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ABSTRACT

ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine dihydrochloride salt] is a

selective neuronal nicotinic receptor (NNR) modulator with cognitive enhancing prop-

erties in animal models of cognitive functioning. Amongst NNR subtypes, ABT-089

shows selectivity for the cytisine binding site on the á4â2 receptor subtype as compared to

the á-bungarotoxin (á-BgT) binding sites on the á7 and á1â1äã receptor subtypes. In func-

tional in vitro electrophysiological and cation flux assays, ABT-089 displays differential

activity including agonism, partial agonism and antagonism depending upon the NNR

subtype and assay. ABT-089 is as potent and efficacious as (–)-nicotine at evoking acetyl-

choline (ACh) release from hippocampal synaptosomes. Furthermore, ABT-089 is neuro-

protective against excitotoxic glutamate insults, with even greater potency seen after

chronic treatment. Similarly, ABT-089 is effective in models of cognitive functioning, in-

cluding enhancement of baseline functioning as well as improvement of impaired cog-

nitive functioning seen following septal lesioning and natural aging. In neuroprotective

assays the compound is most potent by chronic administration. In stark contrast to the pos-

itive effects in the cognitive models, ABT-089 shows little propensity to induce adverse
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effects such as ataxia, hypothermia, seizures, cardiovascular or gastrointestinal side ef-

fects. Together these data suggest that ABT-089 is a NNR modulator with the potential for

treating cognitive disorders with markedly limited adverse cardiovascular and gastrointes-

tinal side effects.

INTRODUCTION

Despite years of effort, there are few pharmacological therapies for cognitive disorders

such as attention deficit hyperactivity disorder (ADHD) and Alzheimer’s disease (AD)

available in the clinic. Until very recently, the only approved medications for ADHD were

stimulants such as methylphenidate. However, this medication class of controlled sub-

stances has had limitations due to fear of abuse, mood swings and�or motor side effects

(39). In addition to stimulants, antidepressants, particularly those with noradrenergic ac-

tivity, have been prescribed off-label (39). In keeping with this, the norepinephrine re-

uptake inhibitor atomoxetine (Strattera®) has recently received FDA approval for the

treatment of ADHD. Initial indications suggest atomoxetine has similar efficacy to stimu-

lants with reduced side effects, however, some of the side effects present are presumably

target-mediated, e.g., changes in cardiovascular function (42). Similar to ADHD, there are

very limited pharmacological therapies available for AD. To date, the only approved treat-

ments are the cholinesterase inhibitors such as donepezil and NMDA receptor antagonists

such as memantine, which have been shown to temporarily improve cognitive function

and�or slow deterioration (14, 43).

One intriguing possibility for a novel pharmaceutical agent for the treatment of cog-

nitive dysfunction in ADHD and AD is a modulator of the NNR. The promise of this ap-

proach lies in the effects of nicotine itself. In adults with ADHD, nicotine patches have

been shown to significantly improve attentional performance (32). Similarly, adminis-

tration of nicotine to AD patients enhances performance on memory tasks, particularly the

attentional aspects of those tasks. (32). These results mirror preclinical work demon-

strating enhanced cognitive function and�or reversal of cognitive dysfunction with nic-

otine or nicotinic agonists (22,32).

NNRs are pentameric ligand-gated ion channels made up of differing combinations of

subunits. For the present review, four of these subunit combinations are important. First is

the most common subunit combination in the central nervous system (CNS), the á4â2 re-

ceptor. Knockout studies suggest these subunits play a role in some of the therapeutic ac-

tions of nicotinic agonists such as antinociception, cognitive enhancement and neuro-

protection (9). Second, the á7 receptor, a homomeric receptor, is believed to be involved in

neuroprotection and cognitive functioning (9,22). Third, expression of the á3â4 subunit

combination is strong in both the CNS and peripheral nervous system (PNS), and this re-

ceptor subtype is believed to play an important role in the autonomic nervous system, in-

cluding cardiovascular function (9,38). Finally, the á1â1äã is a subunit combination ex-

isting only in the PNS that plays an important role in the control of skeletal muscle (20).

