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 Introduction 

 Interferons (IFNs) are defined by their ability to in-
duce host defense to viral infection. There are three types 
of IFNs, known as types I, II, and III. Type III IFNs, also 
called IFN- � s, are a new distinct type of IFN initially 
found in 2003 by two independent groups  [1, 2] . Three 
closely positioned genes on human chromosome 19 were 
found to encode distinct but paralogous proteins, which 
were designated IFN- � 1, IFN- � 2, and IFN- � 3 [or inter-
leukin (IL)-29, IL-28A, and IL-28B, respectively]  [1] . IFN-
 � s are also related to the IL-10 family with regard to a 
classical four-helix bundle structure  [3] .

  IFN- � s and type I IFNs are similar in their expression 
patterns and biological activities, but research has shown 
that IFN- � s also have their unique characteristics. Com-
pared to type I IFNs, expression of IFN- � s can be induced 
in response to a broader spectrum of stimuli, such as di-
verse viruses and various toll-like receptor (TLR) ago-
nists  [4] . 

 Many studies have demonstrated that IFN- � s play a 
unique role in antiviral defense  [1, 5–8] , with their influ-
ence on HBV or HCV persistence  [9–11] . However, there 
is still little known about their function in immunomod-
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 Abstract 

 Interferon (IFN)- � s are a new addition to the old IFN family 
and share many similarities, such as antiviral and antiprolif-
erative characteristics, with type I IFNs. IFN- � s also exhibit 
unique characteristics in immunomodulation. Accumulating 
studies have indicated the interactions between IFN- � s and 
immune cells, which lead to the regulation of the latter. IFN-
 � s can influence dendritic cells (DCs) and their product,
IFN- � s-DCs, can then regulate the function of T cells. On the 
other hand, IFN- � s can also directly affect T cells through in-
hibition of the T helper 2 cell (Th2) responses. IFN- � s have 
varying immunomodulatory functions under different phys-
iological conditions or in different organs and can inhibit tu-
mor growth via regulation of the immune system. Diseases 
associated with IFN- � s include asthma, allergy, and systemic 
lupus erythematosus. In this review, we summarize the cur-
rent knowledge of the biology of IFN- � s and their immuno-
modulatory function in relevant human diseases. 
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ulation. This review summarizes the current under-
standing of the immunomodulatory activities of IFN- � s 
and their significance in cancer and several immune dis-
eases, such as asthma and SLE. These latest studies sug-
gest that IFN- � s will be a potential therapeutic target in 
clinical medicine.

  Expression Pattern 

 Similar to type I IFNs, IFN- �  expression is in response 
to diverse viruses and various TLR agonists  [2, 11, 12] , 
and it is induced through transcriptional mechanisms
involving IFN regulatory factors (IRFs), NF- � B, and ac-
tivator protein 1 (AP-1)  [4, 13] . The similar expression 
patterns of type I and type III IFN genes are due to the 
common regulatory elements in their promoters  [11, 14] . 
Nevertheless, the expression of IFN- � s responds to a wid-
er range of stimuli compared with type I IFN  [4] . Further 
studies indicate that the IFN- � 1 gene is regulated by IRF3 
and IRF7, thus resembling the IFN- �  gene, whereas IFN-
 � 2/3 gene expression is mainly controlled by IRF7, resem-
bling those of the IFN- �  genes  [13] . In addition, dendrit-
ic cells (DCs), monocytes, mast cells, and epithelial cells 
are the main IFN- � -producing cells  [15–20] .

  Receptor Complex and Signaling 

 Type III IFNs function through a heterodimeric IFN-
 �  receptor complex composed of a unique IFN- � R1 chain 
and the IL-10R2 chain that is also the second subunit of 
the receptor complexes for IL-10, IL-22, and IL-26  [21, 22] . 
IFN- � R1 can be alternatively spliced to produce two vari-
ant receptors with similar affinity to IFN- � s, and it is 
possible that these IFN- �  receptor variants are involved 
in inhibiting ligand binding and/or signal transduction 
 [23] .

