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the  C. albicans  infection process. Important defense-related 
proteins in zebrafish were predicted using the same ap-
proach. The hyphal growth PPI network, zebrafish PPI net-
work and host-pathogen intercellular PPI network were 
combined to form an integrated infectious PPI network that 
helps us understand the systematic mechanisms underlying 
the pathogenicity of  C. albicans  and the immune response of 
the host, and may help improve medical therapies and fa-
cilitate the development of new antifungal drugs. 

 Copyright © 2013 S. Karger AG, Basel 

 Introduction 

  Candida albicans  is an opportunistic fungal pathogen 
responsible for various mucosal infections, such as can-
didiasis (e.g. oral thrush and vaginitis) and other poten-
tially life-threatening diseases  [1] .  C. albicans  is also the 
species most frequently responsible for hospital-acquired 
fungal infections. This pathogen can colonize various 
biomaterials, such as ventricular assist devices and uri-
nary and vascular catheters, forming dense biofilms that 
are resistant to most antifungal drugs  [2] .  C. albicans  in-
fections and candidiasis are difficult to treat and cre-
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 Abstract 

  Candida albicans  infections and candidiasis are difficult to 
treat and create very serious therapeutic challenges. In this 
study, based on interactive time profile microarray data of  C. 
albicans  and zebrafish   during infection, the infection-related 
protein-protein interaction (PPI) networks of the two species 
and the intercellular PPI network between host and patho-
gen were simultaneously constructed by a dynamic interac-
tion model, modeled as an integrated network consisting of 
intercellular invasion and cellular defense processes during 
infection. The signal transduction pathways in regulating 
morphogenesis and hyphal growth of  C. albicans  were fur-
ther investigated based on significant interactions found in 
the intercellular PPI network. Two cellular networks were 
also developed corresponding to the different infection 
stages (adhesion and invasion), and then compared with 
each other to identify proteins from which we can gain more 
insight into the pathogenic role of hyphal development in 
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ate very serious therapeutic challenges. Mortality rates 
among patients with candidiasis can be as high as 40–
60%, especially for those who have bloodstream infec-
tions  [3] . Therefore, an understanding of the molecular 
mechanisms underlying the pathogenicity of  C. albicans  
and of host defense systems could improve medical ther-
apy and facilitate the development of new antifungal 
drugs.

  Under normal circumstances,  C. albicans  lives in
80% of the human population with no harmful effects, 
although its overgrowth results in candidiasis, often 
 observed in immunocompromised (e.g. HIV-positive) 
individuals  [4, 5] .  C. albicans  can grow in a variety of 
morphological forms, ranging from yeast form to pseu-
dohyphae form to true tubular hyphae form, depending 
on the growth conditions in the host environment  [6] . A 
number of molecular factors have been implicated as as-
sociated with the virulence of  C. albicans,  such as host 
recognition biomolecules, secreted aspartyl proteases and 
phospholipases, as well as life cycle factors like adhesion 
and morphogenesis  [7] . Among those factors, the transi-
tion from yeast to hyphal form is considered to be critical 
for  C. albicans  pathogenesis. The ability of  C. albicans  to 
form hyphae has been proposed as a virulence factor, as 
these structures are often observed in invaded tissue and 
 C. albicans  strains unable to form hyphae (whether natu-
rally or through introduced mutations) show defective 
infectivity  [6, 8] . Although previous studies have provid-
ed some insights, the details of the molecular mechanisms 
responsible for morphological forms still await elucida-
tion. In this study, we utilized time series microarray data 
over nine time points to construct two dynamic networks, 
which represent protein-protein interaction (PPI) in the 
adhesion stage (i.e. when hyphae are not growing) and the 
invasion stage (i.e. when they are). By comparing these 
two dynamic networks, we can investigate the details of 
molecular mechanisms responsible for changes in  C. al-
bicans  infectivity across morphological forms.

  At present, we still lack sufficient high-throughput 
screening data for  C. albicans  such as PPI and ChIP-chip 
data, even though the genome for  C. albicans  has been 
identified, sequenced and released to aid research on this 
significant pathogen  [9] . The  C. albicans  genome for 
strain SC5314 has already been sequenced, revealing that 
almost two-thirds of its  ∼ 6,000 open reading frames are 
orthologous to genes of  Saccharomyces cerevisiae , the 
most intensively studied eukaryotic model organism to 
have its entire genome sequenced  [10, 11] . The identifica-
tion also revealed gene orthologs between  C. albicans  and 
 S. cerevisiae . Unlike  C. albicans ,  S. cerevisiae  does not 

form true hyphae and is generally not considered a hu-
man pathogen.  S. cerevisiae  has abundant high-through-
put screening data and it is closely related to  C. albicans  
(i.e. both fall within the class Hemiascomycetes), the in-
formation from  S. cerevisiae  could be usefully adapted for 
our understanding of  C. albicans  biology and pathogen-
esis  [10] .

  The zebrafish  (Danio rerio)  has emerged as a powerful 
new vertebrate model for human disease. Numerous 
studies have already utilized the zebrafish system to study 
the pathogenesis of various human infectious diseases, 
including those caused by bacteria or viruses  [12, 13] . The 
zebrafish immune system displays remarkable similari-
ties to mammalian counterparts. As a demonstration of 
the zebrafish’s utility as a model organism for human dis-
ease, in 49 cases of a zebrafish mutant gene being cloned 
based on a forward genetic screen, the genes were found 
to have homologs in human disease  [14] . Overall, the 
zebrafish genetic map demonstrates highly conserved 
synteny with the human genome  [15] . Chao et al.  [16]  
have also demonstrated that  C. albicans  can colonize and 
invade the fish host at multiple anatomical sites and prove 
fatal in a dose-dependent manner. Therefore, a zebrafish 
infection model could be used to investigate the details of 
the  C. albicans  invasive process and infectious mecha-
nisms.

  In this study, we construct an infectious  C. albicans  
and zebrafish intercellular PPI network by mining and 
integrating microarray data, PPI information and host-
pathogen intercellular interactions in order to investigate 
how morphology regulates the infectious behavior of  C. 
albicans  on host tissue. Consequently, we discovered that 
all major hyphae-related pathways are visible in our hy-
phal PPI network, confirming the reliability and accuracy 
of our methods and results. From a systems perspective, 
we were able to predict the proteins with the largest 
changes in the number of interactions and the hub pro-
teins for morphological switching processes. We identi-
fied several important hyphae growth-related proteins – 
e.g. Ubi4, Act1, Kex2, Hsl1 and Tsa1 – and some proteins 
worth further exploration for pathogenicity research 
such as Hht21, Kre1 and Orf19.5438. Moreover, three 
noteworthy functions at work in  C. albicans  infection – 
cellular iron ion homeostasis, glucose transport and cell 
wall molecular biosynthesis – were named as pathogen 
invasion mechanisms from analysis of the integrated in-
tercellular protein interaction networks. Furthermore, 
several functions, such as apoptosis and immune re-
sponse, were also found to be involved in host defense 
mechanisms. 
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  Materials and Methods 

 Ethics Statement 
 Manipulation of the animal model was approved by the Insti-

tutional Animal Care and Use Committee of National Tsing Hua 
University.

