently, we used a knockout approach to dem-
onstrate a functional dependence of the immunosuppres-
sive properties of H5N1 in monocytes on RORα activa-
tion. RORα knockout mice (RORα –/– ) show a heavy re-
striction in their general state of health associated with 
early or even embryonic death which precludes their use 
for virus infections. We therefore established an ER-
Hoxb8 monocytic cell line derived from liver cells of 
RORα knockout fetuses to receive a stable knockout sys-
tem. Estrogen-regulated expression of oncogene HoxB8 
induces immortalization of monocyte and macrophage 
progenitors which execute normal differentiation after 
ER-HoxB8 inactivation  [28, 29] . We characterized these 
cells by flow cytometry demonstrating expression of mu-
rine monocyte/macrophage lineage markers such as GR1, 
Ly6c, F4/80, CD11b and CD43, and lack of granulocyte 
marker Ly6g or DC marker CD11c (online suppl. fig. 1). 
Corresponding HoxB8-immortalized wt cells were used 
as controls. Cells were infected with 5 MOI of influenza 
virus H1N1 or H5N1. As expected we could detect RORα 
in wt cells with a slight increase of expression upon viral 
infection, whereas no RORα expression could be detected 

Table 1.  Transcription factor profiles

p value

H1N1-induced gene profile
Interferon-stimulated response element 1.77e–06
GATA-binding factor 1 1.05e–05
Serum response factor 1.27e–04
HNF-3alpha 8.57e–04

H7N7-induced gene profile
Transcriptional repressor CDP 4.25e–13
Octamer factor 1 2.12e–09
Cut-like homeodomain protein 5.44e–08
POU1F1 5.44e–08
Fork head box J 2 4.08e–07
Myogenic MADS factor MEF-2 4.08e–07
RSRFC4 8.14e–07
C/EBPgamma 1.40e–06
HMG IY 3.07e–06
IRF 3.07e–06
Myocyte enhancer factor 3.34e–06
Fork head RElated ACtivator-7 4.93e–06
Cellular and viral TATA box elements 5.77e–06
Nuclear factor of activated T-cells 1.22e–05
Pit-1 1.22e–05
Sex-determining region Y gene product 1.22e–05
HOXA4 1.22e–05
Cart-1 (cartilage homeoprotein 1) 1.53e–05
Interferon-stimulated response element 2.29e–05
Pbx-1 2.29e–05
FOX 3.02e–05
HFH-4 5.82e–05
Retroviral TATA box 6.22e–05
Crx 6.48e–05
Homeo domain factor Pbx-1 6.83e–05
ICSBP 7.36e–05
NKX6-1 1.27e–04
Meis-1a/HOXA9 heterodimeric binding 2.17e–04
STAT6 2.18e–04
Meis-1b/HOXA9 heterodimeric binding 2.42e–04
TEF 3.59e–04
GATA-6 5.23e–04
STAT5a 5.24e–04
Yin and Yang 1 5.42e–04
CHX10 6.69e–04
STAT4 7.47e–04
Cell division control protein 5 7.77e–04
POU3F2 8.31e–04
HFH-3 (HNF3/fork head homolog 3) 9.17e–04

H5N1-induced gene profile
octamer factor 1 6.01e–08
HOXA4 2.56e–06
RSRFC4 4.43e–06
RAR-related orphan receptor alpha1 1.54e–05
cAMP-responsive element binding protein 1 1.68e–05
STAT6 3.93e–05
Activator protein 1 5.49e–05
Interferon regulatory factor 7 8.65e–05
STAT5a 2.55e–04
Fork head box O1 2.71e–04
Nuclear factor of activated T-cells 3.08e–04
Fork head box D3 3.15e–04
Fork head box J 2 6.07e–04
POU-factor Tst-1/Oct-6 7.48e–04

http://dx.doi.org/10.1159%2F000346706


 HPAIV Inhibit Response of Monocytes 
via RORα  

J Innate Immun 2013;5:505–518
DOI: 10.1159/000346706

513

in ER-Hoxb8 RORα –/–  monocytes ( fig. 6 a). Viral protein 
M1 expression was diminished in RORα –/–  cells com-
pared to wt cells ( fig. 6 a) and a plaque assay confirmed 
better replication of both viruses in wt cells compared to 
RORα –/–  monocytes ( fig. 6 b). Apparently, RORα affects 
universally efficient propagation of different IAV strains. 