  After IFN- � s bind to IFN- � R, they can activate down-
stream signaling pathways, such as the Jak-STAT path-
way and the mitogen-activated protein kinases (MAPK). 
Engagement of these pathways by IFN- � s results in re-
cruitment of the IFN-stimulated gene factor 3 (ISGF3) 
complex to the promoter region of responsive target genes 
 [24–26] . Additionally, IFN- � s can also induce phosphor-
ylation of protein kinase B (PKB) through the phosphati-
dylinositol 3-kinase (PI3K) pathway  [27] . IFN types III 
and I induce a similar subset of genes, such as 2 � -5 � -
oligoadenylate synthetase 1 (OAS1) and IFN-stimulated 
gene 56 (ISG56)  [24] .

  The specificity of the IFN- �  response is regulated 
through limited receptor expression  [8, 24] . Unlike the 
widespread expression of the receptor of type I IFN, the 
IFN- � R is only expressed in skin, the respiratory tract, 
and the gastrointestinal tract. Only epithelial-like cells 
and, to a lesser extent, some immune cells respond to 
IFN- � s  [28] . Thus, IFN- � s contribute to prevent viral in-
vasion through the skin and mucosal surfaces  [29–32] .

  Surprisingly, Witte et al.  [23]  reported that, despite the 
expression of IFN- �  receptor in immune cells, IFN- � 2 
and IFN- � 1 did not activate STAT (signal transducer and 
activator of transcription) 1 or STAT3 at all in mono-
cytes, T cells, or natural killer (NK) cells, and only mini-
mal activation was observed in B cells, presumably be-
cause these cells depend on other pathways for STAT ac-
tivation.

  Different Functions of IFN- �  Subtypes 

 IFN- � 2 and IFN- � 3 are virtually identical, sharing 
96% identical amino acids, whereas IFN- � 1 has 81% ho-
mology to IFN- � 2/3  [33] , so many researchers assume 
that different subtypes of IFN- � s have the same activity. 
Surprisingly, Dellgren et al.  [34]  found that IFN- � 3 pos-
sesses the highest antiviral activity among all human 
IFN- �  subtypes, exhibiting a 2-fold higher activity com-
pared to IFN- � 1 and a 16-fold higher activity compared 
to IFN- � 2. In addition, Liu et al.  [35]  found that IFN- � 1 
had a stronger ability than IFN- � 2/3 to induce IL-12p40, 
TNF, and IL-10 production in monocyte-derived macro-
phages in response to R848 stimulation. Further research 
showed that IFN- � 2 significantly reduced the expression 
of 89 genes by more than 2-fold in hepatic cells, while no 
significant downregulation of genes was observed follow-
ing IFN- � 1 stimulation  [36] . Currently, there is still lim-
ited data to compare the biological activities of the three 
different IFN- � s cytokines. It would be useful to figure 
out whether different subtypes are responsible for differ-
ent aspects of their functions.

  Antiviral and Antiproliferative Function 

 IFN- � s possess antiviral activity [reviewed in  5, 7, 25 ]. 
Administration of exogenous IFN- � s protects mice from 
the encephalomyocarditis virus (EMCV), herpes simplex 
virus-2 (HSV-2), influenza A virus, HCV, and other vi-
ruses. However, the IFN- � -induced antiviral system 
alone cannot provide full protection against systemic vi-
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rus infections; the functional type I IFN antiviral system 
is also required. The latest study shows that mice defi-
cient for both type I and type III IFN receptors cannot 
efficiently control initial SARS-CoV replication in the 
lung  [37] . In contrast to type I IFNs, antiviral protection 
of intestinal epithelial cells against rotaviruses mainly re-
lies on the action of the type III IFNs antiviral system 
 [38] . IFN- � 3 single-nucleotide polymorphisms (SNP) can 
influence IFN- �  expression, which is also associated with 
mortality risk in HIV-infected patients  [39]  and progno-
sis in HCV patients  [40–45] .

  IFN- � s also elicit antiproliferation responses  [46–48]  
and induce STAT activation more potently than type I 
IFNs. IFN- � s lead to apoptosis or G1 phase arrest of can-
cer cells  [49–51] , although not all cell lines have the same 
susceptibility to IFN- � s  [51] . As discussed below, IFN- � s 
can inhibit tumor growth through modulation of the im-
mune system.

