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Upstream Stimulatory Factors Are Mediators of
Ca”"-Responsive Transcription in Neurons
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To identify molecular mechanisms that control activity-dependent gene expression in the CNS, we have characterized the factors that
mediate activity-dependent transcription of BDNF promoter III. We report the identification of a Ca>*-responsive E-box element,
CaRE2, within BDNF promoter III that binds upstream stimulatory factors 1 and 2 (USF1/2) and show that USFs are required for the
activation of CaRE2-dependent transcription from BDNF promoter III. We find that the transcriptional activity of the USFs is regulated
by Ca®"-activated signaling pathways in neurons and that the USFs bind to the promoters of a number of neuronal activity-regulated
genes in vivo. These results suggest a new function for the USFs in the regulation of activity-dependent transcription in neurons.
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Introduction

Neural activity arising from sensory input induces the expression
of new gene products that contribute to enduring adaptations in
the CNS. These activity-dependent changes include the refine-
ment of cortical circuitry during development (Katz and Shatz,
1996; Mao et al., 1999; Pallas, 2001; Sur and Leamey, 2001), the
formation of long-term memories (Koenig and Lu, 1967; Nguyen
et al., 1994), and the development of complex behaviors such as
birdsong learning (Clayton, 1997). Neuronal activity and subse-
quent depolarization drive the influx of Ca®" ions via L-type
voltage-sensitive Ca?* channels (L-VSCC) and the NMDA sub-
type of glutamate receptors, stimulating an intricate signaling
network that regulates rapid transcriptional events at the pro-
moters of downstream genes (Bito et al., 1997; Impey and Good-
man, 2001; West et al., 2001). An especially interesting group of
these activity-regulated genes encodes proteins that are expressed
selectively in the nervous system and regulate synaptic matura-
tion and function. Examples include the nicotinic acetylcholine
receptor a7 subunit (nAchRa7) (Zhou et al., 2001), the major
histocompatibility complex (MHC) class I genes (Corriveau et
al., 1998; Huh et al., 2000), cyclooxygenase-2 (COX-2)/
prostaglandin E synthase (PGES) (Yamagata et al., 1993), the
neuropeptide preprotachykinin (Benson et al., 1994), and the
neurotrophin brain-derived neurotrophic factor (BDNF). Inves-
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tigating the regulatory mechanisms that control the transcription
of these genes in neurons may provide important insights into
activity-dependent neural development and synaptic plasticity.
To identify molecular mechanisms that mediate activity-
dependent gene expression in neurons, we have studied the tran-
scriptional regulation of BDNF. BDNF is highly expressed in neu-
rons and plays important roles in neuronal survival (Bonni et al.,
1999), cortical development (Ghosh, 1996), and synaptic plastic-
ity (Poo, 2001). Transcription of the BDNF gene is stimulated
dramatically by membrane depolarization in vitro (Ghosh et al.,
1994) and by neural activity during kindling, long-term potenti-
ation (LTP) induction, and visual associative learning (Ernfors et
al., 1991; Patterson et al., 1992; Tokuyama et al., 2000). The
BDNF gene comprises five exons, the first four of which are
spliced alternatively to a single 3’ exon encoding the complete
BDNF protein (Timmusk et al., 1993). Although the specific
functions of the different BDNF transcripts are not yet clear, we
have demonstrated previously that the promoter upstream
of exon III is most responsive to membrane depolarization of
cultured embryonic rat cortical neurons (Tao et al., 1998).
The cAMP/Ca”"-response element binding protein (CREB)
is required for the activity-dependent transcription of a number
of neuronal genes, including BDNF exon III (Shieh et al., 1998;
Tao et al., 1998; Sasaki et al., 2000). However, activation of CREB
alone is not sufficient to mediate the activity-dependent tran-
scription of BDNF exon III. Mutations of BDNF promoter III 5
to the CRE sequence severely reduce the responsiveness of the
promoter to Ca?" influx (Shieh et al., 1998; Tao et al., 1998),
indicating that there must exist additional transcription factors
that cooperate with CREB to regulate BDNF promoter III in a
Ca*"-dependent manner in neurons. We have conducted de-
tailed mutagenesis of the region 5’ to the CRE in BDNF promoter
11T and find that it contains two distinct Ca>"-response elements
(CaREs). In this report we show that one of these elements
(CaRE2) is a Ca**-responsive E-box. Using a yeast one-hybrid
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screen to identify factor(s) that bind this element, we found that
upstream stimulatory factors 1 and 2 (USF1/2) bind to BDNF
promoter III through the E-box sequence. The USFs are bound to
BDNF promoter III in vivo, suggesting that they are likely to
function as endogenous transcriptional regulators of BDNF ex-
pression in the brain. Consistent with a role for the USFs as
regulators of Ca”*-dependent transcription of BDNF exon I1I,
we observe that the transcriptional activity of the USFs is acti-
vated by Ca®" influx into neurons. In addition to the evidence
that USFs regulate BDNF expression, we demonstrate by chro-
matin immunoprecipitation that the USFs are bound in vivo to a
number of other activity-regulated promoters. These data sug-
gest a new function for the USFs as activity-dependent transcrip-
tional regulators in the brain that play a role in orchestrating
neural development and synaptic plasticity.