  Simultaneous Time-Course Microarray Experiment during C. 
Albicans Infection 
 SC5314 strain  C. albicans  and adult AB strain zebrafish were 

used for the experiments. Their maintenance and preparation 
were performed according to procedures described previously 
 [16] . Zebrafish were anesthetized by immersion in water contain-
ing 0.17 g/ml of Tricaine (Sigma) and then intraperitoneally in-
jected with 1 × 10 8  CFU  C. albicans  cells suspended in 10 μl sterile 
phosphate-buffered saline. The infected fish were sacrificed by im-
mersion in ice water at 0.5, 1, 2, 4, 6, 8, 12, 16 and 18 h postinjection 
and frozen in liquid nitrogen.  C. albicans -infected zebrafish were 
treated with Trizol ®  Reagent (Invitrogen, Carlsbad, Calif., USA), 
pulverized in liquid nitrogen using a small mortar and pestle, and 
then disrupted using an MagNA Lyser System (Roche) with glass 
beads (cat. No. G8772-100G, Sigma) by shaking at 5,000 rpm for 
15 s. After phase separation by adding chloroform, the total RNA 
was purified using an RNeasy Mini Kit (Qiagen, Hilden, Germa-
ny). Purified RNA was quantified at OD260nm using an ND-1000 
spectrophotometer (NanoDrop Technology, Wilmington, Del., 
USA) and analyzed using a Bioanalyzer 2100 (Agilent Technolo-
gies, Santa Clara, Calif., USA) with RNA 6000 Nano LabChip kit 
(Agilent Technologies). One microgram of the total RNA was am-
plified using a Quick-Amp Labeling kit (Agilent Technologies) 
and labeled with Cy3 (CyDye, PerkinElmer, Waltham, Mass., 
USA) during the in vitro transcription process. 0.625 μg of Cy3 
cRNA for the  C. albicans  array and 1.65 μg of Cy3 cRNA for the 
zebrafish array were fragmented to an average size of 50–100 nu-
cleotides by incubation with fragmentation buffer at 60   °   C for 30 
min. The fragmented labeled cRNA was then hybridized to both 
 C. albicans  and zebrafish oligo microarrays (Agilent Technologies) 
at 60   °   C for 17 h. After washing and drying using a nitrogen gun, 
microarrays were scanned using an Agilent microarray scanner 
(Agilent Technologies) at 535 nm for Cy3. For each time point, 
three biological replicates were done for both organisms. The raw 
data were processed with Loess normalization and the results have 
been deposited in the Gene Expression Omnibus (accession No. 
GSE32119; since the data are currently private, reviewers can ac-
cess the data using the following link: http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?token=llqtnceackuwilu&acc=GSE32119).

  Overview of the Process 
 The global screening method for infection-related proteins was 

divided into three key steps: (i) data selection and processing for 
proteins, (ii) constructing dynamic hyphal growth networks for  C. 
albicans  and dynamic networks for  D. rerio  and (iii) constructing 
an intercellular PPI network between pathogen and host. The 
flowchart of the integrated cellular network construction is shown 
in  figure 1 . After constructing the overall network – which consists 
of the hyphal growth PPI network for  C. albicans , the PPI network 
for  D. rerio  and the intercellular PPI network between pathogen 
and host – we searched for potential infection-related proteins and 
immune response pattern recognition molecules in both  C. albi-
cans  and zebrafish. 

  Data Selection and Preprocessing 
 In this study, several types of data were mined and integrated 

to construct the integrated cellular network. In  C. albicans , the re-
quired data included some of its microarray gene expression pro-
files, PPIs from  S. cerevisiae , data on gene orthologs between  C. 
albicans  and  S. cerevisiae , and gene annotations for  C. albicans . 
There are 9 time points in the  C. albicans  microarray data spanning 
from 0.5–18 h postinfection (i.e. 0.5, 1, 2, 4, 6, 8, 12, 16 and 18 h). 
The gene ortholog data were acquired from the  Candida  Genome 
Database, and the  C. albicans  gene annotations were retrieved 
from the Gene Ontology (GO) project. The PPI data for  S. cerevi-
siae  were extracted from the Biological General Repository for In-
teraction Datasets (BioGRID).

  In zebrafish, the data included microarray gene expression pro-
files, PPIs from  Homo sapiens , data on human and zebrafish gene 
orthologs and functional gene annotations for zebrafish. There 
were 9 time points in the zebrafish microarray data spanning from 
0.5 to 18 h (i.e. 0.5, 1, 2, 4, 6, 8, 12, 16 and 18 h). The gene ortholog 
data were acquired using the ZFIN, InParanoid, and BLAST data-
bases. The zebrafish gene annotations were retrieved from the GO 
project. The PPI data for  H. sapiens  were extracted from BioGRID 
and the Human Protein Reference Database.

  Selection of Protein Pool for Rough PPI Networks 
 Because of the lack of PPI databases between  C. albicans  and 

zebrafish at present, gene ortholog data between  C. albicans  and  S. 
cerevisiae  as well as between zebrafish and  H. sapiens  were utilized 
to set up protein data pools for our candidate  C. albicans  and ze-
brafish PPI networks, respectively.  C. albicans  PPIs can be inferred 
by applying ortholog data between  C. albicans  and  S. cerevisiae  to 
the latter’s PPI data; similarly, zebrafish PPIs can be inferred by 
mapping  H. sapiens  PPI data to ortholog data between   humans and 
zebrafish. Then, we set up the protein pool consisting of differen-
tially expressed proteins. Since large-scale protein activity mea-
surements are unobtainable, mRNA expression profiles were used 
as a substitute instead. Although the mRNA expression levels can-
not be completely representative of the corresponding protein ex-
pression levels, they are at least partially and positively correlated 
 [17, 18] . The mRNA expression level for each protein was used to 
filter differentially expressed proteins using one-way analysis of 
variance (ANOVA), where the null hypothesis was the average 
mRNA expression levels at every time point being equivalent. In  
C. albicans  and zebrafish alike, the proteins with p values returned 
by ANOVA that were less than 0.01 were added to the protein pool. 
In this manner, we selected 4,820 and 9,665 proteins for inclusion 
in the protein pools of  C. albicans  and zebrafish, respectively. In 
this step, we found that a set of 4,820 proteins is too large for con-
structing the PPI network for  C. albicans . Because the high resul-
tant PPI numbers exceed the size of the microarray data, we nar-
rowed the protein pool of  C. albicans  to avoid over fitting in the 
parameter identification process for the PPI network construction. 
So, utilizing the GO database to further select a hyphal growth pro-
tein pool within the 4,820 proteins set, we constructed a hyphal PPI 
network for  C. albicans  consisting of a subset of 403 proteins iden-
tified as related to hyphal growth. In addition, we were able to lo-
cate the beginning of hyphal growth in the body of the zebrafish at 
2–4 h postinfection from microscopy images of the experiment 
( fig. 2 ). Therefore, we selected 598 additional proteins of which 
mRNA levels changed by more than two-fold in 1–6 h to another 
hyphal growth protein pool. Most of these 598 proteins had not yet 
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  Fig. 1.  Flowchart of the construction of the integrated infection 
intercellular PPI network via database mining and integration. The 
construction of our integrated intercellular PPI network was per-
formed by database mining and network identification. The net-
work construction combines DNA microarray data with different 