  In this cell system, impaired p65 nuclear translocation 
in wt cells upon H5N1 infection compared to H1N1 could 

be confirmed. In RORα knockout cells, however, p65 was 
activated after both, H1N1 and H5N1 infection ( fig. 6 c).

  IκBα is a major inhibitor of the NF-κB signaling path-
way. It is readily expressed in untreated wt cells and com-
pletely and lastingly downregulated after H1N1 infection 
( fig. 6 d), consistent with proper NF-κB activation ( fig. 6 c). 
However, wt cells infected with H5N1 keep on expressing 
IκBα ( fig. 6 d) which is in accordance with continuous in-
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  Fig. 5.  RORα expression correlates negatively with NF-κB activa-
tion.        a  Whole cell lysates and nuclear extract lysates of uninfected 
control monocytes (C) and monocytes infected with H1N1, H7N7 
and H5N1 for 5 h (MOI 0.5) were immunoblotted for RORα (68 
kD). α-tubulin served as a protein loading control for cytosolic 
protein and lamin B as a control for nuclear extracts. One repre-
sentative blot out of 3 independent experiments is shown. Abso-
lute density of protein lanes has been measured in ImageJ software 
and is shown for the representative blot.  b  Immunoblotting of ly-

sates of uninfected control (C) monocytes and monocytes infected 
with H1N1, H7N7 and H5N1 for 5 h. Nuclear extracts were im-
munoblotted for the NF-κB subunit p65 (65 kD). Lysates of mono-
cytes stimulated with LPS are shown as positive control. Lamin B 
served as a protein loading control. One representative blot out of 
3 independent experiments is shown. Absolute density of protein 
lanes has been measured in ImageJ software and is shown for the 
representative blot.   
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hibition of NF-κB-signaling ( fig. 6 c). On the other hand, in 
RORα knockout monocytes IκBα expression was neither 
detectable after H1N1 infection nor after H5N1 infection 
( fig. 6 d). Our data broadly implicate a coherence between 
inhibition of NF-κB signaling and activation of RORα.

  Blocking RORα Prevents H5N1-Mediated Inhibition of 
the Monocytic Immune Response  
 Finally, we infected ER-Hoxb8 RORα –/–  and wt mono-

cytes with 5 MOI of H1N1 and H5N1 for 5, 8 and 24 h 
and performed qRT-PCR for proinflammatory  (TNF,  
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  Fig. 6.  NF-κB activation in RORα –/–  and wt monocytes after H1N1 
and H5N1 infection.        a  Immunoblotting of lysates of uninfected 
control (C) wt and RORα –/–  monocytes and monocytes infected 
with H1N1 and H5N1 for 5 h. Lysates were immunoblotted for 
viral protein M1 and RORα. β-actin served as protein loading con-
trol. One representative blot out of 3 independent experiments is 
shown.  b  Plaque assay of murine wt and RORα –/–  ER-Hoxb8-im-
mortalized monocytes infected with 0.5 MOI of H1N1 and H5N1 
for 8 and 24 h. Experiments were performed with n = 5. Bars
represent means ± SEM.  *  p < 0.05;  *  *  p < 0.01;  *  *  *  p < 0.001.
 c  Immunoblotting of nuclear extracts of uninfected (C) wt and 
RORα –/–  monocytes and wt and RORα –/–  monocytes infected with 
H1N1 and H5N1 for 2 h (5 MOI). Lysates were immunoblotted for 