The following article is a summary of the preclinical pharmacology of ABT-089, a

NNR modulator with differential affinity and activity at multiple NNR subunit combina-

tions. As a partial agonist at the á4â2 and á7 subtype receptors and an antagonist at the á3â4

subtype receptor, ABT-089 is a NNR modulator with a substantially reduced side effect

profile compared to nicotine and other NNR modulators.
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CHEMISTRY

ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine dihydrochloride salt] is a

nonhygroscopic white crystalline powder with a melting point of 253°C. The aqueous sol-

ubility of the hydrochloride salt exceeds 500 mg�mL over a pH range of 2–9. The hydro-

chloride salt is stable at 25°C (i.e., less than 10% degradation was observed over a range

of pH (2–9) during 62 days). It exhibited a t90 of 20.3 days under extreme ultraviolet light

at pH 7.3 and 40 °C.

The original synthesis of ABT-089 has been previously published and is summarized in

Fig. 1 (25). The tert-butoxycarbonyl (Boc)-prolinol building block was prepared from

commercially available Boc-L-proline in high enantiomeric purity.

A modified route (Fig. 2) has been developed to facilitate the large-scale synthesis of

ABT-089. Reaction of L-prolinol (Fig 2, molecule 4) with toluenesulfonyl chloride re-

sulted in both the protection of the nitrogen atom and activation of the primary alcohol for

nucleophilic displacement. The coupled product (Fig. 2, molecule 6) is deprotected, ex-

tracted from aqueous solution and converted to the corresponding hydrochloride salt in a

three-step sequence.
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BIOCHEMICAL PHARMACOLOGY

Radioligand Binding

ABT-089 interacts with high affinity at the á4â2 subtype of both rat and human NNRs.

Affinities were measured by displacement of specific [3H](–)-cytisine binding from rat

brain membranes (Ki = 17 nM) and from human á4â2 NNRs stably expressed in a HEK

cell line. In contrast, (–)-nicotine displaces [3H](–)-cytisine binding to rat brain and human

NNRs with Kis of 1 nM. ABT-089 has insignificant affinity (Ki > 10,000 nM) for dis-

placement of [125I]á-bungarotoxin (á-BgT) from both rat brain membranes and from HEK

cells that are stably expressing the human á7 NNR subtype. (–)-Nicotine displaces

[125I]á-BgT binding from rat brain and human á7 with Ki values of 6000 nM and 2000 nM,

respectively. ABT-089 and (–)-nicotine are also weak inhibitors (Ki > 1000 µM) of

[125I]á-BgT binding to the á1â1äã NNR subtype found on Torpedo electroplax membranes

(40).

In 45 other receptor binding and enzyme activity assays, ABT-089 shows negligible af-

finity (Ki > 10,000 nM). Among those assayed for were muscarinic, GABA, 5-HT3 and

the benzodiazepine receptors, members of the ligand-gated ion channel superfamily,

channel proteins, members of G-protein coupled receptor superfamily, neurotransmitter

uptake sites, as well as several enzymes (40).

In Vitro Functional Studies

Ion flux

Unlike (–)-nicotine, ABT-418 [(S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole] and

ABT-594 [(R)-5-(2-azetedinylmethoxy)-2-chloropyridine mono-tosylate salt], all three

cholinergic channel activators, ABT-089 displays a complex pattern of pharmacological

activity in various functional assays. At the major subtype in the CNS, the á4â2 receptor,

ABT-089 is significantly less potent and efficacious relative to (–)-nicotine in the Rb+

efflux assay exhibiting an EC50 > 300 mM and efficacy <10% (human receptor; Table 1).

In contrast, in the mouse thalamic synaptosomal Rb+ efflux assay, ABT-089 displays

partial agonist activity with a potency of 5 ìM and 34% efficacy, an effect attenuated by

the noncompetitive NNR antagonist mecamylamine (Table 1). As previously reported, the

NNR-induced cation efflux from mouse thalamic synaptosomes is indicative of the acti-

vation of an á4â2 subtype (31). The difference in activity at the á4â2 subtypes in these two

preparations could be due to an NNR species difference, to a difference between recom-

binant and native NNR pharmacology, or to effects on native NNR subtypes other than the

recombinant subtypes evaluated to date.
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TABLE 1. In vitro functional properties of ABT-089 in Rb+ efflux assays