Materials and Methods

Plasmids. BDNF pllII(170)-Luc, EF-B-gal, pSG424 (Gal4 only), Gal4-
Luc, Gal4-USF2, pSG5-USF2, pSG5-USF2DN, 3 XUBE-Luc (pU3ML-
Luc), CRE-Luc, CMV-A-USF1, and the control vectors pML-Luc and
CMYV were described previously (Sheng et al., 1991; Luo and Sawadogo,
1996a,b; Abdollah et al., 1997; Tao et al., 1998). TK-pRL was purchased
from Promega (Madison, WI). We generated 2 bp substitutions of BDNF
pIII(170)-Luc by QuickChange site-directed mutagenesis (Stratagene,
La Jolla, CA) with a pair of complimentary 5’ oligos containing two
random nucleotides at 2 bp intervals from nucleotides 54 to —41 in
BDNF promoter III.

Cell culture, transfection, stimulation, and luciferase assay. Cortical neu-
rons from embryonic day 18 (E18) Long—Evans rats (Charles River, Wil-
mington, MA) and E16 C57/Black 6 mice were cultured as described
(Tao et al., 1998). Neurons were transfected at 3 d in vitro (3 DIV) by the
Ca?* phosphate precipitation method (Xia et al., 1996). At 2 d after
transfection the neurons were depolarized with 50 mm KCI (Tao et al.,
1998) for 7-9 hr. Cell extracts were used for a luciferase reporter assay or
a dual luciferase reporter assay if the cells were cotransfected with TK-
pRL (Promega); 80 ul of extract was used for a 3-galactosidase assay with
ortho-nitrophenyl 3-p-galactopyranoside as the substrate. The normal-
ized luciferase activity was obtained by dividing the firefly luciferase ac-
tivity by either the renilla luciferase activity or the B-galactosidase activ-
ity. Each normalized value represents the average of at least three
independent determinations, and the error bars indicate the SEM.
L-VSCCs were blocked by the addition of 5 uM nimodipine (Roche Mo-
lecular Biochemicals, Indianapolis, IN), and NMDA receptors were
blocked by 100 um p-APV (Sigma, St. Louis, MO) for 5 min before
depolarization. Glutamate receptors were activated by the addition of 20
M glutamate.

Nuclear extracts and electrophoretic mobility shift assays. Nuclear ex-
tracts and electrophoretic mobility shift assays (EMSAs) were performed
as described (Tao et al., 1998). The radiolabeled CaRE2 probe was syn-
thesized by Klenow (3'—5' exo ~; New England Biolabs, Beverly, MA)
with a-**P-dCTP (NEN Life Science, Boston, MA), using complemen-
tary oligonucleotides: 5'-GTG AGCTGT CAT ATGATA CCT CCT CTG
CCT C-3" and 5'-GAG GCA GAG GAG G-3' (Invitrogen, San Diego,
CA). Wild-type and mutant unlabeled probes were synthesized by PCR
with primers 5'-GGT AAT TCG TGC ACT AGA G-3" and 5'-CGA GAG
GGC TCC ACG CTG C-3', using the wild-type or mutant BDNF
pIII(170)-Luc vectors as templates. Anti-USF1 (s¢-229X), anti-USF2 (sc-
862X), and anti-c-Myc (sc-42X) antibodies for supershift were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA).

Yeast one-hybrid screen. The yeast one-hybrid screen for CaRE2 bind-
ing proteins was performed by using the Matchmaker Yeast one-hybrid
system (Clontech, Palo Alto, CA). Six repeats of the CaRE2 sequence
(from nucleotides —56 to —39) were cloned upstream of the HIS3 gene.
Then the plasmid was integrated into yeast genome to generate a yeast
reporter strain, and the strain was transfected with a rat brain cDNA
library containing ~1 X 10° independent clones fused to the transcrip-
tional activation domain of the yeast Gal4 protein (Clontech). Colonies
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that grew on minimal medium lacking histidine were selected, and the
c¢DNA-containing plasmids were recovered and sequenced from these
colonies.