  Immunomodulatory Functions of IFN- � s 

 A study found a discrepancy between the observed an-
tiviral activity in vitro and in vivo, suggesting that type 
III IFNs do have immunomodulatory properties  [52] . The 
current understanding of the complex role of type III 
IFNs in overall immunity constitutes an important as-
pect of IFN- �  biology.

  IFN- � s and DCs 

 IFN- � s have a close relationship with DCs. Although 
all cells infected by virus can produce IFN- � s, DCs are 
the main source of IFN- � s after specific stimulation of 
TLRs  [16, 53–57] . A recent study measuring the expres-
sion of IFN subtypes in purified human myeloid DCs 
(mDCs), plasmacytoid DCs (pDCs), and monocyte-de-
rived DCs in response to different TLR agonists revealed 
that the expression profiles of human IFN- � s subtypes 
depend on the specific types of TLRs and immune cells 
 [17] .

  IFN- � s can also impact DCs. There are two kinds of 
DCs in human periphery blood: pDCs and mDCs. The 
steady-state expression of IFN- � R1 in pDCs is signifi-
cantly greater than that of peripheral blood mononuclear 
cells (PBMCs) or general DCs, suggesting that pDCs are 
among the most IFN- � -responsive cell types in the pe-
riphery  [58, 59] . pDCs treated with IFN- � 1 exhibit en-
hanced expressions of the homing molecules CCR7 and 

CD62L, co-culture molecules CD80 and ICOS-L, and re-
duced production of IL-10, IL-13, and IFN- �   [58] .

  Human mDCs matured with lipopolysaccharide (LPS) 
in the presence of IFN- � 1 secrete less IL-10 and more IL-
12 than those not exposed to IFN- � 1  [60, 61] . However, 
Mennechet and Uzé  [62]  found that IFN- � s induced only 
a subset of human monocyte-derived DC maturation 
markers and did not induce IL-12. IFN- � -treated DCs 
specifically induce proliferation of a CD4+CD25+Foxp3+ 
T cell subset with suppressive activity on T cell prolifera-
tion  [62] .

  Although further studies are needed at this time, we 
hypothesize that the initial state of mDCs would influ-
ence the function of IFN- � s on themselves. IFN- � -treated 
mDCs display a partially matured phenotype and induce 
regulatory T cells (Tregs)  [62] , whereas after maturation 
by LPS stimulation, IFN- � s can promote mDCs to facili-
tate the T helper 1 (Th1) response and diminish the Th2 
response  [60, 61] .

  IFN- � s and CD4+ T Cells 

 IFN- � 1 can modulate the secretion of Th1 or Th2 cy-
tokines by CD4+ T cells by inhibiting the secretion of IL-
4, IL-5, and IL-13 and promoting the secretion of IFN- �  
 [63] . Furthermore, IFN- � 1 can suppress differentiation 
towards a Th2 phenotype  [53] . Compared to IL-4 and IL-
5, IFN- � 1 preferentially inhibits IL-13 production  [64]  
through a decrease in the Th2-restricted transcription 
factor GATA3  [63] . Th2 cytokines, in turn, also impact 
IFN- �  production. IL-4-responsive monocytes secrete 
IL-1 receptor antagonist (IL-Ra), which then acts on 
pDCs to elevate their IFN- � 1 output  [53] . In this way, IL-4 
and IFN- � 1 comprise a feedback loop which represents
a natural checkpoint for the control of Th2 cytokine
production. IFN- � 1 can work against this loss of the 
CD62LCCR7 population of CD4+ T cells  [63]  and make 
memory T cells incapable of entry into the periphery or 
differentiation.