EC50 (ìM) (efficacy) ABT-08911 (–)-Nicotine1

Mouse thalamus 5 (34%) 1.5 (100%)

Human IMR-32 150 (<20%) 20 (100%)

Human TE 671 30 (60%) 180 (100%)

1 Data summarized from ref. 40.



The effects of ABT-089 were also investigated in a NNR-mediated Rb+ efflux assay

using the IMR-32 cells, which express a “ganglionic-like” NNR, reflective of an á3â4

subtype (28). In the IMR-32 cells, ABT-089 exhibits weak partial agonist activity with

an EC50 > 300 ìM and 15% efficacy (Table 1). ABT-089 also exhibits weak activity

(IC50 � 100 ìM) as an antagonist to block nicotine-induced cation efflux. The weak ac-

tivity observed in this cell line parallels the diminished ability of this compound to elicit

adverse cardiovascular side effects in anesthetized dogs, and this functional IMR-32 data

supports this observed correlation (see below).

In the TE 671 cell line, ABT-089 exhibits partial agonist activity with efficacy of 60%

and potency greater than (–)-nicotine with an EC50 value of 30 ìM (Table 1). This effect

is blocked by pretreatment with mecamylamine, indicating that it is NNR-mediated.

The TE 671 cells express muscle-type NNRs (27) as well as some subunits of the neuro-

nal subtypes (40). However, as previously noted, ABT-089 displays little affinity for

[125I]-á-BgT binding sites on TE 671 cells. Therefore, this raises the possibility that the

TE 671 cell line contains neuronal subunits that form a unique pharmacology explaining

the enhanced pharmacological activity of ABT-089 (40).

NNR channel currents

The á7 NNR subtype is known to be highly Ca2+ permeant (5,16,37,36) and has been

found to enhance neurotransmitter release in several neuronal systems (2,3,15,17,19,21,

23,24,29,41). At human á7 NNR expressed in Xenopus oocytes, ABT-089 is a weak partial

agonist. The amplitude of the response to a high concentration of ABT-089 (1 ìM) is only

1.5% as large as the response to nicotine (6,40). However, effects dependent upon a small

but relatively persistent influx of Ca2+ may be more sensitive to ABT-089 than is apparent

from consideration of the amplitude alone (Fig. 3; see also ref. 33). Among such effects

may be modulation of neurotransmitter release and neuroprotection.

Like other agonists, ABT-089 also inhibits á7 NNR through desensitization (6,7) Thus,

systemic application of ABT-089 could elicit a small but persistent increase in á7 channel

openings, rather like an increase in spontaneous activity, while inhibiting synaptic á7 acti-

vation by acetylcholine (ACh) released rapidly at high concentration.

To further dissect the actions of ABT-089 at á7 NNR, its effects at human á7V274T

mutagenized NNR were determined (7). In this NNR, one amino acid in the channel-

lining TM2 segment is changed from valine to threonine, resulting in a receptor that ap-

pears to maintain an open channel in the desensitized state (4). Like other full and partial

agonists, ABT-089 is much more potent and efficacious at á7V274T than at the wild-type

receptor. However, ABT-089 remains a partial agonist at á7V274T (40%), unlike other

partial agonists such as (–)-cotinine and GTS-21 [(E)-3-(2,4-dimethoxybenzylidene)-

3,4,5,6-tetrahydro-2,3�-bipyridine dihydrochloride] which are full agonists at á7V274T.

The actions of ABT-089 at á7 NNR are complex and appear to include direct desensiti-

zation as well as channel activation.

Neurotransmitter release

ABT-089 is nearly as potent as (–)-nicotine in its ability to evoke [3H]ACh release from

rat hippocampal synaptosomes. The EC50 of [3H]ACh release for ABT-089 is 3 ìM while

that for (–)-nicotine is 1 ìM (40). In addition, ABT-089 has full efficacy as compared to

(–)-nicotine. The ABT-089-evoked release of ACh may partially account for its ability to

enhance cognition.
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Another neurotransmitter that is released in response to ABT-089 is dopamine. In stim-

ulating the release of [3H]dopamine from rat striatal slices, ABT-089 is a partial agonist

with 70% efficacy. The selective antagonist, dihydro-â-erythroidine (DHâE), blocks the

response. ABT-089 is also 25-fold less potent than (–)-nicotine with an EC50 of 1.1 ìM for

ABT-089 compared with 0.04 ìM for (–)-nicotine (40).