Immunocytochemistry. Anti-USF1 (C-20) and anti-USF2 (C-20) anti-
bodies were purchased from Santa Cruz Biotechnology. Both antibodies
were used at 1:400 for cell staining. The mouse TuJ1 anti-B-tubulin IIT
antibody (Babco, Richmond, CA) was used at 1:300.

Chromatin immunoprecipitation assay. E18 rat cortical neurons (2 X
107 cells) at 5 DIV were treated with 1% formaldehyde at room temper-
ature for 20 min. After two washes with 1X PBS, the cross-linked neu-
rons were scraped off the plates. The neurons were pelleted, resuspended
in 200 wl of lysis buffer, and processed for chromatin immunoprecipita-
tion with the chromatin immunoprecipitation (ChIP) assay kit (Upstate
Biotechnology, Lake Placid, NY) with the following modifications: (1)
the cell lysates were sheared by sonication for a total of 100 sec at 20 sec
per interval; (2) the protein A agarose/antibody/transcription factor
complex was washed in the low-salt immune complex wash buffer twice,
high-salt immune complex wash buffer twice, LiCl immune complex
wash buffer twice, and then 1X TE three times; and (3) the chromatin
fragments that were pulled down with specific antibodies were resus-
pended in 200 ul of H,O, 10 ul of which was used for PCR for 28-30
cycles. Anti-Bad (N-20), anti-c-Myc (C-33), and anti-Id (Z-8) antibodies
were purchased from Santa Cruz Biotechnology. PCR primer sequences
for BDNF exon III were 5'-GCG CGG AAT TCT GAT TCT GGT AAT-3’
and 5'-GAG AGG GCT CCA CGC TGC CTT GAC G-3'; for BDNF exon
V were 5'-AAG TGT AAT CCC ATG GGT TAC ACG-3' and 5'-CAG
GAA GTG TCT ATC CTT ATG AAC CG-3'; for COX-2 promoter were
5'-CCT GCC CCT ATG GGT ATT ATG C-3' and 5'-TTC GTG ACT
GTG TCT TTC CGC-3'; for nAchRa7 promoter were 5'-ATT AAA CTG
CAG GCG GGA CAG-3" and 5'-GCG GCC AAG CTT GGC TAT-3'; for
Nur77 promoter were 5'-CCT GGT CGG TTATTT CGG-3" and 5'-AGC
GCG GAT TGT TTG ATC-3'; for GAP-43 promoter were 5'-AGT GTG
GAA GCA TAA ATG AGA TGT TTG-3' and 5'-GGA GAT TTT GTG
TGC AGT TGA TAATTG-3'.

Quantitative real-time RT-PCR. RNA was prepared with the Abso-
lutely RNA kit (Stratagene). Total RNA (1 ug) was used for reverse
transcription with the First Strand Superscript II kit (Invitrogen). PCR
was performed in an iCycler (Bio-Rad, Hercules, CA) with the use of
SYBR-green (PE Applied Biosystems, Foster City, CA). Each indepen-
dent sample was assayed in triplicate. The threshold cycle for each sample
was chosen from the linear range and converted to a starting quantity by
interpolation from a standard curve run on the same plate for each set of
primers. The firefly luciferase mRNA levels were normalized for each well
to cotransfected a-globin mRNA levels. Single PCR products were veri-
fied both by assessing that the melting temperature of the product had a
single value and by viewing the PCR product on an agarose gel. The
primer sequences for firefly luciferase were 5'-GAG GTG AAC ATC ACG
TAC GCG-3" and 5'-AAG AGA GTT TTC ACT GCA TAC GAC G-3’
and for a-globin were 5'-CAA GAC CTA CTT CCC GCA CTT-3' and
5'-GCT CAG GTC GAA GTG CGG-3'.

Results

An E-box sequence in BDNF promoter Il is a Ca**

response element

Previously, we found that 170 bp of the 5" flanking sequence of
BDNF exon II1 is sufficient to activate reporter gene expression in
response to membrane depolarization-induced Ca*" influx via
L-VSCCs in cultured embryonic rat cortical neurons (Tao et al.,
1998), suggesting that key CaREs reside within this region. To
identify these CaREs, we have made systematic deletions and
mutations of the 170 bp of BDNF promoter III and assessed the
effects of these mutations on the Ca>" inducibility of a luciferase
reporter. Initially, we and others reported that both a CRE-like
sequence bound by the transcription factor CREB as well as a
discrete region 5’ to this element are required for induction of
reporter gene expression (Shieh et al., 1998; Tao et al., 1998).
With further mutagenesis we have determined that this distal



2574 - ). Neurosci., April 1,2003 - 23(7):2572-2581

regulatory region consists of two distinct elements. The most 5’
element (CaRE1) lies between nucleotides —73 to —64 relative to
the transcriptional initiation site of BDNF exon III and is bound
by a novel transcription factor, calcium-responsive transcription
factor (CaRF), which regulates BDNF exon III transcription in a
Ca?"- and neural-selective manner (Tao et al., 2002).

