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 Streptococcal M1 Protein-Provoked CXC 
Chemokine Formation, Neutrophil Recruitment 
and Lung Damage Are Regulated by Rho-Kinase 
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clude that Rho-kinase-dependent neutrophil infiltration 
controls pulmonary tissue damage in response to strepto-
coccal M1 protein and that Rho-kinase signaling regulates 
M1 protein-induced lung recruitment of neutrophils via the 
formation of CXC chemokines and Mac-1 expression. 
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 Introduction 

 The microbial etiology of septic shock has traditionally 
been dominated by Gram-negative bacteria. However, a 
recent resurgence of Gram-positive bacterial infections 
has markedly changed the microbial etiology in septic pa-
tients  [1–3] .  Streptococcus pyogenes  is a common cause of 
Gram-positive infections presenting as uncomplicated 
cases of pharyngitis to severe and fatal conditions, such as 
streptococcal toxic shock syndrome (STSS). STSS is an in-
sidious condition associated with a mortality rate surpass-
ing 50%  [4–6] .  S. pyogenes  expresses a versatile spectrum 
of virulence factors, such as M proteins; up to now, more 
than 80 different M serotypes have been described. Im-
portantly, convincing data have shown that the M1 sero-
type is most commonly associated with STSS  [4] . M1 pro-
tein is a potent stimulator of the innate immunity trigger-
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 Abstract 

 Streptococcal toxic shock syndrome is frequently caused by 
 Streptococcus pyogenes  of the M1 serotype. The aim of this 
study was to determine the role of Ras-homologous (Rho)-
kinase signaling in M1 protein-provoked lung damage. Male 
C57BL/6 mice received the Rho-kinase-specific inhibitor 
Y-27632 before administration of M1 protein. Edema, neutro-
phil accumulation and CXC chemokines were quantified in 
the lung 4 h after M1 protein challenge. Flow cytometry was 
used to determine Mac-1 expression. Quantitative RT-PCR 
was used to determine gene expression of CXC chemokine 
mRNA in alveolar macrophages. M1 protein increased neu-
trophil accumulation, edema and CXC chemokine formation 
in the lung as well as enhanced Mac-1 expression on neutro-
phils. Inhibition of Rho-kinase signaling significantly re-
duced M1 protein-provoked neutrophil accumulation and 
edema formation in the lung. M1 protein-triggered pulmo-
nary production of CXC chemokine and gene expression of 
CXC chemokines in alveolar macrophages was decreased by 
Y-27632. Moreover, Rho-kinase inhibition attenuated M1 
protein-induced Mac-1 expression on neutrophils. We con-
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ing neutrophil  [5]  and monocyte activation  [7] . It forms 
complexes with fibrinogen, which activate neutrophils by 
binding to beta2 integrins  [5] . Neutrophils constitute the 
first line of defense against invading microorganisms but 
excessive activation and infiltration of neutrophils is also 
known to be a rate-limiting step in acute lung injury  [7, 8] . 
It is widely considered that the lung is the most critical or-
gan involved in STSS patients  [9, 10] . Extravascular accu-
mulation of neutrophils at sites of inflammation is regu-
lated by adhesion molecules, including P-selectin and 
Mac-1 as well as CXC chemokines, such as macrophage 
inflammatory protein-2 (MIP-2) and cytokine-induced 
neutrophil chemoattractant (KC)  [11–13] . A recent study 
demonstrated that M1 protein-induced pulmonary infil-
tration of neutrophils is critically dependent on the forma-
tion and action of CXC chemokines  [14] . Thus, the chemo-
kine-mediated mechanisms behind the accumulation of 
neutrophils in the lung are relatively well known, but the 
signaling pathways controlling M1 protein-provoked ac-
cumulation of neutrophils and lung injury remain elusive.