  Intriguingly, an animal experiment showed that nei-
ther T cell differentiation nor cytokine production of al-
ready differentiated Th0, Th1, or Th2 cells is affected by 
IFN- � 2 directly  [61] . It has been shown that human her-
pesvirus type 6B (HHV-6B)-induced alterations in the 
Th1/Th2 balance are mediated mainly through IFN- �  
instead of IFN- � 1  [57] . This controversy may be caused 
by different research approaches and models.
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  IFN- � s and CD8+ T Cells 

 IFN- � s can increase the killing activity of cytotoxic T 
lymphocytes (CTL). Using DNA vaccination, peripheral 
CD8+ T cells from animals that were administered with 
IFN- � 3 show substantially increased cytotoxic responses 
 [65] . IFN- � 3 is able to increase the percentage of splenic 
CD8+ T cells and reduce Treg cell populations  [66] , and 
the CD8+ T cells are more granular and have higher anti-
gen-specific cytolytic degranulation compared to cells 
taken from the animals that received IL-12 as an adjuvant. 
NK cells and CTL actually contribute to IFN- � -induced 
immune protection of mice with tumor injection  [67–69] . 
Nevertheless, further experiments showed that IFN- � s 
cannot directly work on NK cells and CD8+ T cells in vitro 
 [67, 68] . Thus, it remains unclear whether IFN- � s have any 
efftect on DCs to influence NK cells and CD8+ T cells, or 
if IFN- � s can change IL-12 and IFN- �  production, which 
then contributes to the cytolysis of NK cells and CTL.

  IFN- �  and Monocytes/Macrophages 

 IFN- � 1 induces IL-6, IL-8, IL-10, chemokine (C-X-C 
motif) ligand (CXCL) 9, CXCL10, and CXCL11 in human 
PBMCs  [70, 71] . Examination of purified cell popula-
tions isolated from PBMCs demonstrates that mono-
cytes and macrophages are the major IFN- � 1-responsive 
cellular subsets. IFN- � 1-treated macrophages upregulate 
the surface expression of the IFN- � R1 chain and there-
fore are more responsive to IFN- �   [35] . All of this indi-
cates that IFN- � s activate both monocytes and macro-
phages, and may therefore be important in activating in-
nate immune responses at the site of viral infection. 
However, the latest research has found that IFN- � 1 sen-
sitized monocytes and macrophages to IL-10 stimulation 
and seemed to inhibit pro-inflammatory responses  [72]  
( table 1 ) ( fig. 1 ).

Table 1. Immunoregulatory functions of IFN-�s

S  ubtype Target cell Eff  ect and possible mechanism Overall impression Refer  ences

�1 pDC increase the expression of the homing molecules CCR7 and 
CD62L; upregulate co-stimulatory molecules CD80 and
ICOS-L, and reduce stimulation of IL-10, IL-13, and IFN-� 
production from allogeneic T cells

contribute to pDC activity 
and prolong pDC survival

58, 59

�1, �2 mDC
(without LPS)

induce partial maturation of DCs; high levels of major MHC 
class I and MHC class II; express CCR7; low levels of
costimulatory molecules, and retained phagocytic ability

induce partial maturation of 
mDCs

62 

�1, �2 mDC profoundly inhibit the generation of Th2 and Th17 responses; 
enhance Th1 polarization, and augment IL-12 secretion

promote mDC maturation 60, 61

�1 CD4+ T cell alter the Th1/Th2 development of naive human T cells;
diminish the development of Th2 cells and lower the secretion 
of IL-13, and induce CD3+ T cell apoptosis

inhibit Th2, promote Th1, 
and induce apoptosis

60, 64, 73

�1, �2 Treg IL-2-dependent proliferation of CD4+CD25+Foxp3+ T cells induce proliferation of Treg 62

�3 CD8+ T cell increase CTL killing activity, and enhance antigen-specific
cytolytic degranulation

promote killing activity 65, 66

�1, �2/3 NK do not enhance NK cytotoxic activity and chemotaxis directly no direct influence on NK 67, 68, 74 

�1 PBMC elevate chemokines mRNA levels of CXCL9, CXCL10, and 
CXCL11, and upregulate IL-6, IL-8, and IL-10

activate PB MC 70, 71

�1 monocyte upregulate IL-6, IL-8, and IL-10; change morphology, and 
more motile

activate monocyte 71

�1 macrophage upregulate IL-6, IL-8, and IL-10; increase TLR-induced
IL-12p40 production, and upregulate IFN-�R1

activate macrophage 35, 71

�2/3 B cell enhance TLR7 on B cells unclear 75
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  Relationship of IFN- � s in Disease 

 Growing tumors acquire the ability to resist immune 
recognition and immune-mediated injury  [76] . In addi-
tion, allergy and systemic lupus erythematosus (SLE) 
have a hypothetical Th2 cell-cytokine predominance. 
Since IFN- � s have a special immunomodulatory func-
tion, they may play a role in the pathogenesis or therapy 
of these diseases.