types of information from various databases, as shown in the white 
boxes. The blue boxes show the steps of candidate subnetwork 
construction. The bottom part (orange boxes) of the flowchart il-
lustrates the steps of network identification and the subsequent 
construction of the integrated cellular network. 
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been confirmed as associated with hyphal growth. Combining the 
403 hyphae-related proteins with the 598 proteins having a more 
than two-fold change in expression levels yielded 1,001 proteins 
for the total hyphal growth protein pool. A candidate PPI network 
could be constructed based on this protein pool and PPI informa-
tion. Since candidate PPI networks contain many false positive 
PPIs, the candidate PPI network was pruned using real-time series 
microarray data and based on a dynamic interaction model in the 
following subsection.

  Dynamic Model for Organism Protein Interaction Network 
during Infection 
 The candidate PPI network can be depicted as a dynamic sys-

tem in which interactive proteins and mRNA are considered as 
inputs of the system and protein activities as outputs of the system. 
All proteins in the candidate PPI network can be considered as 
target proteins. For a target protein  p  in the candidate PPI network 
with N interacting proteins, a dynamic model of the protein’s ac-
tivity can be represented as follows:

1

1

for 1, 2, ,  

Qp

p p pq p q p p p p p
q

y t y b y t y t x t y tt t

p N

� � �   

(1)

    where  y  p [ t ] represents the activity level of  p  at time  t ,  b  pq  denotes 
the interaction ability of the  q -th interactive protein to  p ,  y  q [ t ] rep-
resents the protein activity level of the  q -th protein interacting with 
 p ,  α  p  denotes the translation rate from mRNA to protein,  x  p [ t ] rep-
resents the mRNA expression level of  p ,  β  p  indicates the decay rate 
of the protein, and  ω  p [ t ] is stochastic noise. The PPI rate is propor-
tional to the product of two proteins’ concentrations  [19]  (i.e. pro-
portional to the probability of molecular collisions between two 
proteins), and thus the interaction is modeled as a nonlinear mul-
tiplication scheme. The biological interpretation of equation 1 is 
that the protein activity level of target protein  p  at time  t  + 1 is a 
function of the present protein activity level plus regulatory inter-
actions with  Q  P  interactive proteins, plus additive translation ef-
fects from mRNA, minus present protein degradation effects and 
plus some stochastic noise. Because of the undirected nature of 
protein interactions, we did not assign direction for a two-protein 
interaction in the PPI subnetwork in equation 1. After the dy namic 
interaction model for the  p -th protein is constructed as in equation 
1, the interaction parameters  b  pq , translation parameter  α  p  and de-
cay rate  β  p  can be estimated from microarray data in the following 
subsection (see online suppl. methods for more details; for all on-
line suppl. material, see www.karger.com/doi/10.1159/000347104). 
Since the number of interactions in a candidate PPI network varies 
in the literature, dependent on the biological situation or condition 
targeted by a study, there exist many false positives and several in-
teractions may not be relevant for our purposes. Therefore, the 
estimated interaction parameters    b̂  pq  should be pruned using the 
model order selection method Akaike information criterion   (AIC), 
which is detailed next. 

 Determination of Significant Interaction Pairings 
 When the regulatory interaction parameters    b̂  pq  have been 

identified, AIC  [20]  is then employed for both model order selec-
tion and determination of significant interactions in the infection 
PPI networks: i.e. to determine the number of interactions  Q  P  in 
equation 1. The AIC, which attempts to include both the estimated 

residual error and model complexity in one statistical measure, 
decreases as the residual variance decreases and increases as the 
number of interactions (i.e. complexity) increases  [21] . 

22log ,     where P
PP P P P P

QAIC Q Y
L

� � � �               (2)

    As the expected residual error decreases with increasing inter-
actions for inadequate model complexities, there should be a min-
imum located near the correct interaction number  [20, 21] . There-
fore, AIC can be used to select model order (i.e. the number of 
interactions) based on the protein interaction abilities    b̂  pq  identi-
fied above. In other words, we use the AIC model order selection 
method to reduce the likelihood of false positive PPIs from the 
candidate network using time profile microarray data to achieve a 
more realistic PPI network. After constructing the PPI networks 
for host and pathogen, we constructed a network for the protein 
interactions between pathogen and host to gain more insight into 
the offensive and defensive schemes of pathogen and host during 
the infection process.

  Construction of an Intercellular PPI Network between 
Pathogen and Host 
 To identify the intercellular PPIs between pathogen and host 

during infection of zebrafish with  C. albicans , we utilized the Tem-
poral Relationship Identification Algorithm (TRIA), which uses 
gene expression data to identify a given transcription factor’s reg-
ulatory targets from its binding targets as inferred from ChIP-chip 
data  [22] . The first step was to build a pool of  C. albicans  cell sur-
face proteins. We used the GO database to select 195 cell surface 
proteins from the 4,031-protein pool to build the resultant protein 
pool for  C. albicans . Because host resistance against  C. albicans  
infections is mediated predominantly by phagocytes, namely neu-
trophils and macrophages  [23, 24] , we assumed that cell surface 
proteins of  C. albicans  may interact with any protein of zebrafish 
in the infectious process. So, we let  x  ⇀  = ( x  1 ,..., x  N ) denote the gene 
expression time profile of  C. albicans  cell surface protein x and 
   y  ⇀  = ( y  1 ,...., y  N ) denote the gene expression time profile of zebrafish  
 protein y. We constructed the protein interactions between  C. al-
bicans  and zebrafish via cross-correlation calculations of their time 
series microarray data.

  We compute the cross-correlation between  x  ⇀  and  y  ⇀  with a lag 
of k time points as follows:

2 2

1 1 1
/ ,

0

N k N k N k

i k i i k i
i i i

c k y y x x y y x x

k ,1  , ,T                  (3)

    where  
 

1

1

/ ,

/

N k

i k
i

N k

i
i

y y N k

x x N k

                

(4)

    and  T  is the maximal time lag after the  C. albicans  infection. We 
interpolated the 9 time points available for both  C. albicans  and 
zebrafish into 36 time points. The interval between each time point 
was 0.5 h. In this study, we set  T  = 8, meaning that we computed 
the cross-correlation between a  C. albicans  cell surface protein and 
a zebrafish   protein for all possible time lags less than 4 h. Although 
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the beginning of hyphal growth in the body of the zebrafish occurs 
at 2–4 h postinfection, we assumed the hyphae-related proteins of 
 C. albicans  might influence zebrafish proteins ahead of 4 h postin-
fection. Then, we tested the null hypothesis (H 0 ):  c ( k ) = 0 (i.e. the 
cell surface proteins of  C. albicans  and zebrafish proteins are un-
correlated) and the alternative hypothesis (H α ):  c ( k )  ≠  0 by the 
bootstrap method  [25]  to obtain a p value  p ( k ) (see online suppl. 
methods for details). After all cross-correlations were calculated, 
we set the constraint that cross-correlation levels must be higher 
than 0.95. The PPIs satisfying this constraint were considered as 
potential intercellular PPIs between  C. albicans  and zebrafish. 

