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in a coculture system. Either the MAVS or IFNAR signaling 
pathway was required for activation of MDSCs that led to 
growth retardation of B16 tumor in vivo. The results infer that  
 MDSC is a target of poly I:C to prime NK cells, which exert an-
titumor activity to NK-sensitive tumor cells. 

 © 2013 S. Karger AG, Basel 

 Introduction 

 The innate sensing of microbial molecular patterns re-
sults in the modulation of the cellular immune system 
 [1–3] . This innate-adaptive linkage closely associates 
with suppression of infection and tumorigenesis. Many 
reports showed that polyinosinic:polycytidylic acid (poly 
I:C), a synthetic pattern of double-stranded RNA, has po-
tent stimulatory effects on immune responses to viral in-
fection and cancer  [4–8] . Poly I:C is an agonist for pat-
tern-recognition receptors (PRRs), Toll-like receptor 3 
(TLR3) and melanoma differentiation-associated protein 
5 (MDA5), which transduce signals to the adaptor mol-
ecules TICAM-1 (also known as TRIF) and mitochon-
drial antiviral signaling protein (MAVS; IPS-1, Cardif, 
VISA)  [9–12] . They differentially modulate the functions 
of myeloid dendritic cells (DCs) and macrophages, in-
cluding cytokine/IFN production and expression of sur-
face molecules that drive effector cell activation.
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 Abstract 

 Polyinosinic:polycytidylic acid (poly I:C), a synthetic double-
stranded RNA, acts on myeloid cells and induces potent anti-
tumor immune responses including natural killer (NK) cell 
 activation. Myeloid-derived suppressor cells (MDSCs) system-
ically exist in tumor-bearing hosts and have strong immuno-
suppressive activity against antitumor effector cells, thereby 
dampening the efficacy of cancer immunotherapy. Here we 
tested what happened in MDSCs in poly I:C-treated mice. NK-
sensitive syngenic tumor (B16)-bearing C57BL/6 mice were 
employed for this study. Intraperitoneal poly I:C treatment in-
duced MDSC activation, driving CD69 expression and inter-
feron (IFN)-γ production in NK cells. IFN-γ directly inhibited 
proliferation of B16 cells. This NK cell priming led to growth 
retardation of B16 tumors, although no direct tumoricidal ac-
tivity was induced in NK cells. Mechanistic analysis using KO 
mice and function-blocking monclonal antibody revealed 
that MDSCs produced IFN-α via the mitochondrial antiviral 
signaling protein (MAVS) pathway after in vivo   administration 
of poly I:C, and activated NK cells through the IFNAR pathway. 
MDSC-mediated NK cell priming was reconstituted by IFN-α 
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  TLR3/TICAM-1 and MDA5/MAVS activate the tran-
scription factors, NF-κB and interferon (IFN) regulatory 
factor 3 (IRF-3), to typically induce type-I IFN. Type-I 
IFN evokes subsequent activation of the IFNAR pathway, 
which participates in the induction of IFN-stimulated 
genes (ISGs) including IRF-7  [13, 14] . IRF-7 further 
modifies the function of poly I:C by upregulating PRRs. 
Thus, the activity of poly I:C immediately affects IRF-
3-derived genes and secondarily upregulates genes by ac-
tivation of the IFNAR pathway. These pathways are cru-
cial for driving the effector functions of NK cells and cy-
totoxic T cells that result in tumor regression after poly 
I:C treatment  [6, 15] . 

  NK cells are important for antitumor effects not only 
through direct cytotoxic activity, but also indirectly, 
through the production of cytokines including IFN-γ 
 [16–20] . DX5 +  or NK1.1 +  cells have been used as conven-
tional NK cells, which have features distinct from other 
lymphoid cells. Optimal NK cell responses require the 
presence of accessory cells such as DCs or macrophages 
 [21] . NK cells are essential for poly I:C-induced growth 
retardation of NK-sensitive tumors such as B16 melano-
mas since poly I:C treatment does not induce antitumor 
activity in NK cell-depleted mice  [4, 5] . IFN-γ production 
and cytotoxic activity by NK cells are potentiated by stim-
ulating mice in vivo   with poly I:C. NK cell activation ap-
pears to have many modes and myeloid NK cell contact 
serves a critical factor for antitumor NK cell activation.