  Extracellular stress situations, such as ischemia and 
infection, trigger intracellular signaling cascades con-
verging on specific transcription factors regulating the 
gene expression of inflammatory mediators  [15, 16] . This 
signal transmission is largely regulated by intracellular 
kinases phosphorylating downstream targets  [17] . For ex-
ample, small (approx. 21 kDa) guanosine triphosphatases 
of the Ras-homologous (Rho) family and one of their ef-
fectors, Rho-kinase, are known to act as molecular 
switches regulating numerous important cellular func-
tions, such as cytoskeleton organization, cell adhesion, 
reactive oxygen species formation and oncogenic trans-
formation  [17, 18] . Moreover, a previous study demon-
strated that Rho-kinase is an important regulator of che-
moattractant-induced neutrophil migration in vitro  [19] . 
Notably, Rho-kinase inhibitors have been demonstrated 
to ameliorate reperfusion and endotoxemic injury in the 
liver  [20]  as well as protecting against tissue fibrosis  [21] , 
obstructive cholestasis  [22] , intestinal ischemia  [23]  and 
pulmonary hypertension  [24] . Previous studies have 
shown that CXC chemokine formation in acute pancre-
atitis  [25] , colonic ischemia-reperfusion  [23]  as well as 
cholestatic  [22]  and endotoxemic  [20]  liver injury is regu-
lated by Rho-kinase. However, the role of Rho-kinase sig-
naling in regulating CXC chemokine formation, neutro-
phil recruitment and tissue edema in M1 protein-induced 
acute lung injury is not known. Another group of signif-
icant kinases are mitogen-activated protein kinases 
(MAPKs), including p38 MAPK, extracellular signal-reg-
ulated protein kinases (ERK1/2) and c-Jun NH 2 -terminal 

protein kinases (JNKs)  [26] . Signal transduction through 
MAPKs has been shown to control the production of in-
flammatory cytokines and chemokines  [27, 28] . Notably, 
we recently observed that p38 MAPK is a key molecule in 
regulating M1 protein-induced neutrophil infiltration 
and lung damage  [29] .

  Based on these considerations, the aim of this study 
was to define the functional significance of Rho-kinase 
signaling in regulating CXC chemokine production, neu-
trophil activation and recruitment as well as edema for-
mation and p38 MAPK activity in acute lung injury pro-
voked by streptococcal M1 protein.

  Materials and Methods 

 Animals 
 All experimental procedures were performed in accordance 

with the legislation on the protection of animals and were ap-
proved by the Regional Ethical Committee for Animal Experi-
mentation at Lund University, Sweden. Male C57BL/6 mice 
weighing 23–25 g were used for experiments and kept under stan-
dard laboratory conditions, maintained on a 12-12 h light-dark 
cycle and fed a laboratory diet and water ad libitum. Animals were 
anesthetized with 7.5 mg of ketamine hydrochloride (Hoffman-
La Roche, Basel, Switzerland) and 2.5 mg of xylazine (Janssen 
Pharmaceutica, Beerse, Belgium) per 100-g body weight.

  Experimental Model 
 M1 protein was purified from the isogenic mutant MC25 strain 

(derived from the AP1  S. pyogenes  strain 40/58 from the WHO 
Collaborating Centre for References and Research on Streptococci, 
Institute of Hygiene and Epidemiology, Prague, Czech Republic) 
as described previously  [5] . Mice were intravenously injected with 
15  � g of M1 protein in phosphate-buffered saline (PBS). M1 pro-
tein was purified from a mutated  S. pyogenes  strain  [8]  making the 
likelihood of endotoxin contamination close to zero; we also mea-
sured the endotoxin content in the M1 protein samples and con-
firmed that endotoxin levels were below the detection limit. Sham 
mice received PBS intravenously (i.v.) only. Vehicle or the Rho-
kinase inhibitor, Y-27632 (Calbiochem, San Diego, Calif., USA), 
was given (0.5 or 5 mg/kg) intraperitoneally (i.p.) 10 min prior to 
M1 protein challenge. Animals were reanesthetized 4 h after the 
M1 protein challenge. The left lung was ligated and excised for 
edema measurement. The right lung was used for collecting bron-
choalveolar lavage fluid (BALF) to quantify neutrophils. The lung 
was then excised, one lobe was fixed in formaldehyde for histology 
and the remaining tissue was snap-frozen in liquid nitrogen and 
stored at –80   °   C for later myeloperoxidase (MPO) assays and en-
zyme-linked immunosorbent assay (ELISA) as to be described.

  Systemic Leukocyte Counts 
 Blood was collected from the tail vein and mixed with Turk’s 

solution (0.2 mg gentian violet in 1 ml glacial acetic acid, 6.25% 
v/v) in a 1:   20 dilution. Leukocytes were identified as monomor-
phonuclear (MNL) and polymorphonuclear (PMNL) cells in a 
Burker chamber.
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  Lung Edema 
 The left lung was excised, washed in PBS, dried gently with 

blotting paper and weighed. The tissue was then dried at 60   °   C for 
72 h and reweighed. The change in the ratio of wet-weight to dry-
weight was used as indicator of lung edema formation.