To characterize the element lying between CaRE1 and the
CaRE3/CRE, we made two-nucleotide substitutions of the se-
quence between these elements in the context of the BDNF pro-
moter IIT reporter gene construct. These mutant plasmids were
transiently transfected into cultured cortical neurons, the cells
were depolarized by exposure to elevated levels of KCl, and the
induction of luciferase expression from the reporter gene was
measured. As shown in Figure 1a, transcription from the wild-
type BDNF pIII(170)-Luc reporter gene was induced significantly
in response to membrane depolarization. Most mutations of the
nucleotide sequence between —52 and —43 bp 5’ to the BDNF
exon III transcription initiation site severely reduced the ability of
membrane depolarization to induce reporter gene expression,
whereas mutations just outside this 10 bp region had little effect.
These data identify the 10 bp nucleotide sequence from —52 to
—43 bp relative to the BDNF exon III transcription initiation site
as a critical Ca™ response element that we have named CaRE2.

Characterization and cloning of the CaRE2 binding protein
The core of the CaRE2 sequence (ATCATATGAC) fits the con-
sensus for an E-box element (CANNTG). E-box elements are
bound by members of the basic helix-loop-helix (bHLH) family
of transcription factors. However, analysis of the TRANSFAC
database (http://www.cbil.upenn.edu/tess/index.html) indicated
that none of the previously characterized factors favor the specific
E-box sequence we had identified as CaRE2 in BDNF promoter
II1. Therefore, to identify the transcription factor(s) that mediate
Ca**-dependent expression of BDNF exon III through CaRE2,
we cloned and characterized the protein(s) that bind to this
element.

Because BDNF is highly expressed in neurons, we asked
whether there is a protein within the nucleus of cortical neurons
that binds specifically to the CaRE2 sequence. Nuclear protein
extracts were prepared from embryonic rat cortex, mixed with a
radiolabeled probe encompassing the CaRE2 sequence, and then
subjected to an EMSA. A protein in the cortical neuron nuclear
extract was found to bind to and retard the mobility of the radio-
labeled CaRE2 probe in a nondenaturing polyacrylamide gel (Fig.
1¢). The association of this nuclear protein with CaRE2 was spe-
cific, because its binding to CaRE2 could be competed by the
addition of an excess of unlabeled wild-type CaRE2 probe, but
not with the addition of excess CaRE2 sequences that failed to
support Ca®"-dependent induction in the context of the BDNF
promoter Il reporter gene (Fig. 1a). This correlation between the
ability of the neuronal nuclear protein to bind CaRE2 sequences
and the ability of these CaRE2 sequences to drive Ca’*-
dependent transcription of BDNF promoter III supports the hy-
pothesis that there exists a protein in cortical neurons for which
the interaction with CaRE2 is required for Ca**-dependent in-
duction of BDNF promoter III transcription.

To identify the protein that regulates BDNF transcription
through CaRE2, we used a yeast one-hybrid system to screen a rat
brain ¢cDNA library for CaRE2 binding protein(s). After screen-
ing 250,000 clones, we obtained three positive colonies. Protein
extracts from these yeast contained a protein that bound to
CaRE2 with the same specificity for wild-type and mutant CaRE2
sequences as the endogenous CaRE2 binding protein from neu-
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Figure1. (aRE2isaCa®"-responsive E-box element in BDNF promoter IIl. a, Characteriza-
tion of CaRE2. A luciferase reporter plasmid driven by BDNF promoter Il with either wild-type or
mutant sequences was transfected into E18 + 3 DIV rat cortical neurons. The fold of induction
equals the ratio of normalized luciferase activity from stimulated cells to that from the unstimu-
lated neurons. The numbering indicates the position relative to the first transcription start site
for BDNF exon lll. In the mutant sequences the fetters indicate the mutated bases, and the
dashed lines represent unchanged nucleotides. b, Schematic diagram of Ca2™ response ele-
ments (CaREs) in BONF promoter lIl. The CaRE2 sequence (bolded) from BDNF promoter Ill is
shown and compared with the canonical E-box sequence. ¢, Characterization of the CaRE2 binding
protein(s). Shown is the specific interaction of CaRE2 and its binding protein(s) in neurons. Nuclear
extracts from P1 rat brain were mixed with radiolabeled probes containing the CaRE2 sequence before
electrophoresis in a native polyacrylamide gel. Unbound radiolabeled CaRE2 probes (arrow /) mi-
grated faster than the ones retarded by the CaRE2 binding protein(s) (arrow ). The specificity of the
interaction was determined by the ability of excess unlabeled mutant or wild-type CaRE2-containing
probes to compete away the radiolabeled CaRE2 probes from the DNA/protein complex. The se-
quences for the mutant probes (M7-M3, M6 —M8) are shown in a.

ronal nuclear extracts (data not shown). After sequencing of the
brain ¢cDNA recovered from these clones, we were surprised to
find that in each case the expressed protein was the mammalian
bHLH transcription factor USF1.