  Myeloid-derived suppressor cells (MDSCs) belongs to 
myeloid lineages with potent immunosuppressive activ-
ity against antitumor immune responses in mice and hu-
mans  [22, 23] . MDSCs are widely distributed at tumor 
sites and in the peripheral organs, spleen and lymph 
nodes. Defined as a CD11b + Gr1 +  subset in mice, they are 
heterogeneous populations of early myeloid progenitors 
that arise in bone marrow. Recently, they have also been 
found to originate from hematopoietic stem and progen-
itor cells accumulated in the spleen under tumor-bearing 
conditions  [24] . The immunoregulatory functions of 
MDSCs in cancer have been studied extensively  [22, 25] . 
MDSCs inhibit antigen-dependent T cell proliferation 
through the production of immunosuppressive factors 
including arginase-1, reactive oxygen species and reactive 
nitrogen species, and the release of immunosuppressive 
cytokines. However, the effect of MDSCs on NK cell func-
tion in tumor-bearing hosts is controversial. The anergy 
of NK cells is reportedly induced by MDSCs through 
membrane-bound TGF-β in a tumor-implant model us-
ing 3LL, B16 and EG7 cells  [26] . MDSCs derived from 
patients with hepatocellular carcinoma inhibit autolo-

gous NK cell activity when cocultured in vitro  [27] . 
 Splenic MDSCs in TS/A tumor-bearing mice repress NK 
cell cytotoxicity  [28] . A subset of MDSCs expresses 
 NKG2D ligand on the cell surface and activates NK cells 
through NKG2D-NKG2D ligand interaction  [29] . Al-
though MDSCs express PRRs, their contribution to the 
MDSC function in poly I:C-induced growth retardation 
of tumors has not been fully understood.

  Recent studies have demonstrated that TLR stimula-
tion could modulate the function of immunosuppressive 
myeloid-derived cells as well as myeloid DCs in cancer. 
Tumor-associated macrophages and MDSCs were con-
verted from tumor supporters to tumoricidal effectors af-
ter treatment with TLR agonists  [7, 30, 31] . It was dem-
onstrated that CpG treatment blocks MDSC-mediated T 
cell suppression associated with the maturation and dif-
ferentiation of MDSCs  [30, 31] . In this study, we revealed 
that poly I:C treatment allows cancer-expanded MDSCs 
to prime NK cells through the MAVS and the type-I IFN 
signaling pathway in vivo, leading to retardation of tumor 
growth. 

  Materials and Methods 

 Mice and Tumor Cells 
 Inbred C57BL/6 wild-type (WT) mice were purchased from 

Clea, Japan. TICAM-1 –/–  and MAVS –/–  mice were generated in our 
laboratory. IFNAR1 –/–  mice were kindly provided by T. Taniguchi 
(University of Tokyo). Mice of 6- to 10-weeks of age were used in 
all experiments that were performed according to animal experi-
mental ethics committee guidelines of Hokkaido University. 
B16D8 cells were developed in our laboratory  [4] . B16D8 cells were 
cultured at 37   °   C under 5% CO 2  in RPMI containing 10% FBS, 
penicillin and streptomycin. This study was carried out in strict 
accordance with the recommendations in the Guide for the Care 
and Use of Laboratory Animals of the National Institutes of Health 
(USA). The protocol was approved by the Committee on the Eth-
ics of Animal Experiments in the Animal Safety Center, Hokkaido 
University, Japan. All mice were used according to the guidelines 
of the institutional animal care and use committee of Hokkaido 
University, who approved this study as ID number 08-0290, ‘Anal-
ysis of Anti-Tumor Immune Response Induced by the Activation 
of Innate Immunity’.

  Tumor Challenge and Poly I:C Treatment 
 Mice were shaved at the back and injected s.c with B16D8 cells 

(6 × 10 5 ), 3LL cells (3 × 10 6 ) or EL4 cells (1 × 10 6 ) suspended in 200 
μl PBS(–). Tumor size was measured using a caliper. Tumor vol-
ume was calculated using the following formula: tumor volume 
(cm 3 ) = (long diameter) × (short diameter) 2  × 0.4. Poly I:C (GE 
Bioscience) (200 μg/head) with no detectable LPS was injected i.p. 
as indicated. In some cases, polymixin B-treated poly I:C was used. 
When an average tumor volume of 0.4–0.6 cm 3  was reached, the 
treatment was started and was repeated every 4 days.
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  Cell Isolation and Culture 
 When tumor volume reached 1–2 cm 3 , i.e. 14–18 days after tu-

mor challenge, mice were injected i.p. with 200 μg poly I:C or 
PBS(–). After 4 h, CD11b + Gr1 +  MDSC-like cells were isolated 
from splenocyte suspension or single-cell suspension from the col-
lagenase-treated tumor of poly I:C-injected or PBS-injected mice 
by using biotin-conjugated anti-Gr1 monoclonal antibody (RB6–
8C5) and Streptavidin Microbeads (Miltenyi) as described previ-
ously  [7] . NK cells were purified from splenocytes of naïve mice by 
using DX5 Microbeads (Miltenyi). In these purification steps, two 
rounds of positive selection were performed. We routinely pre-
pared Gr1 +  cells at more than 95% purity and almost 100% of Gr1 +  
cells expressed CD11b. The purity of DX5 +  cells was more than 
90%. Isolated CD11b + Gr1 +  cells and DX5 +  cells were cocultured 
for 20–24 h. In some experiments, anti-IFNAR1 monoclonal anti-
body (MAR1–5A3) was added to the culture for neutralization of 
IFNAR1. Recombinant mouse IFN-α (R&D systems) was used for 
stimulation of CD11b + Gr1 +  cells and NK cells. 