 Results 

 Construction of the Integrated Intercellular PPI 
Network during Infection 
 This study aimed to construct the integrated intercel-

lular interaction network between the hyphal proteins of 
 C. albicans  and zebrafish proteins during the infection 

process. The flowchart detailing its construction is shown 
in  figure 1  and has three main routes, among which two 
separately construct the hyphal PPI network of  C. albi-
cans  and the PPI network of zebrafish. The third con-
structs the host-pathogen intercellular PPI network. 
Based on the microarray data, we selected 4,820 and 9,665 
proteins for inclusion in the source protein pools of  C. 
albicans  and zebrafish, respectively. In addition, we se-
lected 1,002 proteins for inclusion in the hyphal growth 
protein pool from the  C. albicans  protein pool due to the 
need to investigate what factors are behind the transition 
from yeast form to hyphal form in the infection process. 
In the candidate  C. albicans  hyphal PPI network, there 
were 3,604 PPIs; in the candidate zebrafish PPI network, 
there were 1,129.

  We utilized the 9 time point  C. albicans  time series mi-
croarray data to construct two dynamic networks for dif-
ferent infection stages. Since hyphae appear to begin to 

0.5 ha b 1 h c 2 h

d 4 h e 6 h f 8 h

g

C. albicans
hyphae

12 h

  Fig. 2.  Experimental microscopy images of the infection process of  C. albicans  on zebra-
fish tissue: infection of   zebrafish with  C. albicans . Zebrafish sections were stained with HE 
and imaged by microscopy as described in Methods. The respective time points are 0.5 h 
( a ), 1 h ( b ), 2 h ( c ), 4 h ( d ), 6 h ( e ), 8 h ( f ) and 12 h ( g ). ‘L’ indicates liver and ‘I’ indicates 
intestines. It is apparent that hyphae began to grow between the 2- and 4-hour time points. 
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grow in the zebrafish body from 2–4 h postinfection in 
the experimental microscopy images ( fig. 2 ), we collected 
two groups of data at different stages of infection to con-
struct two separate networks. With the  C. albicans  micro-
array data spanning 0.5–4 h, we constructed a network 
called the ‘adhesive stage network’, which represents  C. 
albicans  cells in the adhesion stage. Since cubic spline in-
terpolation requires at least four data points to solve a 
cubic polynomial  [26] , we included the 4-hour data point 
to construct this network. With the  C. albicans  microar-
ray data spanning 2–12 h, we constructed another net-

work called the ‘hyphal stage network’, which represents 
 C. albicans  cells transitioning to the hyphal form. Simi-
larly, we collected two groups of data at different stages of 
infection to construct two separate PPI networks for ze-
brafish as well: one for microarray data from 0.5 to 4 h, 
and another for data from 2 to 12 h, named the zebrafish 
stage 1 network and zebrafish stage 2 network, respec-
tively. By estimating the system parameters using the time 
series microarray data and selecting model order using 
the   AIC measurement  [20, 21] , the likelihood of false pos-
itive interactions in the potential PPI network for the in-

  Fig. 3.   C. albicans  and zebrafish integrated intercellular dynamic 
PPI network during  C. albicans  infection of zebrafish: the infec-
tious intercellular network is composed of three subnetworks. The 
upper subnetwork is the dynamic hyphal PPI network of  C. albi-
cans . The middle subnetwork shows the host-pathogen intercel-
lular interaction network. For simplicity, only the top five corre-
lated interactions of the  C. albicans  cell surface proteins are listed. 
The bottom subnetwork is the dynamic defensive protein interac-

tion network of zebrafish. This infectious intercellular PPI net-
work contains lines and nodes of three different colors. The red 
lines denote PPIs that did not appear in the stage 1 network but did 
in the stage 2 network. The green lines denote PPIs that appeared 
in the stage 1 network but did not in the stage 2 network. The blue 
lines denote PPIs that appeared in both the stage 1 and 2 networks. 
The node size denotes connectivity degree. The drawing of the PPI 
network was created using Cytoscape.               
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fection process was reduced. Network refinement yielded 
550 proteins with 2,725 PPIs in the adhesive stage net-
work and 555 proteins with 3,171 PPIs in the hyphal stage 
network: these two networks could then be combined 
into the  C. albicans  dynamic hyphal PPI network for the 
infection process (online suppl. fig. S1). Similar refine-
ments in the zebrafish data returned 1,248 proteins with 
2,344 PPIs in the zebrafish stage 1 network and 1,265 pro-
teins with 2,379 PPIs in the zebrafish stage 2 network, and 
these two networks could then be combined into the ze-
brafish dynamic PPI network for the defensive process 
(online suppl. fig. S2). The  C. albicans  dynamic hyphal 
PPI network, the zebrafish dynamic PPI network and the 
host-pathogen intercellular PPI network could be merged 
into an integrated infection intercellular PPI network.

  The global system view of the  C. albicans - and zebra-
fish-integrated infection intercellular PPI network is il-
lustrated in  figure 3 . The entire integrated infection inter-
cellular network can be divided into eight levels accord-
ing to the location of protein action (i.e. nucleus, 
intracellular, cell surface or extracellular) and species (i.e. 
 C. albicans  or zebrafish) and is composed of three subnet-
works. The upper subnetwork is the dynamic hyphal PPI 
network of  C. albicans . The middle subnetwork shows 
the host-pathogen intercellular interaction network. For 
simplicity, only the top five correlated interactions of the 
 C. albicans  cell surface proteins are listed. The bottom 
subnetwork is the dynamic defensive protein interaction 
network of zebrafish. 

  Inspection of the Dynamic Hyphal Growth PPI 
Network of C. albicans 
 In order to verify the accuracy of our dynamic hyphal 

growth protein interaction network, we investigated 
whether this network contains previously identified path-
ways related to hyphal growth, which are illustrated in 
online supplementary figure S3  [27] . This figure displays 
signal transduction pathways involved in regulating mor-
phogenesis in  C. albicans . An inspection of the integrated 
infectious intercellular network seen in  figure 3  con-
firmed that our  C. albicans  dynamic hyphal PPI network 
includes the MAP kinase cascade, cyclic AMP/PKA path-
way and other hyphae-associated pathways. We isolated 
these pathways from  figure 3 , and then constructed a new 
hyphae-related subnetwork as  figure 4 . It is apparent that 
this subnetwork is very similar to online supplementary 
figure S3. Our new hyphae-related subnetwork contains 
almost all of the proteins and interactions of the already 
known hyphae-related pathways. The GTP binding pro-
tein Ras1 was not contained in our dynamic hyphal 