USF1isa43kDabHLH family transcription factor (Sawadogo
et al., 1988; Gregor et al., 1990) originally purified as a cellular
protein that regulates the adenovirus major late promoter
(Carthew et al., 1985; Sawadogo and Roeder, 1985; Moncollin et
al., 1986). A highly homologous family member, USF2, of 44 kDa
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also has been characterized (Sawadogo et al., 1988; Sirito et al.,
1994). Both USFs are expressed ubiquitously (Sirito et al., 1994;
Viollet et al., 1996) and bind to E-box elements as homo- or
heterodimers (Gregor et al., 1990; Sirito et al., 1992). Preliminary
characterization of the endogenous CaRE2 binding proteins
from neurons had suggested that they were heat-stable proteins
with molecular weights of ~45 kDa (data not shown), consistent
with the properties of the USFs. Although USF1 and USF2 are
known to be expressed in brain (Sirito et al., 1994), neither
protein has been implicated previously in activity-dependent
transcription. Therefore, we conducted an additional series
of experiments to determine whether the USFs contribute to
Ca’"-regulated BDNF transcription.

USF1 and USF2 bind CaRE2

To examine whether the USFs bind CaRE2, we first asked
whether the USFs are part of the CaRE2 binding complex that we
observed by EMSA with cortical neuron nuclear extracts. The
addition of anti-USF1 or USF2 antibodies to the CaRE2—neuro-
nal nuclear protein complex caused an additional retardation of
the complex by EMSA, suggesting that both USF1 and USF2 are
in the CaRE2—protein complex (Fig. 2a). In contrast, the addition
of antibodies that recognize a closely related bHLH family tran-
scription factor, c-Myc, had no effect on the CaRE2—protein
complex. These results indicate that endogenous USF1 and USF2
are part of the complex of proteins present in neuronal extracts
that bind to CaRE2.

To determine whether USF1 and USF2 are sufficient to bind
to CaRE2 directly, we tested the ability of in vitro transcribed and
translated USF1 and USF2 to bind to CaRE2 in an EMSA. As
shown in Figure 2b, both USF1 and USF2 are capable of binding
to CaRE2, as indicated by a retardation of the radiolabeled CaRE2
probe. Moreover, this binding shows the same specificity for
CaRE2 sequences as we observed for the endogenous CaRE2
binding protein (Fig. 1¢). This correlation between the ability of
USFs to bind CaRE2 sequences and the ability of these sequences
to support activity-dependent transcription from BDNF pro-
moter IIT suggests that USF binding to CaRE2 is relevant for
activity-dependent BDNF exon III transcription in neurons.

USFs functionally regulate CaRE2-dependent Ca**-inducible
BDNF exon III transcription