  MPO Activity 
 Lung tissue was thawed and homogenized in 1 ml of 0.5% 

hexadecyltrimethylammonium bromide. Samples were freeze-
thawed, after which the MPO activity of the supernatant was de-
termined spectrophotometrically as the MPO-catalyzed change 
in absorbance in the redox reaction of H 2 O 2  (450 nm, with a refer-
ence filter 540 nm, 25   °   C) as previously described  [30] . Values were 
expressed as MPO unit per gram of tissue.

  ELISA 
 Levels of MIP-2 and KC in lung homogenates were analyzed 

by using double antibody Quantikine ELISA kits (R & D Systems, 
Europe, Abingdon, Oxon, UK) using recombinant murine MIP-2 
and KC as standards. The lower limit of the assay was 0.5 pg/ml.

  Flow Cytometry 
 For analysis of surface molecule expression on circulating 

neutrophils, blood was collected (1:   10 acid citrate dextrose) 4 h 
after the M1 protein challenge and incubated (for 10 min at room 
temperature) with an anti-CD16/CD32 antibody for blocking Fc �  
III/II receptors to reduce nonspecific labeling. It was then incu-
bated with PE-conjugated anti-Gr-1 (clone RB6–8C5, rat IgG2b, 
eBioscience, San Diego, Calif., USA), and FITC-conjugated anti-
Mac-1 (clone M1/70, integrin  �  M  china, rat IgG2b). The mean flu-
orescence intensity (MFI) was determined by comparisons to an 
isotype control antibody (FITC-conjugated rat IgG2b). All anti-
bodies were purchased from BD Biosciences Pharmingen, San 
Jose, Calif., USA except when indicated otherwise. Cells were 
fixed and erythrocytes were lysed by BD lysis buffer (BD Biosci-
ences) and the neutrophils were recovered following centrifuga-
tion. Flow cytometric analysis was performed by first gating the 
neutrophil population of cells based on forward and side scatter 
characteristics. Mac-1 expression was then determined on Gr-1 +  
cells in these gates on a FACSCalibur flow cytometer (Becton 
Dickinson, Mountain View, Calif., USA). A viable gate was used 
to exclude dead and fragmented cells.

  Histology 
 Lung samples were fixed in 4% formaldehyde phosphate buffer 

overnight and then dehydrated and paraffin-embedded. Six-mi-
crometer sections were stained with haematoxylin and eosin. 
Lung injury was quantified in a blinded manner by adoption of a 
preexisting scoring system as described  [31] , including the size of 
alveolar spaces, the thickness of alveolar septas, alveolar fibrin 
deposition and neutrophil infiltration graded on a 0–4 (absent–
extensive) scale.

  In vitro Activation of Neutrophils 
 Blood was collected from healthy animals containing 1:   10 acid 

citrate dextrose. Whole blood was incubated with M1 protein
(1  � g/ml) and Y-27632 (10  �  M , Sigma Chemical, St. Louis, Mo., 
USA) or vehicle at 37   °   C for 20 min. Cells were stained for flow 
cytometric analysis of Mac-1 expression on neutrophils (Gr-1 + ) as 
described above.

  Western Blot 
 Lung sections were weighed and homogenized in lysing buffer . 

 The samples were centrifuged at 14,000 rpm for 5 min and 25  � l 
of the supernatants were loaded onto SDS-polyacrylamide gel 
electrophoresis and transferred onto immunoblot membranes. 
The membranes were blocked with non-fat milk for 2 h and incu-
bated with an anti-phospho-p38 MAPK monoclonal antibody 
(Thr180/Tyr182) or an anti-p38 MAPK antibody (Cell Signaling 
Technology, Beverly, Mass., USA). The membranes were then 
washed three times and incubated with a horseradish peroxidase-
coupled secondary antibody (Santa Cruz Biotechnology, Santa 
Cruz, Calif., USA) for 2 h. Blots were again washed 3 times and 
developed by the ECL �  detection system (Santa Cruz Biotechnol-
ogy). The resultant signal was quantified by using densitometer 
(GS-800 TM  Calibrated Densitometer, BIO-RAD) and the values 
obtained from the sham animals were set as 100.