growth PPI network because its p value is greater than 
0.01 in the original protein pool selection step for  C. albi-
cans ; however, Ras2, which is in the same family as Ras1, 
appeared in the new subnetwork. Ras2 is similar to  S. cere-
visiae  Ras2p, which can activate adenylate cyclase and is 
involved in  S. cerevisiae  pseudohyphal growth, and Ras2 
mutants could have altered filamentous growth patterns 
 [28] . Similar to Ras1 in online supplementary figure S3, 
Ras2 also stimulates Cyr1 (Cdc35), which in turn acts as 
an intracellular second messenger during morphological 
switching. Ras2 also stimulates Cdc42 through Ras-relat-
ed protein (Rsr1), which is involved in budding, cell mor-
phogenesis and hyphal development processes  [29] . In 
addition, an interaction between Cdc42 and Wal1 is rep-
resented with a dotted line in online supplementary fig-
ure S3, meaning this link is not completely known. How-
ever, we can see that Cdc42 links to Wal1 via Myo2 and 
Rho3 in our new hyphae-related subnetwork. Myo2 is re-
quired for polarized cell growth and dimorphic switching 
in  C. albicans  and is also involved in hyphal development 
 [30] . Rho3 is required for polarized cell growth and cell 
separation and also involved in hyphal development  [31] . 
Fortunately, the previously uncertain pathway between 
Cdc42 and Wal1 was more completely elucidated in our 
dynamic hyphal growth PPI network.

  Aside from these three well-known hyphae-related 
signaling pathways – i.e. the MAP kinase and cyclic AMP 
signaling pathways and the polarized cell growth path-
way – the pH-dependent Rim101 pathway was also iden-
tified from the dynamic integrated infection intercellular 
network. In this pathway, Nrg1 was not identified for 
inclusion in  figure 4  due to its p value being greater than 
0.01. However, Tup1, which has the same function as 
Nrg1, fits into the pathways shown in  figure 4  and hence 
the pH-dependent pathway would seemingly be uninter-
rupted. In conclusion, 20 out of 22 proteins from already 
known pathways (i.e. those in online suppl. fig. S3) are 
included in our  C. albicans  dynamic hyphal PPI network, 
in which the major hyphae-related pathways are all vis-
ible. These results verify the high accuracy of our infec-
tion intercellular PPI network. Moreover, our hyphal 
growth protein interaction subnetwork provides a dy-
namic and more complete hyphal network in compari-
son with online supplementary figure S3. Specifically, the 
yellow nodes in  figure 4  represent the proteins that are 
not contained in online supplementary figure S3. These 
proteins are all related to hyphal growth or filamentous 
growth, and the figure reflects the true pathways of these 
proteins.
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  Utilization of Dynamic Intracellular PPI Networks 
to Identify Proteins with Important Roles in Hyphal 
Development 
 We utilized the dynamic intercellular PPI networks to 

investigate which proteins play important roles in hyphal 
development. Based on the dynamic hyphal PPI network 
of  C. albicans  during infection (online suppl. fig. S1), we 
explored proteins of which interactions with other pro-
teins displaying large variations between values in the ad-
hesive and hyphal stage networks. In other words, the 
number of increased interactions and the number of re-
duced interactions for each protein would be summed to 
find out the largest interaction difference between the two 
stages.  Table 1  lists the top 15 proteins by magnitude of 
their PPI changes. In addition, these 15 proteins almost 
completely overlap with the hubs in the hyphal stage net-
work (online suppl. table S1). In general, the number of 
possible interactions for any given protein is paralleled by 
changes in protein interaction values. Therefore, the vari-
ations of the hub protein interactions should be larger 

than the conventional nodes in the infectious PPI net-
work. 

  From online supplementary figure S4 it can be seen 
that our hyphal growth PPI network is scale free. In a 
scale-free network, the probability that a node is highly 
connected is significantly higher than in a random net-
work, and the network’s properties are often determined 
by a relatively small number of highly connected nodes 
known as hubs  [32] . The scale-free networks are particu-
larly resistant to random node removal but extremely 
sensitive to the targeted removal of hubs  [33] . Hence, the 
hubs are believed to be essential to the robustness of in-
formation transmission in the morphological transition 
from yeast to hyphal form. In our hyphal growth PPI net-
work, Ubi4 is the protein for which the number of inter-
actions had the largest changes in  table 1  and it is also the 
biggest hub in the hyphal stage network (online suppl. 
table S1). Ubi4 is involved in the negative control of mor-
phological switching in  C. albicans , as well as in maintain-
ing yeast cell morphology  [34] . From the time profile data 
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  Fig. 4.  Signaling cascades involved in the 
dynamic hyphal growth protein interac-
tion subnetwork of  C. albicans  at different 
stages of infection: the MAP kinase signal-
ing pathway, cyclic AMP signaling path-
way, polarized cell growth pathway and 
Rim101 signaling pathway were identified 
in our dynamic hyphal growth PPI net-
work of  C. albicans  as occurring during  C. 
albicans  infection of zebrafish. These signal 
transduction pathways are involved in the 
dynamic regulation of  C. albicans  morpho-
logical transitions. The red lines indicate 
PPIs that did not appear in the adhesive 
stage network but did in the hyphal stage 
network. The green lines indicate PPIs that 
appeared in the adhesive stage network but 
did not appear in the hyphal stage network. 
The blue lines indicate PPIs that appeared 
in both the adhesive and hyphal stage net-
works. The red nodes indicate proteins that 
are also included in online supplementary 
figure S3; the yellow nodes indicate pro-
teins that are not included in online supple-
mentary figure S3.               
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of Ubi4, the expression of Ubi4 was reduced from the 0.5- 
to 4-hour time points (online suppl. fig. S5). It is clear that 
Ubi4 expression drops when hyphae began to grow. Act1 
is the second-ranked protein in  table 1 . Act1 is an actin 
that influences both cAMP synthesis and hyphal mor-
phogenesis  [35] . Consequently, Ubi4 and Act1 may play 
the most important roles in hyphal growth development, 
because of their high PPI variation between the adhesive 
and hyphal stage networks. Similarly, other highly ranked 
proteins in  table 1  – Hsp90, Sla1, Bni1, etc. – have also 
been identified as potentially important in hyphal devel-
opment  [36–38] . In fact, Hht21 is the only protein in  ta-
ble 1  that has not been verified as related to hyphal growth 
at present. We predict that Hht21 also plays an important 
role in hyphal development and was a worthwhile protein 
to identify in the present study.