To determine whether the USFs mediate Ca**-inducible BDNF
exon III transcription, we asked whether dominant-negative ver-
sions of USF block the activity-dependent induction of BDNF
promoter III reporter gene transcription. Both USF1 and USF2
are expressed constitutively in the nuclei of cultured embryonic
cortical neurons (Fig. 3a—h). To disrupt their function, we used a
deletion mutant of USF2 (DN-USF2) that lacks the N-terminal
transcriptional activation domain and effectively competes with
endogenous USF1 and USF2 for binding to promoter E-boxes
(Qyangetal., 1999) without activating USF-dependent transcrip-
tion. Coexpression of DN-USF2 with the BDNF promoter III
reporter gene resulted in a significant reduction of the activity-
dependent induction of luciferase expression, whereas overex-
pression of wild-type USF2 had no effect (Fig. 3i). These data
indicate that a nonfunctional USF bound to CaRE2 blocks
activity-dependent BDNF exon III expression. To rule out the
possibility that DN-USF2 was blocking BDNF transcription non-
specifically by occluding the binding of another bHLH protein to
CaRE2, we examined the effect of a second dominant-negative
USF construct that works via a different mechanism. A-USF is a
dominant-negative USF construct that contains an acidic exten-
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Figure 2.  Upstream stimulatory factors (USFs) bind CaRE2. a, Endogenous USFs in
neurons bind CaRE2. Nuclear extracts from P1 rat brain were incubated with excess unla-
beled wild-type or mutant CaRE2 probes, anti-USF1 antibody, anti-USF2 antibody, or
anti-c-Myc antibody on ice for 1 hr. Then radiolabeled CaRE2 probes were added to the
mixture, which subsequently was subjected to EMSA. Arrow [ marks the complex formed
by the radiolabeled CaRE2 probes with the endogenous CaRE2 binding proteins. Arrow Il
indicates the supershifted complexes formed by anti-USF antibodies, the endogenous
(aRE2 binding protein, and the radiolabeled CaRE2 probe. b, Recombinant USFs are suf-
ficient to bind CaRE2. In vitro translated USF1 or USF2 proteins were mixed with radiola-
beled CaRE2 probes and an excess of unlabeled wild-type or mutant CaRE2 probes and
then subjected to EMSA. The sequences for the mutant CaRE2 probes are the same as those
in Figure 1a. The arrow indicates the specifically retarded band.
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sion in its DNA binding domain and that,
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when overexpressed in neurons, dimer-
izes with both endogenous USFI and
USE2, thereby preventing these mole-
cules from binding to CaRE2
(Qyangetal., 1999). Consistent with the
effects of DN-USF2, overexpression of
A-USF significantly inhibited mem-
brane depolarization induction of the
BDNF promoter III-driven reporter
gene, whereas transfection of the empty
plasmid vector alone had no effect (Fig.
3j). In total, these data indicate that the
USFs are required for activity-dependent
transcription from BDNF promoter III.

Both USF1 and USF2 can regulate
activity-dependent BDNF exon

III transcription

The dominant-negative experiments sug- j
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ulation of BDNF transcription. However,
both dominant negatives inhibit USF1
and USF2 and therefore do not distin-
guish whether one family member or both
are the key regulators of Ca**-dependent
BDNEF transcription. To ask whether ei-
ther USF1 or USF2 is sufficient for
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the response, we cultured embryonic cor- o)
tical neurons from either USF1 or USF2
null mice or their wild-type or heterozy-
gous siblings. These cells were transfected
with the BDNF reporter construct, and
the induction of luciferase in response to
depolarization was measured. We ob-
served no significant difference in the
membrane depolarization-mediated in-
duction of BDNF promoter III activity in
any of the genotypes (Fig. 4a). Neither did
we observe significant alteration in the
Ca** responsiveness of BDNF promoter
Il in the USF1(—/—)/USF2(+/—) and USF1(+/-)/
USF2(—/—) mice (data not shown). Taken together, these data
suggest that both USF1 and USF2 are independently capable of
mediating activity-dependent induction of BDNF promoter III.
Because the constitutive USF1/2 double knock-out mice die early in
embryogenesis (Sirito etal., 1998), itis not possible at this stage to use
these loss-of-function mutants to corroborate the role played by
both USF1 and USF2 in BDNF transcription.

The experiments with USF null mice suggest that both USF1
and USF2 may regulate BDNF promoter III. To seek evidence
that both USF1 and USF2 when expressed at physiological levels
are bound to the endogenous CaRE2 element of BDNF promoter
III in vivo, we used a ChIP assay to study the in vivo occupancy of
BDNF promoter IIT by USF1 and USF2. After first cross-linking
DNA-bound proteins to chromatin in neuronal cultures, we
lysed the cells and sheared the chromatin to an average of 150 bp
in length. Next we used specific antibodies against USF1 and
USF2 to immunoprecipitate these proteins along with the bound
chromatin. After extensive washing and reversal of the cross-
linking, we used specific PCR primers to test for the presence of
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USFs mediate Ca2*-dependent activation of BDNF promoter IIl. a—h, USFs are expressed in the nucleus of cultured
cortical neurons. E18 cortical cultures were grown for 5 DIV and then fixed and stained with the anti-USF1 or anti-USF2 antibodies
(red; b, f) and an antibody against the neuronal marker 3-tubulin lll (anti-Tuj1, green; ¢, g). Nuclei were stained with the Hoechst
dye (a, e). Nuclear USFs in Tuj1-positive cells appear in pink, with green marking the neuronal processes (d, h). i, j, Dominant-
negative forms of USF block Ca* -dependent activation of BDNF promoter IIl. E18 + 3 DIV rat cortical cultures were transfected
with the BDNF promoter Il luciferase reporter and a mammalian vector expressing either the dominant-negative forms of USF
(A-USF1 or USF2DN)) or control vectors. A renilla luciferase reporter plasmid was cotransfected to normalize for transfection
efficiency and sample handling.