  Quantitative RT-PCR 
 Alveolar macrophages were isolated as previously described 

 [32] , 30 min after challenge with M1 protein. Total RNA was then 
isolated from alveolar macrophages by use of RNeasy Mini Kit 
(Qiagen, West Sussex, UK) and treated with RNase-free DNase 
(DNase I; Amersham Pharmacia Biotech, Sollentuna, Sweden) to 
remove potential genomic DNA contaminants. RNA concentra-
tions were determined by measuring the absorbance at 260 nm. 
Each cDNA was synthesized by reverse transcription from 10  � g 
of total RNA by use of StrataScript first-strand synthesis system 
and random hexamers primers (Stratagene, AH Diagnostics, 
Stockholm, Sweden). Real-time PCR was performed using a Bril-
liant SYBRgreen QPCR master mix and MX 3000P detection sys-
tem (Stratagene). The primer sequences of MIP-2, KC and  � -ac-
tin were as follows: MIP-2 (f) 5 � -GCT TCC TCG GGC ACT CCA 
GAC-3 � , MIP-2 (r) 5 � -TTA GCC TTG CCT TTG TTC AGT AT-3 � ; 
KC (f) 5 � -GCC AAT GAG CTG CGC TGT CAA TGC-3 � , KC (r) 
5 � -CTT GGG GAC ACC TTT TAG CAT CTT-3 � ;  � -actin (f) 5 � -
ATG TTT GAG ACC TTC AAC ACC-3 � ,  � -actin (r) 5 � -TCT CCA 
GGG AGG AAG AGG AT-3 � . Standard PCR curves were gener-
ated for each PCR product to establish linearity of the RT-PCR 
reaction. PCR amplifications were performed in a total volume 
of 50  � l, containing 25  � l of SYBRgreen PCR 2  !  master mix, 2 
 � l of 0.15  �  M  of each primer, 0.75  � l of reference dye, and 1  � l of 
cDNA as a template adjusted up to 50  � l with water. PCR reac-
tions started at a denaturing temperature of 95   °   C for 10 min, fol-
lowed by a total of 40 cycles (95   °   C for 30 s and 55   °   C for 1 min) 
and 1 min of elongation at 72   °   C. The relative differences in ex-
pression between groups were expressed by using cycling time 
values. Cycling time values for the specific target genes were first 
normalized with that of  � -actin in the same sample; relative dif-
ferences between groups were then expressed as percentages of 
the control.

  Statistics 
 Data are presented as mean values  8  standard errors of the 

means (SEM). Statistical evaluations were performed using Krus-
kal-Wallis 1-way analysis of variance on ranks followed by mul-
tiple comparisons versus the control group (Dunnett’s method). 
p  !  0.05 was considered significant and  n  represents the number 
of animals in each group.
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  Results 

 Pulmonary Edema and Damage 
 Challenge with M1 protein induced clear-cut lung in-

jury, indicated by the significant increase in lung edema 
formation ( fig. 1 ). Thus, the lung wet:dry ratio increased 
in M1 protein-treated animals from 4.6  8  0.1 to 5.3  8  
0.06 ( fig. 1 ). Administration of 5 mg/kg of the Rho-kinase 
inhibitor Y-27632 reduced the ratio to 4.9  8  0.05 in mice 
challenged with M1 protein ( fig. 1 ). Although not signif-
icant, lung edema tended to be higher in mice receiving 

5 mg/kg of Y-27632 alone. Thus, inhibition of Rho-kinase 
signaling decreased M1 protein-provoked lung edema by 
53%. Moreover, morphologic examination revealed nor-
mal lung microarchitecture in sham-operated mice 
( fig. 2 a), whereas M1 protein caused clear-cut destruction 
of the lung tissue structure characterized by interstitial 
edema, capillary congestion and neutrophil accumula-
tion ( fig. 2 c). It was observed that inhibition of Rho-ki-
nase activity reduced M1 protein-provoked changes of 
the microarchitecture and neutrophil accumulation in 
the lung ( fig. 2 d, e). Quantification of the morphological 
changes revealed that M1 protein increased the lung in-
jury score and that administration of the Rho-kinase in-
hibitor significantly decreased the score in animals chal-
lenged with M1 protein ( fig. 2 f).