Thus, the potency and efficacy of ABT-089 to elicit neurotransmitter release is not well

explained by its activity at the human recombinant receptors evaluated to date. The reason

for this discrepancy is not known. It may relate to species differences between rodent and

human NNR pharmacology, or it may signal a discord between recombinant and native

NNR structure and pharmacology. Alternatively, it is possible that ABT-089 is selective

for an NNR subunit combination, at which it has not yet been tested, such as á6â2 or

á4á5â2.

In vitro cytoprotection

Pretreatment of primary cortical cultures or IMR-32 cells with ABT-089 protects cells

against several cytotoxic insults as measured by a lactate dehydrogenase release assay

(13). ABT-089 exhibits a dose-dependent protection against glutamate insult with EC50

values of 3 ìM and 10 ìM for IMR-32 and primary cortical cells, respectively (Fig. 4).

The ABT-089-induced neuroprotection is time-dependent with maximal effects observed

at 2 h after pretreatment with ABT-089. The protective effect of ABT-089 is mediated via

an interaction with the NNRs since pretreatment with the NNR antagonists, mecamyl-

amine and á-BgT, attenuate the observed protective effects (40). These results indicate the

neuroprotective effects of ABT-089 might be via the á7 NNR subtype.

ABT-089 is also neuroprotective in primary cortical cultures against cytotoxic insults

by aggregated Aâ1–42, thought to be one of the first peptides formed in AD plaques (35)
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and gp120, the neurotoxic soluble HIV-1 coat protein (26). This neuroprotection by

ABT-089 (10–100 ìM) is via an interaction with NNRs because it can be attenuated

by mecamylamine (12). In addition, it has been shown to be Ca2+ dependent since removal

of Ca2+ from the extracellular medium prevents nicotinic agonist-induced neuroprotection

(13).

Curiously, the potency and efficacy of ABT-089 to elicit neuroprotection correlates

better with á7 desensitization than with á7 channel activation. However, if neuroprotection

depends upon a small-amplitude but persistent Ca2+ influx, then the potency and efficacy

of a weak partial agonist like ABT-089 would be enhanced relative to that measured in the

standard electrophysiological technique involving synchronous channel activation by

bolus drug application.

As discussed in the behavorial section, the potency and efficacy of ABT-089 is en-

hanced after subacute treatment (10). Therefore, studies examining subacute exposure of

primary cortical cells to ABT-089 (0.01 to 10 ìM for 7 days), prior to glutamate insult,

were performed. As shown in Fig. 4, subacute exposure of ABT-089, at concentrations

of 0.01–10 ìM, induces significant neuroprotection against glutamate (300 ìM) insult.

Similar doses of ABT-089, given acutely (2 h), would not elicit neuroprotection against a

glutamate insult. It should be noted that the lower doses (0.01–0.1 ìM) used in the sub-

acute exposure are approximately equal to the cognitive-enhancing plasma and brain

levels of ABT-089 after subacute exposure in rodents (10). It is unclear whether the effects

of ABT-089 in an in vitro model of neurotoxicity include an upregulation of the NNR

subtypes.
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IN VIVO PHARMACOLOGY

Cognitive Assessment

ABT-089 has been examined in a series of preclinical assays in normal and aging an-

imals designed to assess its potential for the treatment of cognitive dysfunction. In the

24-h inhibitory avoidance paradigm in the mouse, ABT-089 was injected prior to the

training phase of the experiment. Upon testing for retention of learning 24 h later, it was

found that ABT-089 enhances inhibitory avoidance at a minimum dose of 0.62 ìmol�kg,

i.p. (25). In this regard, the compound performs as well as (–)-nicotine (25). A similar

assay was performed in young and aged rats. ABT-089 was administered chronically via

minipump for two weeks, and then animals were exposed to the training phase for inhib-

itory avoidance and tested for retention 72 h later with pump on board. Under these condi-

tions, ABT-089, at doses as low as 1.3 ìmol�kg�d, (plasma concentration of 5.3 ng�mL)

improves performance in the aged (non-significant trend), but not in the young rats (10).