  Subsequently, we wanted to investigate which proteins 
had many increased interactions but fewer reduced inter-
actions in the adhesive stage network than in the hyphal 

Table 1.  Proteins with the largest changes in PPI number between 
the adhesive and hyphal stage networks during infection

C.albicans 
protein

Increased 
inter-
actions

Reduced 
inter-
actions

Total 
changed 
inter-
actions

 GO functional annotation

hy phal 
growth

filamentous 
growth

Ubi4 37 23 60 +
Act1 31 12 43 +
Hsp90 20 15 35 +
Sla1 22 8 30 +
Bni1 22 7 29 + +
Sin3 22 6 28 +
Hht21 19 7 26
Mkc1 16 10 26 + +
Phr2 17 8 25 +
Pmr1 17 7 24 +
Rvs161 14 9 23 +
Rad6 16 6 22 +
Hgc1 15 6 21 +
Vrp1 16 4 20 +
Clb2 12 7 19 +

  The top 15 C. albicans proteins in the hyphal growth PPI net-
works are ranked by change in the number of protein interactions. 
The number of increased PPIs of these proteins between the adhe-
sive and hyphal stages is given, along with the number of reduced 
ones. Total changed interactions displays the sum of PPI changes. 
GO functional annotation provides the GO terms of proteins, 
which we have filtered to only list GO terms more concerned with 
hyphal growth and filamentous growth. The functional annota-
tions are from the GO database (http://www.geneontology.org/).

stage network. We supposed that these proteins would 
have a lot of influence on hyphal growth development. In 
order to discard the many proteins with only minor inter-
action variations between the networks, the minimum 
number of changed interactions for a protein was raised 
to 10. Column 6 of  table 2  indicates the ratio of increased 
interactions to total changed interactions. From  table 2 , 
we can see that 13 of the top 15 proteins from the GO da-
tabase are related to hyphal development – i.e. having GO 
terms of hyphal growth or filamentous growth. The first-
ranked protein is Kex2, which influences  C. albicans  pro-
teinase secretion and hyphae formation. The disruption of 
Kex2 function in  C. albicans  has pleiotropic effects that 
may impinge on the ability of the organism to colonize 
and invade tissues  [39] . The second-ranked protein,   Hsl1, 
is a probable protein kinase involved in morphological de-
termination during the cell cycle of both yeast-form and 
hyphal cells via regulation of Swe1 and Cdc28  [40] . The 
third-ranked protein is Tsa1, indispensable for the yeast-
to-hyphal transition when  C. albicans  is cultured under 
oxidative stress  [41] . The fourth- to seventh-ranked pro-
teins are Cek1, Chs3, Top1 and Orf19.3843, respectively, 
and are also all related to hyphal development  [42–44] .

  The eighth- and fifteenth-ranked proteins are Kre1 
and Orf19.5438, respectively. From the current literature, 
it is unknown whether Kre1 and Orf19.5438 are related 
to hyphal growth. However, we predict that Kre1 and 
Orf19.5438 may have some relationship to hyphal devel-
opment, because the remaining 13 of the top 15 proteins 
in  table 2  have been confirmed to relate to this process.

  From the dynamic PPI network of zebrafish during 
infection detailed in online supplementary figure S2, we 
also investigated which proteins have the largest interac-
tion difference between zebrafish stage 1 and stage 2 net-
works. These protein interaction changes are related to 
molecular defensive mechanisms activated in response to 
 C. albicans  invasion.  Table 3  lists the top 10 proteins with 
the largest changes in number of protein interactions. 
Moreover, we also listed the hub proteins of the zebrafish 
stage 2 network in online supplementary table S2. Tp53 
is the protein with the largest variation in interaction be-
tween zebrafish stage 1 and stage 2 networks. Tp53 is al-
ready well known as an apoptosis protein  [45] . Esr1 is the 
second-ranked protein in  table 3 , which is identified as an 
apoptosis-related protein in the GO database. Traf6 is the 
third-ranked protein; a recent study using a zebrafish em-
bryo model has analyzed the in vivo function of Traf6 in 
innate immune response without interference of adaptive 
immunity  [46] . Traf6 can activate the NF-κB signal trans-
duction pathway in zebrafish  [47] . We can see that of the 
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top 10 proteins in  table 3 , many are related to innate im-
mune response and apoptosis. It makes sense that the im-
munization-related proteins of a host would have a great-
er response to pathogen invasion. Additionally, previous 
studies have indicated that many bacteria are able to trig-
ger apoptosis in the host cell  [48] . Induction of apoptosis 
in epithelial or endothelial cells might break the epithelia/
endothelial cell barrier and permit the bacteria to reach 
the submucosa. On the other hand, apoptosis might be 
beneficial for the infected organ, since apoptotic cell 
death of the infected target cell permits other cells to 
phagocytose the apoptotic bodies containing bacteria, 
possibly resulting in the rapid digestion of the pathogen. 
It is therefore also reasonable that apoptosis-associated 
protein interactions would have a greater defense re-
sponse to pathogen invasion. 

  Intercellular PPI Network between C. Albicans and 
Zebrafish during Infection 
 After investigating the dynamic PPI networks of  C. al-

bicans  hyphal growth and zebrafish defense, respectively, 

we investigated the intercellular PPI network between 
 C. albicans  and zebrafish shown in  figure 3 . The cross-cor-
relation of each protein interaction between  C. albicans  
and zebrafish was calculated using TRIA, and the interac-
tions higher than 0.95 were chosen as potential PPIs. In 
order to find out which  C. albicans  proteins have the great-
est impact on zebrafish, we analyzed which cell surface 
proteins of  C. albicans  (taken from the 4,031-protein set) 
had the most potential interactions with zebrafish. The top 
20  C. albicans  hub proteins ranked by number of interac-
tions are listed in  table  4 , with higher-ranked proteins 
deemed more important in the infection process. These 
hub proteins could be classified into seven major function-
al groups according to the GO database, including hyphal 
growth, cell adhesion, biofilm formation, cellular response 
to neutral pH, cellular iron ion homeostasis, glucose trans-
port and cell wall molecular biosynthesis. The first four are 
well known functions that occur during  C. albicans  infec-
tion. When  C. albicans  infects a host, it adheres to the host 
at first, then grows hyphae to invade host and further forms 
biofilms to parasitize in host. The ability to respond to am-

Table 2.  Proportion of increased PPIs to total changed PPIs between the adhesive and hyphal stage PPI network during infection

Ranking C.albicans 
protein

Increased 
interactions

Reduced 
interactions

Total changed 
interactions

Ratio of increased 
interactions

 GO functional annotation

 hyphal growth filamentous growth

1 Kex2 10 0 10 1 +
2 Hsl1 15 1 16 0.9375 +
3 Tsa1 10 0 10 0.9167 +
4 Cek1 9 1 10 0.9 +
5 Chs3 9 1 10 0.9 +
6 Top1 9 1 10 0.9 +
7 Orf19.3843 15 2 17 0.8826 +
8 Kre1 10 2 12 0.8333
9 Sec2 10 2 10 0.8333 +

10 Cdc42 14 3 17 0.8235 +
11 Cst20 14 3 17 0.8235 +
12 Kem1 14 3 17 0.8235 +
13 Erg5 9 2 11 0.8182 +
14 Gpi7 9 2 11 0.8182 +
15 Orf19.5438 9 2 11 0.8182