  Neutrophil Infiltration 
 Injection of M1 protein increased lung levels of MPO 

by more than 13-fold ( fig. 3 a). Inhibition of Rho-kinase 
signaling reduced the M1 protein-provoked increase in 
pulmonary MPO activity by 54% ( fig. 3 a). Quantification 
of BALF neutrophils revealed a massive enhancement in 
the number of alveolar neutrophils 4 h after administra-
tion of M1 protein ( fig. 3 b). We observed that treatment 
with 5 mg/kg of Y-27632 reduced the number of pulmo-
nary neutrophils from 96.0  8  6.2  !  10 3  to 49.6  8  3.7  !  
10 3  in the lung, corresponding to a 66% reduction 4 h af-
ter the M1 protein challenge ( fig. 3 b). Moreover, it was 
found that administration of M1 protein reduced the 
number of PMNLs and MNLs in the blood ( table 1 ). In-
hibition of Rho-kinase signaling significantly reduced 
this M1 protein-provoked leukocopenia ( table 1 ).

  Mac-1 Expression and CXC Chemokine Formation 
 Challenge with M1 protein greatly increased neutro-

phil expression of Mac-1 compared to PBS-treated con-
trol mice ( fig. 4 ). We found that inhibition of Rho-kinase 
activity abolished M1 protein-induced increases of Mac-1 
expression on the surface of neutrophils ( fig. 4 ), suggest-
ing that Rho-kinase signaling controls M1 protein-pro-
voked expression of Mac-1 on neutrophils in vivo. In or-
der to determine whether this inhibitory impact of Rho-
kinase inhibition is a direct or indirect effect, neutrophils 
were incubated with M1 protein with or without Y-27632 
in vitro. We observed that M1 protein enhanced expres-
sion of Mac-1 on neutrophils in vitro, although this in-
crease was lower than that observed in vivo ( fig. 5 ). Co-
incubation with the Rho-kinase inhibitor had no impact 
on M1 protein-induced Mac-1 expression on neutrophils 
in vitro ( fig.  5 ), indicating that the inhibitory effect of 
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  Fig. 1.  Edema formation in the lung. Mice were treated with the 
Rho-kinase inhibitor Y-27632 (0.5 or 5 mg/kg) or vehicle (PBS) 10 
min prior to M1 protein injection. Mice treated with PBS served 
as sham animals. One group of mice was given 5 mg/kg Y-27632 
alone without M1 protein injection. Data represents mean  8  
SEM,  *  p  !  0.05 versus sham and  #  p  !  0.05 versus vehicle + M1 
protein, n = 5. 

Table 1. S ystemic leukocyte differential counts

MNL PMNL Total

Sham 3.780.2 1.580.1 5.280.2
Vehicle + M1 protein 0.980.1* 0.380.0* 1.280.1*
Y-27632 (0.5) + M1 protein 1.780.2** 0.680.1 2.380.3**
Y-27632 (5) + M1 protein 1.780.1** 0.880.1** 2.480.4**

B lood was collected from sham animals receiving PBS i.v. only 
as well as from mice pretreated i.p. with vehicle (PBS) or Y-27632 
(0.5 or 5 mg/kg) 10 min prior to M1 protein challenge for 4 h. Cells 
were identified as MNL and PMNL.  

Data represents mean 8 SEM, 106 cells/ml and n = 5.
* p < 0.05 versus sham, n = 5.
** p < 0.05 versus vehicle + M1 protein, n = 5.
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Y-27632 is an indirect effect in vivo. In vivo, it has recent-
ly been shown that the CXCL2-CXCR2 axis regulates 
neutrophil expression of Mac-1 in M1 protein-induced 
inflammation  [33] . So, next we analyzed the role of Rho-
kinase signaling in regulating pulmonary formation of 
CXC chemokines in vivo. Lung levels of MIP-2 and KC 
were low in sham-operated animals whereas administra-
tion of M1 protein caused a more than 116-fold increase 
in CXC chemokine production in the lung ( fig. 6 a). We 
observed that treatment with Y-27632 dose-dependently 
reduced M1 protein-provoked production of MIP-2 and 
KC in the lung ( fig. 6 a). We next isolated alveolar macro-
phages from the BALF in animals challenged with M1 
protein and/or Y-27632. We observed that Y-27632 mark-

edly reduced mRNA levels of MIP-2 and KC in the alveo-
lar macrophages in M1 protein-treated animals ( fig. 6 b).