ABT-089, following acute administration of 1.9, 6.2, or 19 ìmol�kg, i.p., does not alter

performance of young rats in the Morris Water maze nor does it reverse the performance

deficits seen in septal lesioned young rats. In contrast, following continuous infusion for

2 weeks, ABT-089 significantly attenuates lesion-induced deficits in water maze perfor-

mance (10). The effect is seen at 1.3 and 4.0 ìmol�kg�d (plasma concentrations of 5.3 and

13.7 ng�mL, respectively), i.e., doses lower than those required for (–)-nicotine to at-

tenuate septal lesion-induced deficits in the Morris Water maze (19 and 62 ìmol�kg�d)

(10). The effects of chronically administered ABT-089 are specific to the cognitive def-

icits induced by the lesions as shown by the lack of effect of the compound on lesion-in-

duced changes in locomotor activity or startle reactivity (10). Finally, in a pharmacologi-

cally induced model of cognitive deficits, repeated administration of ABT-089 attenuates

scopolamine-induced deficits in the Morris water maze (Fig. 5).

ABT-089 enhances cognitive performance in monkeys, similarly to aged and lesioned

rats. In a standard delayed-match-to-sample (DMTS) paradigm, ABT-089 improves the

accuracy of performance in mature monkeys when the test is performed with a medium

length delay between stimulus exposure and response (trend seen 10 to 32.4 nmol�kg,

significance seen at 64.8 nmol�kg; 10). Similarly, there is a trend toward improving per-

formance after a long delay with ABT-089, at doses of 32.4 and 64.8 nmol�kg (corre-

sponding to peak plasma concentrations of approximately 13 and 26 ng�mL, respec-

tively). Performance of aged monkeys in the standard DMTS paradigm with a long delay

is markedly improved by ABT-089, at 4 and 8 nmol�kg (peak plasma concentrations of

approximately 1.5 and 3 ng�mL, respectively) (10). As a comparator, (–)-nicotine im-

proves the performance of aged monkeys at doses of 31 and 62 nmol�kg (8). Finally, in a

modified DMTS paradigm with a distractor, ABT-089, at doses of 4.1 to 32.8 nmol�kg,

significantly enhances performance of adult monkeys. In comparison, (–)-nicotine signifi-

cantly improves performance in this task only at the dose of 43.4 nmol�kg (34).
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Other Behavioral Assessment

NNR modulators commonly induce unwanted behavioral effects such as decreased

locomotor activity, hypothermia, ataxia and seizures. In contrast to its equal or greater

potency compared to nicotine in cognitive behavioral models, ABT-089 is markedly

less potent than nicotine in inducing unwanted behavioral effects. Therefore, whereas

(–)-nicotine decreases locomotor activity in mice (ED50 = 0.62 ìmol�kg) and rats

(ED50 = 1.9 ìmol�kg), ABT-089 does not decrease locomotor activity in doses up to

190 ìmol�kg in either mice or rats (11,25). As stated above, this lack of effect on loco-

motor activity is also apparent after chronic treatment via minipump (10). Similarly,

ABT-089 does not induce ataxia or decreased motor coordination as measured by the

rotarod assay until supra-efficacious doses of 300 ìmol�kg. In this model, (–)-nicotine

disrupts performance at doses as low as 12.4 ìmol�kg (30). In mouse hypothermia

studies, ABT-089 does not induce hypothermia at doses up to 62 ìmol�kg as compared to

the marked induction of hypothermia seen with (–)-nicotine at 6.2 ìmol�kg (25). Fur-

thermore, in the mouse, ABT-089 is almost 20� less potent at inducing seizures than is

(–)-nicotine (ED50 = 774 ìmol�kg vs. ED50 = 41 ìmol�kg, respectively; 25). Similarly,

EEG studies indicate that ABT-089, in doses up to 19 ìmol�kg, does not induce cortical

activation, whereas (–)-nicotine elicits these effects at doses as low as 0.62 ìmol�kg (1).