the NF-κB subunit p65. Lamin B served as a loading control. The 
blot represents three independent experiments. Immunoblotting 
of lysates of uninfected control murine ER-Hoxb8 wt monocytes 
(C) and wt monocytes infected with H1N1 and H5N1 for 2, 5 and 
8 h, respectively. Lysates were immunoblotted for IκBα (40 kD). 
β-actin served as a protein loading control. One representative blot 
out of 3 independent experiments is shown.  d  Immunoblotting of 
lysates of uninfected control (C) RORα –/–  monocytes and H1N1- 
and H5N1-infected RORα –/–  monocytes for 2, 5 and 8 h, respec-
tively. Lysates were immunoblotted for IκBα (40 kD). β-actin 
served as a protein loading control. One representative blot out of 
3 independent experiments is shown. 
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 IL8R)  and antivirally  (CXCL9, CXCL11, IFNB1, IFNA2)  
acting genes. In accordance to our results in primary 
monocytes, also in wt cells these genes were mostly less 
induced after H5N1 infection than after H1N1 infection, 
becoming most evident 24 h p.i. in this cell system ( fig. 7 ). 
RORα knockout had virtually no influence on this gene 
expression pattern except for  CXCL11 , which was slight-
ly higher expressed in H1N1-infected RORα –/–  mono-
cytes. However, with respect to H5N1 infections the 
knockdown of RORα resulted in strong transcriptional 
inductions of all of these genes ( fig. 7 ). Data confirm the 
specific role of RORα in H5N1 infections to be essential-
ly involved in the suppression of the inflammatory and 
antiviral response of monocytes.

  Discussion 

 HPAIV which have successfully adapted to the human 
host show characteristic symptoms not observed during 
seasonal influenza infections. The most important fea-
tures of HPAIV infections are cytokine storm and sys-
temic spreading of infection  [1–4] . Different cell types of 
the innate and adaptive immune system contribute to an-
tiviral defense and cytokine production, and some virus-
es have obviously developed strategies to overcome the 
early phase of inflammatory responses facilitating their 
systemic spreading.

  In earlier studies our group revealed a significant role 
of endothelial cells for development of the observed cyto-
kine storm  [12] , a finding which is in line with a recent 
publication by Teijaro et al.  [17] . Still, the mechanisms 
lying behind systemic spreading of disease remained un-
solved until a recent study of our group found HPAIV to 
bypass effective immune responses of human blood-de-
rived macrophages  [18] . Missing expression of the viral 
protein M2 leads to inhibition of inflammasome activa-
tion and thus an unexpected reduction of inflammatory 
and antiviral gene expression. Consequently, develop-
ment of certain cell-type-specific mechanisms contrib-
utes to the high pathogenicity of HPAIV and their ability 
to cause systemic disease.

  In the present study we analyzed the role of human 
blood monocytes for the inflammatory response to influ-
enza infection. We compared infection of monocytes 
with the low pathogenic human influenza virus H1N1 
(PR8) and human influenza viruses H1N1/v and H1N1 
(WSN/33) on the one hand, and with HPAIVs H7N7 
(FPV) and H5N1 (KAN-1) on the other hand. We dem-
onstrated that all three virus strains are able to infect and 

replicate in monocytes. There is a slight advantage for 
H7N7 and H5N1 compared to H1N1 in viral protein ex-
pression and replication within the first hours of infec-
tion, obviously one of the pathogenic features involved in 
the shutdown of proinflammatory responses of mono-
cytes to HPAIV. Through analyzing the gene expression 
patterns of monocytes in response to influenza virus in-
fection, we have confirmed earlier studies showing that 
monocytes induce expression of certain chemokines and 
cytokines in response to H1N1 infection  [8, 20] . How-
ever, we found a surprisingly impaired inflammatory and 
antiviral response of monocytes upon H5N1 infection. 
The strongly reduced immune response during H5N1 in-
fection was unexpected since H5N1 patients are charac-
terized by uncontrolled release of cytokines  [1, 35] . Hu-
man monocytes would have been probable origins for 
strong cytokine production. Cell death could be excluded 
as a possible reason for reduced gene induction. Cell 
death experiments showed similar death rates of mono-
cytes infected with H1N1 and H5N1 (data not shown). In 
addition, we could not find upregulation of proapoptotic 
genes in microarray analysis 5 h p.i. Therefore, induction 
of cell death does not influence expression data at the time 
point of array analysis. 