  Cells isolated from mouse spleen were incubated for 24 h and 
the conditioned medium was collected. Concentrations of IFN-α 
and IFN-γ were determined by ELISA according to manufacturer’s 
instructions (PBL Interferon Source and eBioscience). NK cyto-
toxicity was determined by standard  51 Cr release assay as described 
previously  [32] . 

  Flow Cytometric Analysis 
 Mononuclear cells prepared from mouse spleen or tumor were 

treated with anti-CD16/32 (no. 93) and stained with FITC- or APC-
anti-CD45.2 (no. 104), FITC- or PE-anti-CD11b (M1/70), APC- or 
PE-anti-GR1 (RB6–8C5), PE- or APC-anti-NK1.1 (PK136), PE-
anti-CD49b (DX5), FITC-, PE- or APC-anti-CD3ε (145–2C11), 
FITC- or PE-anti-CD69 (H1.2F3), PE-anti-CD80 (16–10A1), PE-
anti-CD86 (GL-1), PE-anti-CD40 (1C10), PE-anti-CD155 (TX56), 
PE-anti-CD70 (FR70), PE-anti-IL-15Ra (DNT15Ra), FITC-anti-
CD150 [A12 (7D4)], and anti-RAE-1 (eBioscience and Biolegend). 
Samples were analyzed with a FACSCalibur instrument or FACS 
Aria instrument (BD Bioscience) and data analysis was performed 
by FlowJo software (Tree Star). 

  T Cell Proliferation Assay 
 T cell proliferation was measured by changes in fluorescence 

intensity using carboxyfluorescein diacetate succinimidyl ester 
(CFSE). Splenocytes from OT-I transgenic mice were labeled with 
1 μ M  CFSE, placed into a round bottom 96-well plate containing 
CD11b + Gr1 +  cells as indicated. Splenocytes were cultured in the 
presence of 100 n M  OVA-derived peptide SIINFEKL. After 3 days, 
cells were harvested, stained with APC-anti-CD8α (53–6.7) and 
PE-anti-TCR vβ 5.1, 5.2 (MR9–4) or PE-anti-CD3ε (145–2C11), 
and the CFSE signal of gated lymphocytes was analyzed by flow 
cytometry. The extent of cell proliferation was quantified by 
 FlowJo software (Tree Star).

  Quantitative PCR Analysis 
 RNA was prepared with RNeasy kit (QIAGEN) or TRIZOL re-

agent (Invitrogen) according to the manufacturer’s instruction. 
Reverse transcription was performed using High-Capacity cDNA 
Reverse Transcription kit (Applied Biosystems). Real-time PCR 
was performed with Power SYBR Green PCR Master Mix (Ap-
plied Biosystems) with StepOne TM  Real-time PCR system (Applied 
Biosystems). Expression of the cytokine gene was normalized to 

the expression of glyceraldehyde phosphate dehydrogenase 
 (GAPDH). The following primers were used for PCR: IFNα4 for-
ward, 5 ′ -CTGCTGGCTGTGAGGACATACT-3 ′ , IFNα4 reverse, 
5 ′ -AGGCACAGAGGCTGTGTTTCTT-3 ′ , IL-15 forward, 5 ′ -
TTAA CTGAGGCTGGCATTCATG-3 ′ , IL-15 reverse, 5 ′ -ACCT 
ACACTGACACAGCCCAAA-3 ′ , IL-18 forward, 5 ′ -GACAAA 
GAAAGCCGCCTCAA-3 ′ , IL-18 reverse, 5 ′ -ATGGCAGCCAT 
TGTTCCTG-3 ′ , INAM forward, 5 ′ -CAACTGCAATGCCACG 
CTA-3 ′ , INAM reverse, 5 ′ -TCCAACCGAACACCTGAGACT-3 ′ , 
GAPDH forward, 5 ′ -GCCTGGAGAAACCTGCCA-3 ′ , GAPDH 
reverse, 5 ′ -CCCTCAGATGCCTGCTTCA-3 ′ . Data was analyzed 
by the ΔΔCt method.

  Statistics 
 If not otherwise stated, data were expressed as arithmetic 

means ± SD, and statistical analyses were made by 2-tailed Stu-
dent’s t test. p < 0.05 was considered statistically significant. 

  Results 

 CD11b + Gr1 +  Cells Expanded in B16 Tumor-Bearing 
Mice Are Immunosuppressive  
 CD11b + Gr1 +  cells representing MDSCs accumulate in 

large numbers in the lymphoid tissues of tumor-bearing 
mice  [22, 23] . We therefore investigated the spleens of 
mice bearing syngenic tumor cells. B16 melanoma cells, 
3LL lung cancer cells or EL4 thymoma cells were s.c. in-
jected into WT mice and, 16 days later, splenic popula-
tions of immune cells were examined in the tumor-bear-
ing mice. The proportion of CD11b + Gr1 +  cells in the 
spleens of B16-implanted mice was higher than that in 
tumor-free naïve mice, consistent with previous reports 
( fig. 1 a). Similar profiles were obtained with the 3LL and 
EL4 cell lines (data not shown). 