  Phosphorylation of p38 MAPK 
 We have recently observed that p38 MAPK activity 

plays a central role in M1 protein-induced neutrophil in-
filtration and lung injury  [27] . Next, we asked whether 
Rho-kinase signaling and p38 MAPK phosphorylation 
might be related in M1 protein-induced lung inflamma-
tion. Herein, it was found that administration of M1 pro-
tein enhanced p38 MAPK phosphorylation in the lung 
( fig. 7 ). Administration of 5 mg/kg of the Rho-kinase in-
hibitor significantly decreased M1 protein-induced phos-
phorylation of p38 MAPK ( fig. 7 ).
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  Fig. 2.  Representative hematoxylin & eosin 
sections of lung.  a  Sham animals were 
treated with PBS only.  b  They were given 
5 mg/kg Y-27632 alone. Separate mice were 
pretreated with vehicle (PBS) ( c ) and 0.5 ( d ) 
or 5 mg/kg Y-27632 ( e ) 10 min prior to M1 
protein administration. Samples were har-
vested 4 h after M1 protein challenge. Scale 
bar indicates 100  � m.  f  Histology score of 
lung injury. Data represents mean  8  SEM, 
 *  p  !  0.05 versus sham and  #  p  !  0.05 versus 
vehicle + M1 protein, n = 5.  f 
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  Discussion 

 This study documents that Rho-kinase signaling con-
stitutes a key feature in streptococcal M1 protein-induced 
acute lung injury. The findings show that inhibition of 
Rho-kinase decrease M1 protein-provoked production of 
CXC chemokines, neutrophil activation and recruitment 
in the lung; in fact, it was observed that Rho-kinase inhi-
bition not only decreased M1 protein-induced neutrophil 

infiltration but also abolished edema formation and tis-
sue damage. Moreover, our data also indicate that phos-
phorylation of p38 MAPK is regulated by Rho-kinase sig-
naling. Thus, these novel results indicate that targeting 
Rho-kinase signaling pathways may be an effective strat-
egy to protect against acute lung damage in systemic 
streptococcal infections.

  Potentially fatal streptococcal infections, such as STSS, 
are commonly triggered by  S. pyogenes  of the M1 sero-
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neutrophils in the lung. Animals were treated with Y-27632 (0.5 or 
5 mg/kg) or vehicle (PBS) 10 min prior to M1 protein injection. 

Samples were harvested 4 h after M1 protein challenge. Mice treat-
ed with PBS served as sham animals. One group of mice was given 
5 mg/kg Y-27632 alone. Data represents mean            8  SEM,  *  p  !  0.05 
versus sham and  #  p  !  0.05 versus vehicle + M1 protein, n = 5. 
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  Fig. 4.  Representative histogram from 5 samples: Rho-kinase reg-
ulates M1 protein-induced Mac-1 expression on neutrophils in 
vivo. Mac-1 expression on neutrophils in vehicle-treated (PBS) or 
Y-27632-treated (0.5 or 5 mg/kg) animals 4 h after M1 protein in-

jection is shown. MFI is shown on the x-axis and cell counts on 
the y-axis. Data represents mean                8  SEM,  *  p  !  0.05 versus sham 
and  #  p  !  0.05 versus vehicle + M1 protein, n = 5. 
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type  [34] . During bacterial invasion, the M1 protein is 
shed from the surface of  S. pyogenes  into the blood circu-
lation causing widespread activation of the host innate 
immune cells. Activated neutrophils and monocytes se-
crete massive levels of cytokines and chemokines  [6, 35] , 
provoking a systemic inflammatory response, which may 
cause acute lung damage and compromise blood oxygen-
ation, a feared complication in STSS. Recruitment of neu-
trophils to extravascular sites of inflammation is known 
to be a rate-limiting step in septic lung damage  [36, 37] . 
For example, ample data have demonstrated that immu-
noneutralization of specific adhesion molecules, such as 
ICAM-1, Mac-1, LFA-1 and PSGL-1, not only decreases 
neutrophil infiltration but also ameliorates acute lung 
damage in endotoxemia and abdominal sepsis  [8, 38] . 
Herein, we found that Rho-kinase inhibition reduced 
lung MPO activity and the number of neutrophils in the 
bronchoalveolar space in animals exposed to M1 protein, 
suggesting that Rho-kinase signaling is a significant reg-
ulator of neutrophil trafficking in strepotococcal M1 
protein-induced acute lung injury. Considering the 
mechanistic relationship between neutrophil infiltration 
and tissue injury, it may be suggested that, at least, a part 
of the pulmonary protection provided by interference 
with Rho-kinase signaling is due to the inhibition of neu-
trophil accumulation in the lung. A recent study reported 
that activation and upregulation of Mac-1 on neutrophils 
are key components at the initiation of acute lung damage 
caused by streptococcal M1 protein  [14] . Indeed, Mac-1 is 