Finally, in the rat, ABT-089, at doses up to 5000 ìmol�kg, has no effect on respiration.
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PHARMACOKINETICS AND METABOLISM

The pharmacokinetics of ABT-089 has been evaluated in Sprague-Dawley rats, beagle

dogs, and cynomolgus monkeys (Table 2) (1,25). Following intravenous administration to

rats, ABT-089 has a very short plasma elimination half-life (~1 h) and rapid plasma

clearance (3.4 L � h�kg). In either dogs or monkeys, the plasma half-life is approximately

2-fold longer (~2 h), with a corresponding decrease in plasma clearance (2.0 L � h�kg). In

rats and dogs ABT-089 is rapidly absorbed upon oral administration, with peak plasma

concentrations observed within the first 40–50 min. Absorption is slightly slower in the

monkey, with peak plasma concentrations achieved 1.4 h after oral administration. Oral

bioavailability of ABT-089, in aqueous solution, averages 33, 26, and 62% in the rat,

monkey, and dog, respectively (1).

In addition, brain concentrations of ABT-089 have been assessed in rats. Peak concen-

trations and area under the curve (AUC) values for ABT-089, by i.p. administration, are

approximately 10-fold higher in the brain than in the plasma. However, it is interesting to

note that there is an approximately 1:1 brain: plasma ratio shortly after administration

(<15 min). Following oral administration, maximal plasma and brain levels are reached

after approximately one hour. Similar to i.p. administration, a marked preferential distri-

bution to brain relative to plasma is observed at 2 h after oral administration of ABT-089.

METABOLISM AND DISPOSITION

Preliminary in vitro metabolism studies using 9000 g supernatant fraction (S9) from

mouse, rat, dog, monkey, and human livers indicate that ABT-089 undergoes only

minimal metabolism (<10%). At least four metabolites have been detected, two of which

appear to be the lactam (Fig. 6, molecule 7) and pyrrolidine N�-oxide (Fig. 6, molecule 8).
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TABLE 2. Pharmacokinetic properties of ABT-089 across multiple species

Dose
t1�2

1

(min)

Vâ

(L�kg)

Clp
[L�(h � kg)]

Cmax

(ng�mL)
Tmax
(h)

F
(%)ìmol�kg mg�kg

Rats

i.v. 2 0.53 66 5.5 3.4

Oral 2 0.53 213 9.3 0.6 33.4

Dogs

i.v. 5 1.32 108 5.0 2.0

Oral 5 1.32 102 9.4 0.8 61.5

Monkeys

i.v. 5 1.32 112 5.1 1.9

Oral 5 1.32 119 3.1 1.4 26.3

1 The terms in the table are defined as follows: t1�2, elimination half life; Vâ, volume of distribution;

Clp, plasma clearance; Cmax, maximum plasma concentration; Tmax, time of maximum plasma con-

centration; F, oral bioavailability.



The pyridine N-oxide (Fig.  molecule 9) and hydroxylamine are thought to be two addi-

tional metabolites.

Preliminary metabolism and excretion studies have been conducted in a single rat and a

single dog after bolus i.v. administration of radiolabelled ABT-089 (3 and 1 ìmol�kg, re-

spectively). In both species, the majority (65%) of the dose (as measured by total radioac-

tivity) was excreted in urine within the first 24 h after i.v. administration. Only a small

fraction (<10%) was present in feces (internal data).

In the rat, HPLC analysis of urine excreted in the first 24 h indicates the presence of

45% of the parent drug and more than 50% of one major metabolite that was identified

(Fig. 6, molecule 9). The parent drug and the pyridine N-oxide (Fig. 6, molecule 9) were

also detected in plasma at 15 and 60 min after dosing. Only trace amount of metabolites

(Fig. 6, molecules 7 and 8) were detected in urine and plasma.

In the dog, the parent drug accounts for only 20% of total radioactivity in the urine

during the first 24 h after i.v. administration. At least 6 metabolites have been detected in

urine, accounting for 71% of radioactivity. As in the rat, the pyridine N-oxide (Fig. 6,

molecule 9) represents one of the major metabolites.