  To examine whether CD11b + Gr1 +  cells had immuno-
suppressive activity, we harvested CD11b + Gr1 +  cells from 
the spleens of B16 tumor-implanted mice, and cocultured 
CD11b + Gr1 +  cells with OT-I splenocytes in the presence 
of OVA peptide. CD11b + Gr1 +  cells from tumor-bearing 
mice efficiently inhibited antigen-specific proliferation of 
CD8 +  OT-I T cells ( fig. 1 b). Therefore, CD11b + Gr1 +  cells 
accumulated in the spleen of B16 tumor-bearing mice 
and had immunosuppressive functions. 

  We also assessed the immunosuppressive activity of 
CD11b + Gr1 +  cells against NK cells activated by PMA/
ionomycin and tested activation as level of IFN-γ produc-
tion. No inhibitory effect of CD11b + Gr1 +  cells on the pro-
duction of IFN-γ by NK cells was observed (online suppl. 
fig. 1; for all online suppl. material, see www.karger.com/
doi/10.1159/000355126). Therefore, CD11b + Gr1 +  cells 
expanded in B16 tumor-bearing mice exhibited immuno-
suppressive activity toward CD8 +  T cells but not NK cells.
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  In vivo Poly I:C Induces Cytokine Production and 
Maturation of CD11b + Gr1 +  Cells 
 Type-I IFNs are systemically produced in tumor-

bearing mice by i.p. injection of poly I:C. Poly I:C usu-
ally acts on TLR3 in myeloid/epithelial cells and MDA5 
in systemic cells, leading to type-I IFN production  [33] . 
Since CD11b + Gr1 +  cells expressed both TLR3 and 
MDA5, we examined whether type-I IFNs were pro-
duced by CD11b + Gr1 +  cells in B16 tumor-bearing mice 
in response to poly I:C injection. Interestingly, we found 

that IFN-α is produced in splenic CD11b + Gr1 +  cells har-
vested from poly I:C-treated B16 tumor-bearing mice, 
but not in CD11b + Gr1 +  cells unexposed to poly I:C 
( fig. 2 a, left panel). The results were also confirmed in 
vitro: type-I IFNs was minimally produced in poly I:C-
untreated CD11b + Gr1 +  cells but robustly in poly I:C-
treated cells from the spleen or tumor in direct response 
to poly I:C ( fig. 2 a, right panel). The results were repro-
ducible with different tumor cell lines, specifically 3LL 
and EL4, and different sources of CD11b + Gr1 +  cells 
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  Fig. 1.  Immunosuppressive activity of CD11b + Gr1 +  cells in the 
spleen of B16 tumor-bearing mice.  a  WT mice were injected s.c. 
with B16D8 melanoma cells. The percentage of CD11b + Gr1 +  cells 
in the spleen was determined on day 16 by flow cytometry (n = 6). 
Cells were gated on CD45 +  cells.  b  CD11b + Gr1 +  cells were isolated 

from spleens of B16 tumor-bearing mice, and cultured with CFSE-
labeled OT-I splenocytes (1 × 10 6 ) at the indicated ratios. After 
3 days, proliferation of CD8α + TCRvβ +  cells was measured. Data 
shown are representative of at least 2 independent experiments. 
 *  *  p < 0.01. 

  Fig. 2.  Effect of poly I:C treatment on CD11b + Gr1 +  cells.  a  B16 
tumor-bearing mice were injected i.p. with 200 μg poly I:C or PBS 
as a negative control. After 4 h, CD11b + Gr1 +  cells were purified 
from spleens and incubated for 24 h (left panel). CD11b + Gr1 +  cells 
isolated from spleens of B16 tumor-bearing mice were treated with 
50 μg/ml poly I:C or PBS for 24 h (right panel). The concentration 
of IFN-α in conditioned medium was determined.  b  3LL cells (3 × 
10 6 ) were implanted into B6 WT mice and CD11b + Gr1 +  cells were 
isolated from spleen (left panel) or tumor (right panel) after poly 

I:C injection as described in  a .  c  Spleen cells were prepared from 
B16 tumor-bearing mice treated with poly I:C or PBS for 8 h as 
described in  a  and surface expression of CD80, CD86, CD40, RAE-
1, CD155, CD70, IL-15RA and CD150 on CD11b + Gr1 +  cells was 
determined.  d  CD11b + Gr1 +  cells were isolated from B16 tumor-
bearing mice treated with poly I:C or PBS for 4 h as described in  a  
and mRNA for IFN-α4, IL-15, IL-18, INAM and arginase-1 was 
measured (n = 3). Data shown are representative of at least 2 inde-
pendent experiments.  *  *  p < 0.01,  *  p < 0.05. NS = Not significant. 