  The top 15 C. albicans proteins in the hyphal growth PPI networks are ranked by the proportion of increased PPIs to reduced PPIs. 
The number of increased PPIs of these proteins between the adhesive and hyphal stages is given, along with the number of reduced PPIs. 
Total changed interactions displays the sum of PPI changes. The ratio of increased interactions shows the proportion of increased PPIs 
to total changed PPIs. GO functional annotation provides the GO terms of proteins, which we have filtered to only list the GO terms 
more concerned with hyphal growth and filamentous growth. The functional annotations are from the GO database (http://www.ge-
neontology.org/).
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bient pH is also critical to the growth and virulence of  C. 
albicans . It is well established that a near-neutral pH ( ∼ 6.5) 
favors hyphal development of  C. albicans  in vitro, while a 
low pH (<6.5) blocks hyphal formation and stimulates 
growth of the yeast form  [49] . It is interesting that iron and 
glucose and cell wall molecular biosynthesis appear in this 
important table. Notably, in the last several years iron ion 
uptake has been thought to be an important factor in 
pathogenesis. The ability to acquire iron from host tissues 
is a major contributing factor to the virulence of patho-
genic microorganisms.  C. albicans , like many pathogenic 
bacteria, is able to utilize hemin and hemoglobin as iron 
sources  [50] . The availability of iron can have a significant 
impact on both pathogen virulence and host antimicrobial 
defenses. Some studies have shown that pretreatment of 
endothelial cells with an iron chelator can reduce the dam-
age inflicted by  C. albicans   [51, 52] . Glucose has previous-
ly been reported to induce germ-tube formation in  C. albi-
cans   [53, 54] , and Paranjape and Datta  [55]  recognized it 
as critical for its pH-regulated pathways. Chitin, β-glucan 

and mannose are essential molecules constituting most 
fungal cell walls. It is intriguing that the cell wall proteins 
of  C. albicans  are predicted by our modeling to have so 
many interactions with zebrafish proteins. Recent studies 
have shown that cell wall β-glucan is a key fungal signature 
molecule targeted by the innate immune system to clear 
fungal infection and that  C. albicans  masks β-glucan from 
immune recognition by using a mannoprotein coat  [56, 
57] . The immune system may also be able to counteract 
this fungal defense by unmasking the signature compo-
nents of the fungus during the course of infection. Wheel-
er et al.  [57]  showed that β-glucan is initially masked but 
subsequently exposed on the surface of  C. albicans  in the 
normal course of infection. Although it is unknown how 
this unmasking occurs, it is possible that with time im-
mune cells accumulate in sufficient numbers to directly 
damage the cell wall and expose the β-glucan of  C. albicans . 
The chitin of the cell wall may be similarly destroyed such 
that  C. albicans  needs to synthesize more essential cell wall 
molecules to protect itself. 

Table 3.  Proteins with the most changes in PPI number between the zebrafish stage 1 and stage 2 networks during infection

D. rerio
protein

Increased 
inter-
actions

Reduced 
inter-
actions

Total
changed
interactions

D. rerio GO annotation H. sapiens GO annotation

Tp53 10 10 20 apoptosis apoptosis

Esr1 8 5 13 metal ion binding regulation of apoptosis

Traf6 6 5 11 innate immune response apoptosis
regulation of apoptosis innate immune response
response to bacterium 

Jun 3 6 9 canonical Wnt receptor signaling pathway innate immune response

Ar 5 4 9 metal ion binding cell death
positive regulation of NF-kappaB 
transcription factor activit

Usp14 5 2 7 ubiquitin-dependent protein catabolic process ubiquitin thiolesterase activity

Hsp90a.1 5 2 7 myofibril assembly

Rb1 2 4 6 myoblast differentiation negative regulation of cell growth
ubiquitin protein ligase binding

Mdm2 4 1 5 negative regulation of apoptosis
p53 binding

fibroblast growth factor receptor 
signaling pathway

Casp8 1 3 4 apoptosis activation of innate immune response
proteolysis apoptosis 

 The names of the top 10 zebrafish proteins in the PPI networks are ranked by change in the number of protein interactions.
The number of increased PPIs of these proteins between stages 1 and 2 are given, along with the number of reduced PPIs.
The final two columns provide the GO terms of proteins. D. rerio proteins were mapped to H. sapiens proteins by using ortholog data.
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would need to proliferate to defend and maintain the nor-
mal operation of the host body while  C. albicans  invades, 
and zebrafish may also secrete proteolytic compounds to 
damage  C. albicans . Proteolytic cascades also play a cru-
cial role in innate immune response because they can be 
triggered more quickly than the adaptive immune re-
sponse, which requires that gene expression be altered 
 [60] . To summarize our findings,  table 5  provides the bi-
ological functions of  C. albicans  and zebrafish that are 
observed in the intercellular infection PPI network.

  Discussion 

 To discover  C. albicans  proteins or pattern recognition 
molecules that play a critical role in the infection of ze-
brafish, we constructed an intercellular infection network 
consisting of  C. albicans  dynamic hyphal, zebrafish dy-
namic and host-pathogen intercellular PPI networks. To 

  Csh1 (cell surface hydrophobicity 1) is the largest hub 
in the intercellular  C. albicans -zebrafish PPI network. 
Knockout of the Csh1 gene has been undertaken to ad-
dress the potential contribution of its antigen in mediat-
ing fungal cell adhesion to host tissue  [58] . Another study 
has demonstrated that Csh1 contributes to virulence of 
 C. albicans  in mice  [59] . The fourth hub in  table 4  is Pga7, 
and its function and those of two other proteins (Pga49 
and Tos1) are unknown at present. As the top 20 hub-
proteins in  table 4  have the most potential interactions 
with zebrafish, any one of these proteins should have a 
significant impact on zebrafish defense. It would be 
worthwhile to investigate the functions of these three un-
known proteins. 

  In addition, we have also listed the top 25 zebrafish 
hub proteins that have the most intercellular interactions 
with  C. albicans  in online supplementary table S3. There 
are several proteins related to cell proliferation, blood co-
agulation and proteolysis. It makes sense that more cells 

Table 4.  Numbers of PPIs of C. albicans cell surface proteins in the host-pathogen intercellular PPI network

Interactions, n C. albicans 
protein 

 GO functional annotation

ce ll 
adhesion 

hyphal 
growth

biofilm 
formation

cellular response 
to neutral pH 

iron ion 
homeostasis

glucose
transport

cell wall molecular
biosynthesis

1,447 Csh1 + +
1,089 Rbt5 + +
1,078 Pga10 + +
1,027 Pga7

964 Csa1 + +
747 Mp65 + + + + +
728 Hgt2 +
701 Chs3 + +
643 Cht2 + +
532 Chs2 +
532 Hgt9 +
532 Mnt1 + + +
491 Hgt12 + + + +
451 Phr1 + + + +
435 Pga49
419 Cdc48 
408 Hgt7 +
367 Als1 + + + +
357 Tos1 
352 Mid1 +