BDNF promoter sequences that coimmunoprecipitated with the
USF proteins. We were able to detect BDNF promoter III se-
quences in the USF immunoprecipitates (Fig. 4b). However,
BDNF exon V, which should have been sheared away from pro-
moter III, was not found in the pellet, indicating that immuno-
precipitation of promoter I1I was specific (Fig. 4b). To control for
antibody specificity, we performed the immunoprecipitation
with a number of control antibodies and found that neither pro-
moter III nor exon V of the BDNF gene immunoprecipitated with
any of the control antibodies (Fig. 4b), although the anti-c-Myc
antibody can precipitate its target promoters effectively in NIH
3T3 cells (data not shown). In total, these data strongly suggest
that both USF1 and USF2 regulate transcription from promoter
I1I of the endogenous BDNF gene in vivo.

USFs are activated by Ca** signals via L-VSCCs

The ability of USFs to regulate transcription of BDNF exon III
through a Ca®"-responsive element suggested to us that the tran-
scriptional activity of USFs might be regulated by Ca* " -activated
signaling pathways in neurons. To isolate the activity of the USFs
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Figure4. Endogenous USF1 and USF2 requlate BDNF promoter Il in vivo. a, USF 1 and USF2

are both capable of regulating the Ca 2" -inducible activation of BONF promoter lIl. E16 cortical
neurons were obtained from USF1 and USF2 wild-type, heterozygous, orhomozygous null mice
and cultured in vitro for 3 d before transfection with the BONF promoter Il luciferase reporter. n
represents the number of pups used for the measurement. The genotypes for the mice were
determined by Southern blot analysis. Western blot analysis shows the relative amounts of
USF1 and USF2 in nuclear extracts from USF1 and USF2 wild-type, heterozygous, and homozy-
gous mice with antibodies specific to the USF1and USF2 proteins. b, Endogenous USF1and USF2
bind BDNF promoter IIl in vivo. Cultured E18 + 5 DIV rat cortical neurons were treated with
formaldehyde to cross-link DNA binding proteins to chromatin and then were subjected to
chromatin immunoprecipitation with antibodies specific to USF1 and USF2 or a number of
control antibodies. After reversing cross-links, we subjected eluted genomic DNA fragments to
PCR with primers specific to BDNF promoter |1l or BONF exon V. One percent of the input of the
sheared chromatin before immunoprecipitation was used as a positive control for the PCR
reaction. Negative controls include antibodies against c-Myc (a transcription factor), Bad
(a cytoplasmic protein), Id (a bHLH protein lacking a DNA binding domain), or beads only.

from that of other Ca’"-responsive transcription factors on
BDNF promoter III, we studied the effects of calcium signaling
pathways on transcription from a plasmid containing three cop-
ies of a consensus USF binding element in front of a luciferase
reporter gene (3XUBE-Luc) (Qyang et al., 1999). Although a
single USF element alone is not sufficient to confer a Ca®" re-
sponse in the context of BDNF promoter III, many transcription
factors that act cooperatively at complex promoters can drive
transcription independently when their elements are present in
multiple copies close to the start site of transcription of a lucif-
erase reporter gene (Tao et al., 1998, 2002). Indeed, when trans-
fected into cultured cortical neurons, membrane depolarization
induced a significant increase in transcription from the 3X UBE-
Luc reporter plasmid (Fig. 5a), whereas no induction of tran-
scription was seen from a plasmid containing the luciferase re-
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Figure 5.  USFsare (a“ " -regulated transcription factors activated via L-type VSCCs. a, USF

binding element (UBE) is requlated by membrane depolarization. Cultured E18 + 3 DIV rat
cortical neurons were transfected with either a firefly luciferase reporter gene driven by three
repeats of the consensus USF binding element (3><UBE) or the control vector. b, ¢, USFs are
activated by Ca* influx via L-type VSCC. Cultured E18 + 3 DIV rat cortical neurons were
transfected with either the 3>XUBE-Luc reporter plasmid or CRE-Luc plasmids. At 2 d after
transfection the cells were treated with nimodipine, APV, or the carrier solution before depo-
larization with 50 mm KCl or glutamate stimulation. After 8 hr of stimulation the cells were lysed,
and the luciferase activities were measured. d, e, The transcriptional activity of USF2 s regulated
by membrane depolarization. Cultured E18 + 3 DIV rat cortical neurons were transfected with
a Gal4-luciferase reporter plasmid and either an expression plasmid for the Gal4 DNA binding
domain alone (control ) or the Gal4-DNA binding domain fused to the transcriptional activation
domain of USF2. d, A renilla luciferase reporter plasmid was cotransfected as a control for
transfection efficiency and sample handling. At 2 d after transfection the cells were depolarized
with 50 mm KCI for 9 hr; then the cells were lysed, and the luciferase activities were measured. e,
An a-globin expression vector was cotransfected to control for transfection efficiency and sam-
ple handling. At 2 d after transfection the neurons were depolarized with 50 mm KCl for 1 hr;
then total RNA was purified. The total RNA was reverse transcribed into cDNA, and luciferase and
a-globin (DNAs were measured by quantitative real-time PCR. f, The transcription activity of
USFis requlated by Ca 2™ influx via L-type VSCC. Cultured E18 -+ 3 DIV rat cortical neurons were
cotransfected with Gal4-USF2 and Gal4-Luc plasmids. At 2 d after transfection the cells were
treated with nimodipine, APV, or the carrier solution before depolarization with 50 mm KCl or
glutamate stimulation. After 8 hr of stimulation the cells were lysed, and the luciferase activities
were measured.