(For figure 2 see next page.)
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( fig. 2 b; online suppl. fig. 2a). In addition, the costimula-
tory molecules CD80 and CD86 on these cells were up-
regulated in response to poly I:C ( fig. 2 c). To further in-
vestigate the effect of poly I:C treatment on the function 
of CD11b + Gr1 +  cells, we analyzed the gene expression of 
CD11b + Gr1 +  cells isolated from B16 tumor-bearing 
mice, 4 h after injection with poly I:C or PBS. We found 
an increase in mRNA for IFN-α4, IL-15, IL-18 and INAM 
( fig. 2 d)  [21, 32] . Furthermore, in vivo poly I:C treatment 
for 8 h resulted in upregulation of RAE-1, PVR (CD155), 
CD70, IL-15RA, SLAM (CD150) and CD40 on 
CD11b + Gr1 +  cell surface ( fig. 2 c). These molecules are 
involved in DC-mediated NK cell activation  [18, 34, 35] . 
However, mRNA for arginase-1, which is involved in 
MDSC-mediated inhibition of T cell proliferation, was 
not increased in CD11b + Gr1 +  cells ( fig. 2 d). These results 
suggest that in vivo   pretreatment of mice with poly I:C 
effectively induces the maturation of CD11b + Gr1 +  cells, 
resulting in enhanced expression of NK cell-activating 
molecules. 

  CD11b + Gr1 +  Cells from Poly I:C-Treated 
Tumor-Bearing Mice Activate NK Cells 
 To investigate whether CD11b + Gr1 +  cells from poly 

I:C-injected tumor-bearing mice are capable of activating 
NK cells, we isolated CD11b + Gr1 +  cells from the spleens 
of tumor-bearing mice after poly I:C administration and 
cocultured the cells with NK cells from naïve mice. NK 
cells upregulated CD69 on their surface in response to the 
CD11b + Gr1 +  cells from poly I:C-injected B16 tumor-
bearing mice. However, the level of CD69 on NK cells was 
not changed when the cells were mixed with CD11b + Gr1 +  
cells from PBS-injected tumor-bearing mice ( fig. 3 a, left 
panel). CD11b + Gr1 +  cells from poly I:C-injected tumor-
bearing mice also induced NK cell IFN-γ production 
( fig. 3 a, right panel). Similar results were obtained with 
NK cells cocultured with CD11b + Gr1 +  cells from mice 
bearing 3LL- or EL4 cell tumors after poly I:C treatment 
( fig.  3 b, c; online suppl. fig.  2b, c). Furthermore, 
CD11b + Gr1 +  cells from tumors of 3LL-implant mice had 
a similar ability to induce IFN-γ production and CD69 
expression in NK cells after poly I:C treatment ( fig. 3 c). 
IFN-γ inhibits proliferation of B16 cells in vitro without 
affecting the cell viability (online suppl. fig. 3; data not 
shown). In contrast, CD11b + Gr1 +  cells did not drive a cy-
totoxic phenotype from NK cells ( fig. 3 d). In vitro   stimu-
lation of CD11b + Gr1 +  cells with poly I:C did not in-
duce  NK cytotoxicity in coculture (data not shown). 
These results demonstrated that when poly I:C was in-
jected into tumor-bearing mice, CD11b + Gr1 +  cells ac-

quired the ability to prime NK cells as measured by CD69 
expression and IFN-γ production, but did not induce cy-
totoxic activity. 

  Type-I IFN Signaling Is Essential for NK Cell Priming 
by CD11b + Gr1 +  Cells 
 Next, we investigated the mechanisms by which 

CD11b + Gr1 +  cells primed NK cells through the in vivo  
 administration of poly I:C. Soluble factors and mem-
brane-associated molecules induced by poly I:C are re-
portedly involved in in vivo   NK cell activation  [15, 18] . 
As shown in  figure 2 a, CD11b + Gr1 +  cells from poly I:C-
treated tumor-bearing mice produced IFN-α. To exam-
ine whether type-I IFN signaling through IFNAR was in-
volved in NK cell activation, we added anti-IFNAR1 an-
tibodies to cultures to inhibit type-I IFN signaling by both 
CD11b + Gr1 +  and NK cells that express IFNAR1. CD69 
upregulation on NK cells and IFN-γ production induced 
by activated CD11b + Gr1 +  cells were completely abrogat-
ed by anti-IFNAR1 antibodies ( fig. 4 a). These results sug-
gest that type-I IFN signaling is essential for NK cell prim-
ing by CD11b + Gr1 +  cells.

  To investigate type-I IFN signaling in NK cell priming, 
we prepared NK cells from IFNAR1 –/–  mice. IFNAR1 –/–  
NK cells were cocultured with CD11b + Gr1 +  cells. 
CD11b + Gr1 +  cells from poly I:C-stimulated WT mice 
stimulated CD69 expression and IFN-γ production by 
WT NK cells but not IFNAR1 –/–  NK cells ( fig. 4 b). There-
fore, type-I IFN signaling in NK cells is essential for NK 
priming by CD11b + Gr1 +  cells. 