CARDIOVASCULAR PROFILE

In order to assess the cardiovascular safety profile of ABT-089, three primary assays

were performed. The first two, the Purkinje fiber repolarization assay and the hERG ionic

current assay were performed in vitro. The final assay was the complete cardiovascular

profiling of the compound in vivo in the anesthetized dog (1).

In Vitro Studies

Changes in action potential duration of canine cardiac Purkinje fibers in vitro have

been assessed to evaluate the effects of ABT-089 on ventricular repolarization. In this

assay, electrical activity of isolated Purkinje fibers from adult beagle dogs of either gender

are monitored using standard microelectrode techniques under physiologic conditions

(superfusion with bicarbonate-buffered Tyrode’s solution, [K+]o = 4 ìM, 37°C); slow

stimulation rates (0.5 Hz) are applied to exaggerate potential drug effects on repolariza-

tion. There is no effect of ABT-089 on the action potential duration at plasma concentra-

tions ranging from 20.7 to 2070 ng�mL (Fig. 7A) (1).
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In addition, the effect of ABT-089 on hERG current has been evaluated using HEK 293

cells stably expressing hERG. In this assay, drug effects are evaluated based on changes of

tail currents measured during 4-sec repolarizing test pulses to –50 mV preceded by a 3-sec

depolarizing activating pulse to 0 mV (holding potential of –80 mV, pulses applied once

every 15 sec). Experiments are conducted at 36.5–37°C with a 5 ìM external K+

HEPES-buffered Tyrode’s solution.

ABT-089 was evaluated at target concentrations of 15, 150, and 1500 ng �mL (mea-

sured bath concentrations of 13.6 ± 1.0, 127.6 ± 6.0, and 1,262.2 ± 59.4 ng �mL;

mean ± S.E.M., n = 5–6 per concentration). Under these wide-ranging concentrations,

ABT-089 had no effect on hERG tail currents (relative to water-vehicle controls). Fur-

thermore, ABT-089 did not affect the amplitude of hERG activating current during depo-

larizing activating pulses to 0 mV (Fig. 7B) (1).

In Vivo Studies

The in vivo cardiovascular profile of ABT-089 has been evaluated in anesthetized dogs.

In this assay, male beagle dogs, weighing approximately 8–11 kg are anesthetized with

pentobarbital (35 mg�kg, i.v.), immediately placed on a constant intravenous infusion of

pentobarbital (6.0 mg�kg�h) and instrumented for measurement of cardiovascular and

hemodynamic function parameters. ABT-089, administered by intravenous infusion

(0.02 mL�kg�min) at doses of 24.0, 240, and 2400 mg�kg, produced peak plasma concen-

trations of 5.2 ± 0.4, 51.9 ± 2.1, and 499.5 ± 51.2 ng�mL, respectively. At these plasma

concentrations, ABT-089 produced no physiologically significant changes in mean ar-
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A.

B.

Fig. 7. Effect of ABT-089 on in vitro cellular cardiac electrophysiology. A. Lack of effect of ABT-089 on canine

Purkinje fiber repolarization. Illustrated are representative action potentials obtained in the absence and in the

presence of the highest concentration of ABT-089 tested (2070 ng�mL) during slow stimulation (2 sec basic

cycle length [0.5 Hz]); the action potentials are superimposed. Comparable results were observed in each of six

fibers studies. B. Effect of ABT-089 on hERG tail current amplitude. ABT-089 had no effect on hERG tail

current at all concentrations tested (ANOVA, n = 6 per group). Targeted concentrations refer to expected bath

concentrations, while measured concentrations represent analytical assay results from bath superfusate

(mean ± S.E.M. values measured from 5–6 experiments). Inset: voltage clamp protocol employed.



terial, systolic or diastolic arterial pressures relative to control animals. In addition,

ABT-089 exerted no physiologically significant effects on heart rate, central venous

pressure, left ventricular-end diastolic pressure, cardiac output, systemic vascular resis-

tance, pulmonary vascular resistance or the hematocrit when compared to vehicle con-

trols. Changes in indices of cardiac contractility (dP�dtmax and dP�dt at 50 mm Hg) were

not significantly different from those in control animals. ABT-089 had no effect on cardiac

electrophysiologic function. When infused at the same doses, ABT-089 had no significant

effects on either the QTc (Bazett’s formula) or PR intervals during the treatment or

post-treatment periods. To further investigate the cardiovascular potential of ABT-089 was

infused to dogs at higher doses (6.5, 19.5, and 65 mg�kg). Again, at plasma levels as high

as 2.91 ± 0.5 ìg�mL, ABT-089 had no physiologically significant effects on any hemody-

namic, myocardial or cardiac electrophysiological parameters. (1).