not only a marker of neutrophil activation but also a fun-
damental adhesion molecule mediating the infiltration of 
neutrophils into the lung in endotoxemia and polymicro-
bial sepsis  [8, 39] . Due to the potent reduction in pulmo-
nary neutrophils in mice treated with the Rho-kinase in-
hibitor, we next asked whether Rho-kinase might regu-
late Mac-1 expression on the surface of neutrophils in M1 
protein-induced lung damage. Our study found that tar-
geting Rho-kinase activity markedly reduced M1 pro-
tein-provoked expression of Mac-1 on neutrophils in 
vivo, suggesting that inhibition of neutrophil expression 
Mac-1 may help explain the inhibitory impact of the Rho-
kinase inhibitor on neutrophil accumulation and tissue 
injury in streptococcal M1 protein lung damage. Notably, 
we also found that Rho-kinase inhibition had no direct 
effect on M1 protein-induced upregulation of Mac-1 on 
neutrophils in vitro, suggesting that Rho-kinase signal-
ing does not regulate M1 protein-induced Mac-1 expres-
sion in neutrophils.

  Tissue navigation of neutrophils is coordinated by se-
creted chemokines. Neutrophil activation and trafficking 
are controlled by CXC chemokines, such as MIP-2 and KC 
 [40] . Realizing that Rho-kinase did not directly regulate 
Mac-1 upregulation on neutrophils, we hypothesized that 
the Rho-kinase-dependent expression of Mac-1 on neu-
trophils was mediated by secreted CXC chemokines in 
streptococcal M1 protein-provoked lung damage. We ob-
served that Rho-kinase inhibition markedly suppressed 
M1 protein-induced pulmonary generation of MIP-2 and 
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KC. Notably, Rho-kinase inhibition greatly reduced the 
gene expression of MIP-2 and KC in alveolar macro-
phages, suggesting that Rho-kinase activity is an impor-
tant feature in macrophage production of CXC chemo-
kines in streptococcal infections. Knowing that CXC che-
mokines and their receptor CXCR2 are critical in 
mediating M1 protein-induced neutrophil expression of 
Mac-1  [33] , our data suggest that inhibition of CXC che-
mokine formation helps to explain the inhibitory effect of 
the Rho-kinase inhibitor on neutrophil activation, i.e. 
Mac-1 expression, and recruitment into the lung in re-
sponse to streptococcal M1 protein. Considered together, 
this is the first study to demonstrate that Rho-kinase sig-
naling exerts a significant function in streptococcal M1 

protein-induced inflammation and tissue injury in the 
lung. In this context, it should be mentioned that these 
findings do not necessarily exclude a potential role of oth-
er kinases in M1 protein-provoked lung damage. Because 
we have recently observed that p38 MAPK is a critical reg-
ulator of CXC chemokine formation and neutrophil re-
cruitment in M1 protein-provoked lung damage  [29] , it 
was of interest to test whether Rho-kinase signaling might 
control phosphorylation of p38 MAPK in response to M1 
protein challenge. It was found that inhibition of Rho-
kinase markedly suppressed M1 protein-induced phos-
phorylation of p38 MAPK in the lung. This observation 
suggests that Rho-kinase signaling and p38 MAPK sig-
naling in streptococcal infections might be related.
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  Taken together, these novel findings show that Rho-
kinase inhibition attenuates CXC chemokine generation, 
neutrophil activation and recruitment in M1 protein-
provoked pulmonary edema formation and tissue injury. 
Moreover, our data suggest that Rho-kinase signaling 
regulates p38 MAPK activity in the lung in response to 
streptococcal M1 protein. In conclusion, these results 
suggest that targeting the Rho-kinase signaling pathway 
may be a useful way to ameliorate pulmonary damage in 
severe infections caused by  S. pyogenes .
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