  Cancer 

 Type III IFNs can elicit antitumor activities through 
both a direct effect on tumor cells themselves and an in-
direct effect on the antitumor immune responses. The 
direct antitumor activity of type III IFNs is associated 
with cell cycle arrest at the G1 phase and apoptosis  [51, 
77] . For human non-small cell lung cancer (NSCLC), Fu-

jie et al.  [78]  found that IFN- � 1 significantly inhibited the 
in vitro growth of a wide range of NSCLC lines in a dose-
dependent fashion.

  IFN- � s can also work on the immune system to in-
hibit tumor growth. The proliferation of cancer cells with 
constitutive expression of IFN- � s is not affected in vitro, 
but the in vivo tumorigenicity is either suppressed or 
completely abolished when cells are injected subcutane-
ously into mice  [68, 79] , suggesting that IFN- � s engage 
host mechanisms to inhibit tumor growth. NK cells prob-
ably play a critical role in IFN- � -mediated protection 
against tumors  [50, 67, 69, 80] , as IFN- � s sensitize tumor 
cells to NK cell recognition and activation, and depletion 
of NK cells inhibits IFN- � -induced antitumor activity. In 
addition, Numasaki et al.  [68]  proposed that polymor-
phonuclear neutrophils and CD8+ T cells also play equal-
ly important roles in IFN- � 2/3-mediated inhibition of 
MCA205 fibrosarcoma growth, while Sato et al.  [69]  
found that the response of CD8+ T cells is weak in a mu-
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  Fig. 1.  Immunomodulatory functions of type III IFN. IFN- � R is 
expressed in DCs, T cells, and NK cells. DCs can produce IFN- � s 
in response to the stimulation of TLRs, and IFN- � s can also affect 
DCs, resulting in the change of MHC, CCR7, and costimulatory 
molecules. IFN- � s-DCs or IFN- � s themselves can influence the 
function of T cells, including promotion of Th1, inhibition of Th2, 

activation of Mo/Mø, and changing the proportion of Treg and 
the cytotoxicity of CD8+ T cells. Cross marks = IFN- � s could not 
work directly on this kind of cells; question marks = the pathway 
was not completely confirmed; green color = promote; red col-
or = inhibit.   
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rine colon26 cancer model. The increased secretion of 
IL-12 and IFN- �  may also contribute to the immunocy-
totoxicity induced by IFN- � s  [67, 68] .

  With regard to whether IFN- � -induced antitumor ac-
tivity is associated with an antiangiogenic response, re-
search showed that IFN- � s did not affect tumor vascular-
ity in human NSCLC  [78] , a BNL hepatoma model  [67] , 
and esophageal carcinoma  [50] . However, Lasfar et al. 
 [79]  found that tumors derived from B16.IFN- � 2 cells 
were less vascular than B16 tumors. Importantly, these 
experiments were carried out using different subtypes of 
IFN- � s, leaving the exact relationship between IFN- � s 
and angiogenesis an open question.

  The animal experiments reviewed above indicate that 
immune cells, cytokines, and antiangiogenesis are pos-
sible mechanisms of IFN- � -mediated protection against 
tumor. Surprisingly, recent studies showed that IFN- � 1 
induced myeloma cell growth and protected cancer cells 
from dexamethasone-induced cell death  [81] . In another 
study, intratumoral injections of 400 ng IFN- � 1 did not 
mediate significant suppression of A549 growth in vivo 
 [78] . These inconsistent results may suggest a context-de-
pendent mechanism of action for IFN- � s in different 
types of tumors.

  The potential application of IFN- � s in cancer treat-
ment has been proposed [reviewed in  28, 82 ]. Due to the 
restricted expression of IFN- �  receptors, the adverse side 
effects are slight and two phase 1 clinical trials have 
shown good patient tolerance with IFN- � s. Application 
of IFN- � s will help to modulate the Th1/Th2 balance in 
cancer patients and break immune tolerance. IFN- � s in 
combination with IFN- � / � / �  or chemotherapeutic agents 
can provide a new choice for cancer therapy  [51, 74, 78] .