  To examine whether IFNAR signaling is the only route 
for the induction of CD11b + Gr1 +  cell-mediated NK prim-
ing, we added recombinant mouse IFN-α to cultures of 
NK cells or to cocultures of untreated CD11b + Gr1 +  cells 
and WT NK cells. Recombinant mouse IFN-α in NK cell 
cultures resulted in induction of CD69 expression on the 
NK cells ( fig. 4 c, left panels). However, CD69 expression 
was minimally augmented in the NK cells cocultured with 
CD11b + Gr1 +  cells. In contrast, NK cell IFN-γ production 
was clearly induced at high concentrations of IFN-α 
(2,000 IU/ml) and augmented by CD11b + Gr1 +  cells 
( fig. 4 c, right panel). 

  We investigated if cell-cell contact is involved in NK 
cell activation in cocultures of CD11b + Gr1 +  cells and na-
ïve NK cells using the Transwell system. Sufficient NK 
cell priming was detected when NK cells were cocultured 
with in vivo   poly I:C-activated CD11b + Gr1 +  cells. How-
ever, expression of CD69 and production of IFN-γ by NK 
cells was abrogated by separation of the cells by the Tran-
swell membrane (online suppl. fig. 4a, b). These results, 
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  Fig. 3.  NK cells are primed by CD11b + Gr1 +  
cells isolated from poly I:C-injected tumor-
bearing mice.  a–c  CD11b + Gr1 +  cells were 
isolated from spleens or tumors of B16 (     a ), 
3LL ( b ,  c ) tumor-bearing mice pretreated 
with 200 μg poly I:C or PBS for 4 h and cul-
tured with NK cells from naïve WT mice. 
After 24 h, CD69 expression on NK cells 
( a–c , left panels) and IFN-γ concentration 
in conditioned medium ( a–c , right panels) 
were determined. CD69 expression of 
NK1.1 + CD3ε –  cells is indicated (   a–c ). 
N.T. = Not tested.  d  Cytotoxic activity of 
NK cells cocultured with or without 
CD11b   + Gr1 +  cells isolated from poly I:C- 
or PBS-treated tumor-bearing mice was 
determined by standard  51 Cr release assay 
(n = 3). Triangle: NK cells not cultured with 
CD11b + Gr1 +  cells. Data shown are repre-
sentative of at least 3 independent experi-
ments.          *  *  p < 0.01.   
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  Fig. 4.  Type-I IFNs from CD11b + Gr1 +  cells and IFNAR in NK cells 
are indispensable for NK cell activation.  a  CD11b + Gr1 +  cells were 
isolated from spleens of B16 tumor-bearing mice treated with 
200 μg poly I:C or PBS for 4 h and cultured with NK cells from na-
ïve WT mice in the presence or absence of 10 μg/ml anti-IFNAR1 
antibody (Ab). After 24 h, CD69 expression on NK cells (left pan-
els) and IFN-γ concentration in conditioned medium (right panel) 
was determined (n = 3).      b  CD11b         + Gr1 +  cells isolated as described 
in    a  were cultured for 24 h with NK cells from naïve WT mice or 

IFNAR1     –/–  mice, and CD69 expression (left panels) and IFN-γ 
production were measured (n = 3) (right panel).          c  Recombinant 
IFN-α was added to cultures of naïve NK cells with or without 
CD11b + Gr1 +  cells from nontreated tumor-bearing mice. After in-
cubation for 24 h, CD69 expression on NK cells (left panels) and 
IFN-γ concentration in conditioned medium (right panel) were 
determined (n = 3). CD69 expression of NK1.1 + CD3ε –  cells is in-
dicated ( a–c ). Data shown are representative of two independent 
experiments.  *  *  p < 0.01.   
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together with the results in  figure 4 , suggest that two 
modes of NK priming occur simultaneously in 
CD11b + Gr1 +  cells: one mode is through type-I IFN pro-
duction and the other is via cell-cell contact.

  MAVS and IFNAR Are Required to Activate MDSCs 
with in vivo Poly I:C Treatment 
 Poly I:C induces growth retardation of B16 tumors im-

planted in WT mice  [4–6, 36] . To determine the signaling 
pathway that is essential for the retardation of B16 tumor 