As noted previously, the plasma concentration for behavioral efficacy of ABT-089 is

approximately 2–25 ng�mL. The results of the in vivo cardiovascular studies demonstrate

that at plasma concentrations approximately 60–1500 fold higher than the estimated pre-

clinical efficacious concentrations, ABT-089 exerts no physiologically significant effects

on hemodynamics, cardiovascular function or myocardial electrophysiological function

in the anesthetized beagle dog, and, therefore, exhibits no nicotine-like cardiovascular

effects.

GASTROINTESTINAL PROFILE

One of the dose-limiting effects of oral (–)-nicotine is significant activity at the level of

the enteric nervous system of the gastrointestinal tract. In particular, development of an

oral formulation of an NNR agonist for the clinic requires substantially diminished gastro-

intestinal activity compared to nicotine. To assess the gastrointestinal profile, ABT-089

has been evaluated in vitro and in vivo. In vitro, ABT-089, 100 ìM, does not evoke con-

tractility of the guinea-pig ileal smooth muscle, unlike (–)-nicotine or the muscarinic ag-

onist, methylcholine (1). In addition, ABT-089 does not inhibit the activity of other con-

tractile agents such as ACh, histamine, serotonin or K+ (1).

In addition, in vivo studies have been carried out to examine the effects of ABT-089 on

gastrointestinal transit and emesis. In a conscious rat model, ABT-089 was administered at

doses of 3, 10, 30, and 100 mg�kg, and a charcoal meal suspension was administered by

gavage 30 min after the drug. At doses up to 100 mg�kg ABT-089 produces no significant

effects on gastrointestinal transit. Additionally, ABT-089 has been evaluated for emetic li-

ability in conscious ferrets, a model for the evaluation of clinical emetic potential.

ABT-089 was administered by oral gavage at 3, 10, 30, and 50 mg�kg and animals were

observed for emesis over the next 90-min period. There was no notable emesis at any dose

of ABT-089 tested. Similarly, as previously reported (1), ABT-089 does not induce emesis

in either dogs or monkeys. Taken together, these data suggest that, unlike nicotine,

ABT-089, at behaviorally relevant concentrations, does not interfere with gastrointestinal

motility.
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CONCLUSIONS

ABT-089 is an orally active compound with good brain penetration that shows activity

in multiple models of cognitive function, including models of impaired function such as

septal lesions and aged animals. Furthermore, these effects are seen in at least three

species. The cognitive enhancement seen in the preclinical models is similar to that seen

with (–)-nicotine, a compound that has been shown to improve cognitive functioning in

humans with ADHD and Alzheimer’s disease (32). ABT-089 has a markedly improved

safety profile compared to (–)-nicotine; most importantly, it shows little or no evidence of

cardiovascular or gastrointestinal liabilities. This selective profile is likely based on the

binding and in vitro functional profile of the compound. The binding and activity profile

of ABT-089 is unique in that, while it shows selective binding at the á4â2 receptor

subtype, it has only weak agonist activity at the receptor. At other recombinant receptor

subtypes, it shows weak partial agonism and�or antagonism. Nevertheless, ABT-089 is ef-

fective in stimulating neurotransmitter release from rat brain in vitro. To date, it is unclear

which of these properties underlie the efficacy seen in preclinical models. Regardless, the

preclinical results suggest that ABT-089 may be efficacious in the treatment of cognitive

disorders such as ADHD and AD with a limited potential for adverse cardiovascular and

gastrointestinal side effects.

We have recently completed clinical Phase I studies. As suggested by preclinical

studies, ABT-089 demonstrates good cardiovascular and gastrointestinal tolerability at

plasma concentrations expected to be therapeutic. In addition, the compound has an ex-

cellent pharmacokinetic profile in humans.
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