 The top 20 C. albicans hub proteins with the most potential interactions with zebrafish are listed; their cross-correlation values be-
tween protein interactions were larger than 0.95. The number of PPIs of C. albicans cell surface proteins are sorted in descending order, 
along with the corresponding protein name.
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verify the reliability and accuracy of our methods for con-
structing the molecular networks and our results, we 
compared the  C. albicans  dynamic hyphal PPI network 
with already known pathways implicated in hyphal 
growth. Twenty out of 22 proteins in already known path-
ways (online suppl. fig. S3) were included in the  C. albi-
cans  dynamic hyphal PPI network, and all major hyphae-
related pathways were visible in our hyphal PPI network. 
Our results also provided a comprehensive and dynamic 
PPI network for hyphal development during the infection 
process, and we additionally found that Ras2, Myo2, 
Rho3, Rsr1, etc. may play significant roles in hyphal 
growth processes. Based on the time course information 
of  C. albicans  microarray data, we were also able to con-
struct two PPI networks that represented prehyphal 
growth (i.e. adhesion) mechanisms and hyphal growth 
(i.e. invasion) mechanisms for their respective stages. Us-
ing a similar approach for zebrafish, we were able to con-
struct two stages of defense networks corresponding to 
these two invasion networks of  C. albicans . The proteins 
with the largest PPI variation between the two networks 
were elucidated for both  C. albicans  and zebrafish. In the 
 C. albicans  hyphal growth network, Ubi4 was the protein 
with the most interaction changes between the adhesive 
stage and hyphal stage networks, and was also the biggest 
hub in the latter. Ubi4 in  C. albicans  is involved in the 
negative control of morphological switching, as well as in 
maintaining yeast cell morphology. We additionally list-
ed other proteins with large variations – Act1, Hsp90, 
Sla1, Bni1, etc. – in  table 1 , which also appear to be net-
work hubs in online supplementary table S1. We predict 
that deletion of these proteins in  C. albicans  could strong-
ly impact the robustness of information transmission 
during the morphological transition from yeast to hyphal 
form. Hht21 is a noteworthy exception in  table 1  and on-
line supplementary table S1 that has not been verified as 
related to hyphal growth. 

  In addition, we investigated some proteins with many 
increased and fewer reduced interactions in the hyphal 
stage network in comparison with the adhesive stage net-
work. We found that 13 of our top 15 proteins were iden-
tified as related to hyphal growth development by the GO 
database. The top-ranked proteins – such as Kex2, Hsl1, 
Tsa1, Cek1, Chs3 and Top1 – are all related to hyphal 
growth, and we predict they are very important in hyphal 
development. Moreover, whether the eighth- and fif-
teenth-ranked proteins – Kre1 and Orf19.5438, respec-
tively – are related to hyphal growth is still unknown in 
the present literature; however, we might predict that 
Kre1 and Orf19.5438 are indeed related to hyphal devel-
opment, because the other 13 of the top 15 proteins in 
 table 3  have all been confirmed as such. Interestingly, a 
recent study of deletion mutants in  S .  cerevisiae  revealed 
that the Kre1-deleted strain significantly suppresses the 
hyperpseudohyphal phenotype  [61] . This result implies 
that Kre1 may also be related to filamentous growth in 
 C. albicans.  Due to the limited relevant research on ze-
brafish PPIs, PPI mapping between zebrafish and  H. sa-
piens  still remains incompletely characterized, with the 
variations in protein interaction levels in zebrafish dy-
namic PPI networks appearing very small in comparison 
with the  C. albicans  hyphal PPI network. Nevertheless, we 
were able to list the top 10 proteins having the largest 
changes in the number of protein interactions, and found 
them to be mainly related to apoptosis and innate immu-
nity.

  The intercellular PPI network between  C. albicans  and 
zebrafish is also considered in our analysis. The top 20  C. 
albicans  hub proteins having the most intercellular inter-
actions with zebrafish proteins are listed in  table 4 . These 
hub proteins can be classified into seven major functions 
according to their annotations in the GO database: hy-
phal growth, cell adhesion, biofilm formation, cellular re-
sponse to neutral pH, cellular iron ion homeostasis, glu-

C. albicans 
(invasion mechanism)

Zebrafish
(defense mechanism)

Biological process hyphal growth apoptosis
cell adhesion innate immune response
biofilm formation cell proliferation
cellular response to neutral pH blood coagulation
cellular iron ion homeostasis proteolysis
glucose transport
cell wall molecular biosynthesis

Table 5. Important biological processes
of the C. albicans invasion mechanism 
and zebrafish defense mechanism during 
infection
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cose transport and cell wall molecular biosynthesis. The 
first four are the well-known functions that would occur 
when  C. albicans  infects its host. Ionic iron is necessary 
for hyphal growth and its availability has been thought as 
a factor connected with pathogenesis in the last several 
years. The ability to acquire iron from host tissues is a 
major factor affecting the pathogenicity of microorgan-
isms. However, a detailed mechanism for the participa-
tion of iron in  C. albicans  infection is still unclear. Glu-
cose has previously been reported to induce germ-tube 
formation in  C. albicans .  C. albicans  needs energy and 
nutrients while it infects its host. To obtain them it may 
acquire glucose from host tissues and so glucose transport 
functionality in  C. albicans  might have many intercellular 
interactions with zebrafish. Moreover, it would be worth-
while to investigate why cell wall molecular proteins have 
so many interactions with host proteins. Recent studies 
have shown that the immune system may be able to coun-
teract this fungal defense by unmasking the signature mo-
lecular components of the fungus during the course of 
infection. Although it is not known how this unmasking 
occurs, it is possible that with time, immune cells accu-
mulate in sufficient numbers to directly damage the cell 
wall and expose β-glucan of  C. albicans . The chitin of the 
cell wall may also be destroyed during this accumulation 
as well, so  C. albicans  would need to synthesize more cell 
wall molecules to protect itself. 

  In this study, our aim was to construct a host-pathogen 
intercellular integrated PPI network by using the micro-
array data of  C. albicans  and zebrafish, and then utilize it 
to predict which proteins play critical roles in the infec-
tion process of pathogens and the defense process of 

hosts. In conclusion, we identified several important pro-
teins related to  C. albicans  infection such as Ubi4, Act1, 
Kex2, Hsl1 and Tsa1, and some proteins whose contribu-
tion to pathogenicity warrants further investigation, such 
as Hht21, Kre1 and Orf19.5438. These proteins may exert 
a tremendous influence on morphological transition of 
 C. albicans  and hence they may provide useful drug tar-
gets for broad-spectrum treatments of  C. albicans  infec-
tion. Moreover, three noteworthy functions in  C. albicans  
host infection – cellular iron ion homeostasis, glucose 
transport and cell wall molecular biosynthesis – were also 
discovered from the perspective of the intercellular PPI 
network. Several significant proteins related to innate im-
mune and apoptotic function such as Tp53, Esr1 and 
Traf6 were found in the molecular defensive mechanisms 
of zebrafish responsive to  C. albicans  invasion. Further-
more, biological processes like apoptosis, innate immune 
response, cell proliferation, blood coagulation and prote-
olysis were also found in systematic defensive mecha-
nisms of zebrafish during  C. albicans  infection. We hope 
that our proposed intercellular protein interaction meth-
od implemented through our dynamic host-pathogen in-
teraction scheme may ultimately help provide useful 
medical therapies and facilitate the development of new 
antifungal drugs. 
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