growth in vivo, we implanted B16 melanoma cells s.c. into 
TICAM-1 –/–  and MAVS –/–  mice. B16 tumor growth was 
monitored after poly I:C injection. Marked tumor growth 
retardation was observed in poly I:C-treated mice ( fig. 5 a). 
The poly I:C antitumor effect was only partly abrogated 
in either TICAM-1 –/–  or MAVS –/–  mice and was com-
pletely abolished in TICAM-1 –/– /MAVS –/–  mice ( fig. 5 a). 
Therefore, both TICAM-1 and MAVS signals are in-
volved in the antitumor activity of poly I:C, consistent 
with earlier reports  [4, 5, 33] .
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  Fig. 5.  Retardation of B16 tumor growth by 
poly I:C treatment in mouse models. 
     a  Both TICAM-1 and MAVS signals are in-
volved in B16 tumor growth retardation af-
ter poly I:C therapy. B16 cells (6 × 10 5 ) were 
implanted s.c. into WT, TICAM-1 –/– , 
MAVS –/–  and TICAM-1 and MAVS dou-
ble-knockout mice. Tumor-bearing mice 
were treated with 200 μg poly I:C or PBS on 
days 10 and 14 (arrows) (n = 3–5 per 
group). Data are average ± SEM.    b  In vivo  
 poly I:C-activated CD11b         + Gr1 +  cells in-
hibit B16 tumor growth. B16 cells (6 × 10 5 ) 
were mixed with or without CD11b + Gr1 +  
cells (1 × 10 6 ) from spleens of B16 tumor-
bearing mice treated with 200 μg poly I:C 
or PBS for 4 h. Cell mixtures were implant-
ed s.c. into WT mice on day 0 (n = 4 per 
group). Data are average ± SEM and are 
representative of 2 independent experi-
ments.                              *  *  p < 0.01,  *  p < 0.05. 
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  Next, we determined the mechanisms involved in the in 
vivo   activation of CD11b + Gr1 +  cells by poly I:C. To inves-
tigate the signaling pathway that was important for poly 
I:C-induced activation of CD11b + Gr1 +  cells in vivo, we 
challenged TICAM-1 –/–  and MAVS –/–  mice with B16 mel-
anoma cells. After tumor formation, poly I:C was injected 
i.p. into the mice and CD11b + Gr1 +  cells were isolated from 
the spleen and were cocultured with naïve WT NK cells. 
CD11b + Gr1 +  cells from tumor-bearing TICAM-1 –/–  mice 
produced IFN-α at levels comparable to cells from WT 
mice ( fig. 6 a). In parallel, CD69 expression on NK cells and 
IFN-γ production was observed in conditioned medium 

from mixed cultures of TICAM-1 –/–  CD11b + Gr1 +  cells 
and naïve WT NK cells. The results suggest that in vivo  
 TICAM-1 signaling is not mandatory for CD11b + Gr1 +  
cell  activation to induce NK cell priming ( fig.  6 a–c). 
CD11b + Gr1 +  cells from tumor-bearing MAVS – 

/–  mice 
treated with poly I:C did not produce IFN-α or induce 
CD69 expression and IFN-γ production in NK cells 
( fig. 6 a–c). Similar results were obtained with CD11b + Gr1 +  
cells from B16 tumor-bearing IFNAR1 –/–  mice ( fig. 6 a–c). 
These results suggest that MAVS as well as type-I IFN sig-
naling is crucial for poly I:C-dependent NK cell priming in 
CD11b + Gr1 +  cells of tumor-bearing mice. 
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  Fig. 6.  MAVS and type-I IFN signaling 
pathways are critical for CD11b + Gr1 +  cell 
activation in vivo.  a  B16 cells (6 × 10 5 ) were 
implanted into WT, TICAM-1 –/– , MAVS – 

/–  
or IFNAR1 –/–  mice. Tumor-bearing mice 
were treated with 200 μg poly I:C or PBS for 
4 h and CD11b + Gr1 +  cells were isolated 
from spleens, and allowed to stand for 24 h. 
IFN-α concentration in conditioned me-
dium was determined (n = 3).  b ,  c  
CD11b           + Gr1 +  cells were isolated from KO 
mouse lines as described in          a , and were cul-
tured with naïve WT NK cells for 24 h. 
CD69 expression on NK cells ( b ) and 
IFN-γ concentration in conditioned medi-
um ( c ) were determined (n = 3). Data 
shown are representative of 3 independent 
experiments.                        *  *  p < 0.01.   

http://dx.doi.org/10.1159%2F000355126


 MDSC Prime NK Cells for Tumor 
Regression 

J Innate Immun 2014;6:293–305
DOI: 10.1159/000355126

303

  The MAVS pathway is conserved in most cell types in 
mice. We examined whether NK cell priming induced by 
poly I:C (i.e. MAVS signal)-activated CD11b + Gr1 +  cells 
was involved in retardation of B16 tumor growth. NK-
sensitive B16 tumor cells were mixed with CD11b + Gr1 +  
cells isolated from poly I:C (or control PBS)-injected tu-
mor-bearing mice, and inoculated s.c. into WT mice 
( fig. 5 b). Significant B16 growth retardation was detected 
only in those tumors containing poly I:C-treated 
CD11b + Gr1 +  cells ( fig. 5 b). The B16 tumors with intact 
CD11b + Gr1 +  cells showed higher growth rates than B16 
tumor cells only, which might reflect the previously-re-
ported tumor-supporting activity of MDSCs  [37] . Thus, 
MDSC-like CD11b + Gr1 +  cells can be converted to cells 
with an NK-priming activity that induces growth retarda-
tion of NK-sensitive tumors in mice. NK-priming would 
be a condition prior to full activation of antitumor NK 
cells. 