  Since avoidance of inflammatory activation of infil-
trating monocytes could be a sophisticated escape strat-
egy of H5N1 facilitating systemic spreading of disease we 
plunged into the background molecular mechanisms. 
Our bioinformatic workup of IAV-induced gene expres-
sion patterns pointed to RORα as a candidate transcrip-
tion factor employed by H5N1 to suppress the inflamma-
tory response of human monocytes. Recent findings 
demonstrated that RORα interferes with NF-κB signaling 
by activating the inhibitor of NF-κB, IκBα  [33] . A role for 
RORα for the inflammatory response in vivo could be 
shown by the group of Stapleton et al.  [34]  who found an 
increased susceptibility of RORα knockout mice to LPS 
infection. However, they could not confirm the link be-
tween RORα and NF-κB inhibition in these mice. A bio-
logical relevance of RORα in the context of viral infec-
tions has not been described so far. We now demonstrate 
for the first time that RORα is activated in human mono-
cytes by HPAIV, especially H5N1 virus, and that activa-
tion of RORα is associated with a diminished transloca-
tion of NF-κB in infected human monocytes. Diminished 
NF-κB translocation could be shown to be coupled with 
expression, and therefore missing phosphorylation, of 
IκBα, which is in line with the mechanism described for 
RORα in human primary smooth-muscle cells  [33] . Of 
special interest are RORα-mediated inhibitory effects on 
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  Fig. 7.  Gene induction patterns in ER-Hoxb8 monocytes. ER-
Hoxb8 wt (black bars) and RORα –/–  (gray bars) monocytes were 
infected with H1N1 and H5N1 for 5, 8 and 24 h, and lysates were 
used for qRT-PCR. Induction of TNF-α-mRNA, IL-8R-mRNA, 

CXCL9-mRNA, CXCL11-mRNA, IFNB1-mRNA and IFNA-
mRNA was measured by qRT-PCR. Experiments were performed 
with n = 4. Boxes represent means ± SEM.  *  p < 0.05;  *  *  p < 0.01;  *  *  *  p < 0.001.                                 
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type 1 interferons and chemokines like CXCL9 and 
CXCL11, which point to a completely new role of RORα 
for the antiviral immune response. Employing ER-Hoxb8 
RORα –/–  monocytes impressively discloses that blocking 
of RORα rescues the monocytic immune response allow-
ing proper NF-κB activation and adequate inflammatory 
and antiviral gene responses upon H5N1 infection. 

  As a basic principle, NF-κB is an essential constituent 
of the IFN-β enhanceosome  [36] . In airway epithelial cells 
as well as lungs of influenza-infected ferrets and mice 
 [37–39]  influenza A virus infection is associated with ex-
pression of NF-κB-dependent gene products such as pro-
inflammatory cytokines. With respect to HPAIV, in par-
ticular H5N1, our group has demonstrated repeatedly 
that in endothelial cells activation of NF-κB is indispens-
able for the gene response  [12, 16] . Independent of the cell 
type, proper NF-κB signaling seems to be inevitable for a 
strong H5N1-induced cytokine and antiviral immune re-
sponses. In monocytes, the activation of NF-κB in the 
context of HPAIV infections has not been examined yet. 
Accordingly, we now demonstrate that failure of NF-kB-
activation results in a complete lack of inflammatory and 
antiviral actions.

  Considering the combination of failure of human 
monocytes to respond properly to H5N1 infection but ef-
ficient IAV replication of all strains examined in this cell 
type, we conclude that H5N1 has developed a sophisti-
cated escape mechanism. So, H5N1 virus is able to sup-
press inflammatory and antiviral actions of one of the ear-
liest defense barriers. Monocytes have been shown to be 

the main infiltrate in lungs during high-pathogenicity 
IAV infection in mice  [40] . Therefore, monocytes are not 
only important defenders beyond the lung epithelial bar-
rier, but already come into contact with the virus in the 
state of local infection. The inability of monocytes to ful-
fill effective immune response contributes to systemic 
spreading of HPAIV infection beyond the epithelial bar-
rier.

  Taken together, we have deciphered a novel mecha-
nism by which H5N1 is enabled to escape the primary 
innate immune response of human monocytes. In this 
cell type H5N1 interferes with the NF-κB signaling path-
way most probably due to RORα activation. In this way 
H5N1 virus overcomes host responses in the early stage 
of infection which eventually promotes viral spreading in 
the organism and contributes to the severity of HPAIV 
infections in comparison with seasonal influenza infec-
tions. 
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