  Asthma 

 Researchers have observed deficient induction of IFN-
 � s by rhinovirus in primary bronchial epithelial cells and 
alveolar macrophages of patients with asthma exacerba-
tion  [83]  and human cystic fibrosis  [84] . Another discov-
ery is that an SNP rs12979860, which is located 3 kb up-
stream of IFN- � 3 and influences the production of IFN-
 � s, is correlated with the immune state in children who 
develop allergic disease  [85] , and a relationship between 
higher levels of a pro-inflammatory cytokine profile at 
birth with diminished levels of IFN- � s is observed over 
time in children who carry the SNP.

  IFN- � s are thought to inhibit GATA3 expression and 
suppress Th2-type immune responses  [60, 63, 64] , which 

are the hallmarks of allergic diseases  [86] . This is further 
supported by the recent study by Koltsida et al.  [61] , which 
shows that IFN- � s can promote Th1 immunity and sup-
press Th2 responses in the mouse model of allergic asth-
ma  [87] . The novel effects of IFN- � 2 on T cell differentia-
tion are not observed in IFN- � -deficient mice or mice de-
pleted of IL-12p40, indicating that IFN- � 2 induces Th1 
effect or function via IL-12 and IFN- �   [87] . IFN- � s are 
likely the principal IFNs produced during innate respons-
es to respiratory viruses in bronchial epithelial cells  [88] , 
and key modulators of the Th2 response  [89] . All of this 
suggests that defective type III IFNs in response to rhino-
virus lead to a stronger Th2 response and subsequent al-
lergic diseases. Recent studies have shed further light on 
the regulation of IFN- � 1 promoter activity in human air-
way epithelial cells and have shown that BLIMP-1 and 
ZEB1 may be negative regulators of IFN- � 1 expression 
 [15] . Moriwaki et al.  [90]  indicated that IL-13, a crucial 
cytokine responsible for asthma pathogenesis, suppresses 
dsRNA-induced expression of IFN- � s in airway epithelial 
cells and alveolar macrophages, and contributes to the im-
pairment of the antiviral defense in asthmatics.

  However, Bullens et al.  [91]  reported that asthma pa-
tients have higher mRNA expression of IFN- � 2/3 in spu-
tum than healthy individuals. Moreover, the serum level 
of IFN- � s is also higher in asthma patients in exacerba-
tion  [18] . These studies indicated that IFN- � s are involved 
in the pathogenesis of allergic inflammation  [18, 91] . 
Thus, the role of IFN- � s in asthma is somewhat contro-
versial, but the mainstream views are that the deficiency 
of IFN- � s leads to hyperfunction of Th2 cells, and an 
IFN- �  supplement would alleviate asthmatic symptoms.

  Systemic Lupus Erythematosus 

 IFN- � 1 mRNA expression and serum protein levels in 
patients with SLE are higher compared to normal con-
trols, suggesting that IFN- � 1 is probably involved in the 
renal disorder and arthritis progression of SLE and asso-
ciated with disease progression. IFN- � 1 stimulates the 
production of CXCL10 (IP-10), CXCL9 (MIG), and IL-8 by 
PBMCs from SLE patients  [92] . These chemokines play an 
important role in the inflammation process of SLE by re-
cruiting leukocytes to inflammatory sites and promoting 
disease aggravation. Recently, the expression of IFN- � 2/3 
was found to be high in activated CD4+ T cells of SLE pa-
tients  [93] . Significantly, enhanced IFN- � 1 could also be 
measured in the serum of cutaneous lupus erythematosus 
patients with active skin lesions. Functional analyses re-



 IFN- � s: Immunomodulatory Agents and 
Therapeutic Targets 

J Innate Immun 2013;5:209–218 215

vealed that human keratinocytes are able to produce high 
levels of IFN- � 1 but only low amounts of IFN- � / � / �  in 
response to immunostimulatory nucleic acids  [94] .