  Discussion 

 We demonstrated that in vivo   poly I:C treatment led 
to CD11b + Gr1 +  MDSC maturation and cytokine produc-
tion in tumor-bearing mice. Poly I:C treatment rendered 
tumor and spleen MDSCs competent for DX5 +  NK cell 
priming as measured by CD69 expression and IFN-γ pro-
duction. Poly I:C-dependent NK priming raises through 
the MAVS pathway ( fig. 6 ). Among a number of proteins 
that were upregulated after poly I:C treatment, type-I IFN 
produced by activated MDSCs was critical for NK cell 
priming since it activated the IFNAR pathway in NK cells. 
However, NK cells barely exerted direct cytotoxic activity 
to B16 cells in response to poly I:C-matured MDSCs. This 
NK activation profile resembles that of IFN-γ-producing 
innate lymphoid cells. Some populations of these innate 
lymphocytes produce IFN-γ but exhibit little cytotoxic 
activity  [38] , similar to the NK cells affected by MDSC. 
These findings would allow us to speculate that the pro-
duction of IFN-γ without cytotoxic activity is an activa-
tion state of NK cells or innate lymphocytes where  MDSCs 
contribute. 

  In tumor-bearing hosts, poly I:C treatment resulted in 
tumor regression. Poly I:C induces direct killing of 3LL 
tumor cells by M2-M1 conversion of tumor-associated 
macrophages  [7] . The TICAM-1 signal facilitates tumor-
associated macrophage conversion as well as cross-pre-
sentation by DCs leading to antigen-specific CTL induc-
tion, which is also evoked by poly I:C  [8] . The action of 
CD11b + Gr1 +  MDSCs on implant B16 tumor was tumor-

supporting when MDSCs were embedded into the tumor 
( fig.  5 b). However, once MDSCs were pretreated with 
poly I:C and mixed with B16 cells, tumor growth was pro-
hibited ( fig. 5 b). The result suggests that MDSC has plas-
ticity to change the function from tumor-supporting to 
tumor-suppressing even in vivo. Here, we highlight the 
first evidence of MDSCs to evoke NK cell priming, which 
ultimately associates with retardation of tumor growth. 

  Although the exact mechanism of tumor regression by 
MDSC-NK activation remains to be elucidated, we spec-
ulate that IFN-γ produced by the primed NK cells could 
evoke antitumor activity. One possibility is that IFN-γ di-
rectly inhibits the growth of a certain tumor line includ-
ing B16 melanoma by inducing cell cycle arrest. IFN-γ 
has a synergistic effect on type-I IFNs, arresting cell cycle 
to cell death in some tumor cell lines independent of p53 
 [39] . IFN-γ also induces angiostasis, which prevents rap-
id tumor progression  [19] , and inhibits metastasis and 
proliferation of B16 melanoma  [17, 20] . In fact, we ob-
served that IFN-γ directly inhibits proliferation of B16 
cells in vitro, suggesting that NK cell-derived IFN-γ might 
inhibit B16 tumor growth during poly I:C treatment (on-
line suppl. fig. 3).

  Retardation of B16 growth was partially abrogated in 
TICAM-1 –/–  or MAVS –/–  mice and completely abrogated 
in TICAM-1 –/– , MAVS –/–  double KO mice ( fig. 5 a), the 
two pathways contributing to in vivo   poly I:C-derived tu-
mor suppression. In addition, MDSC activation is com-
pletely abrogated in IFNAR1 –/–  mice and IFNAR in NK 
cells is involved in efficient IFN-γ production induced by 
activated MDSCs. Type-I IFN receptor signaling is cru-
cial for growth retardation of B16 tumor in poly I:C ther-
apy. Therefore, a variety of situations result in NK activa-
tion/priming in the therapeutic use of poly I:C in tumor-
bearing mice, although IFNAR is the common factor.

  Miyake et al.  [5] , reported that MAVS is responsible 
for NK cell-dependent tumor regression using MAVS –/–  
mice with poly I:C stimulation ; however, the cell types 
for the poly I:C response and the mechanism of induction 
of NK-sensitive tumor regression remain undefined. NK-
activating ligands on the DC surface as well as soluble fac-
tors induced by IRF-3 and IFNAR stimulation are crucial 
for DC-mediated NK cell activation  [15, 32] . In addition, 
MDSC is a cell type that specifically drives NK priming 
through the MAVS pathway ( fig. 6 ). MAVS-dependent 
IRF-3 activation occurs through stromal cells other than 
DCs, and these cells including MDSCs participate in NK-
sensitive tumor regression. The result of this MDSC func-
tion is in contrast to that of DCs where the TLR3/ 
TICAM-1 pathway preferentially promotes NK cell acti-
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