  In SLE patients, IFN- �  secretion is enhanced and leads 
to upregulation of several inflammatory proteins, and 
cytokine imbalances contribute to immune dysfunction, 
trigger inflammation, and induce organ damage. There-
fore, there is a potential to use anti-IFN- �  monoclonal 
antibodies to neutralize excess IFN- � s in SLE patients.

  Food Allergy 

 He et al.  [73]  found that IFN- � s are involved in the de-
velopment and maintenance of oral tolerance in the in-
testines of mice. Interaction between IFN- � s and their 
receptor induces apoptosis of T cells and their subsequent 
phagocytosis by DCs, which leads to the generation of 
tolerogenic DCs and Tregs in vitro and in vivo. On the 
other hand, IFN- � -treated DCs retain their phagocytic 
ability and induce Treg proliferation  [62] . Thus, IFN- � s 
are functional in the generation of tolerogenic DCs and 
Tregs, keeping the immune activation in control and 
helping to restore immune homeostasis. Surprisingly, He 
et al.  [95]  also reported that eosinophils express IFN- � s 
that can induce intestinal epithelial barrier dysfunction 
and promote the initiation of aberrant Th2 polarization 
in the intestine. So it remains to be further investigated 
whether IFN- � s are involved in the development of oral 
tolerance or food allergy ( table 2 ).

  Concluding Remarks 

 It has been widely accepted that type I IFNs play an 
exclusive role as early mediators of the innate response 
to viruses, as well as regulators of the subsequent re-
sponses from components of the adaptive immune sys-
tem  [97] . IFN- � -DCs can play a role in the generation of 
antitumor T cell immunity and in the pathogenesis of 
some autoimmune disorders  [98] . IFN- � s are new mem-
bers of the IFN family of cytokines, and many research 
studies have shown that type III IFNs and type I IFNs 
share lots of biological similarities. The therapeutic ef-
ficacy could be augmented and the side effects could be 
reduced when both IFN types are used in combination 
 [78, 99] .

  We believe IFN- � s not only assist type I IFNs but also 
modulate the immune response independently. IFN- � s 
can function via DCs and also directly work on T cells. 
Under physiological conditions, IFN- � s promote differ-
entiation of immune cells and activate the immune sys-
tem. However, under pathological conditions, their ab-
normal secretion is associated with the pathogenesis of 
immunological diseases, such as cancer, SLE, asthma, 
and food allergy. In consideration of its immunomodula-
tory function, IFN- � s have potential as a new target of 
treatment in these diseases. Potential applications in-
clude inhibition of the activity of IFN- �  to ameliorate 
symptoms of SLE patients, or supplementation of IFN- � s 
to modulate the imbalance of T helper cells in cancer pa-
tients.

Table 2. I FN-�s and relevant diseases

Subtype Experimental system Effect and possible mechanism References

�1, �2/3 antitumor
function in mice

regulate innate and adaptive immune responses of NK,
T cells, and DCs, and antiangiogenesis

50, 67–69, 79, 80

�1, �2/3 asthma modulate lung DC function to promote Th1 immune skewing and
suppress allergic airway disease, and decreased IFN-� production
correlating with severity of rhinovirus-induced asthma exacerbation
and virus load

18, 19, 61, 83, 84, 
90

�2 Con A-induced
hepatitis

induce Th1 cytokine production and T cell-mediated liver injury 96

�1, �2/3 SLE significantly enhanced in patients with SLE, and stimulate the production 
of CXCL10 (IP-10), CXCL9 (MIG), and IL-8

92–94

� food allergy controversial: induced apoptosis of T cells or intestinal epithelial cells, 
and suppressed or induced antigen-specific Th2 cell-mediated
inflammation

73, 95
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  In summary, the newly discovered IFN- � s and their 
special functions have attracted great attention to the old 
IFN family. It has been realized that the immunomodula-
tory activities of IFN- � s are complex and intriguing. We 
hypothesize that IFN- � s possibly have dual characteris-
tics, functioning diversely in different circumstances. Al-

though further studies to elucidate the mechanism of the 
function of IFN- � s are needed, the current evidence sug-
gests that IFN- � s have great therapeutic potential, and 
can provide novel strategies for the clinical treatment of 
many diseases.
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