porter but lacking the USF binding enhancer sequence. Blocking
L-VSCCs with nimodipine completely inhibited depolarization-
induced transcription of the UBE reporter gene. In contrast,
blockade of the NMDA type of glutamate receptors with APV had
little effect (Fig. 5b). Furthermore, activation of glutamate recep-
tors did not stimulate transcription from the USF reporter plas-
mid, although under these conditions glutamate effectively in-
duced transcription from a CREB reporter gene (Fig. 5¢). Taken
together, these results suggest that Ca*" influx via L-VSCCs reg-
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ulates the transcriptional activation of the USFs in cortical
neurons.

There are a number of mechanisms by which Ca*" influx
could regulate the USFs. In mast cells surface receptor activation
leads to nuclear translocation of USF2 (Frenkel et al., 1998).
However, when we expressed USF1 or USF2 fused to green fluo-
rescent protein (GFP) in cultured cortical neurons, we observed
nuclear localization for both proteins independent of membrane
depolarization (data not shown). In addition, immunofluores-
cent staining with anti-USF1- and anti-USF2-specific antibodies
and preparation of nuclear extracts from cultured cortical neu-
rons indicate that both USF1 and USF2 are primarily nuclear
under both unstimulated and membrane-depolarized conditions
(Fig. 3a—h; data not shown). A second possibility is that the USFs
could undergo regulated binding to the CaRE2 element (Berger
et al., 1998; Marmillot and Scovell, 1998; Cheung et al., 1999).
However, we observed no change in the binding of the USFs to
CaRE2 by EMSA, using nuclear extracts prepared from unstimu-
lated or membrane-depolarized neurons (data not shown). In
addition, using the ChIP assay, we found USF1 and USF2 bound
to the endogenous BDNF promoter III under both unstimulated
and membrane-depolarized conditions (data not shown), indi-
cating that the DNA binding activities of USFs to BDNF pro-
moter I1I are not regulated by Ca** influx into neurons.

Because Ca** influx does not appear to regulate the nuclear
localization or DNA binding of the USFs, we considered the pos-
sibility that Ca®"-dependent signaling pathways might regulate
the transcriptional activation domains of the USFs directly. To
determine whether Ca*™ influx directly regulates the ability of
the USFs to activate transcription, we tethered the transcriptional
activation domain of USF2 to the DNA binding domain of the
yeast transcription factor Gal4 (Luo and Sawadogo, 1996b).
When it was transfected into cortical neurons along with a re-
porter gene containing the Gal4 upstream-activating sequence
driving expression of luciferase (Gal4-Luc), membrane depolar-
ization induced a significant increase in luciferase expression
(Fig. 5d). This induction requires the activation domain(s) of
USEF2 because the control vector that contains no USF2 showed
no increase in response to membrane depolarization (Fig. 5d).
Similar to the results observed for induction of the 3X UBE-Luc,
pretreatment with nimodipine completely blocked the activation
of Gal4-USF2, whereas APV had no significant effect (Fig. 5f). To
evaluate whether Ca®" induction of Gal4-USF2-dependent tran-
scription occurs with a rapid time course that would be required
for USFs to be Ca*"-responsive regulators of BDNF transcrip-
tion, we used a quantitative real-time RT-PCR assay to assess the
induction of luciferase mRNA after 1 hr of membrane depolar-
ization. Under these conditions we observed a significant mem-
brane depolarization-dependent induction of the activity of
Gal4-USF2 (Fig. 5e). These data indicate that the ability of USFs
to activate transcription is enhanced by Ca" signaling pathways
in neurons and suggest that a rapid biochemical modification of
either the USFs or critical interacting proteins mediates Ca*™
induction of USF-dependent transcription.

USFs are general regulators of

activity-dependent transcription

These experiments suggest that USFs are Ca"-regulated tran-
scription factors in neurons and raise the possibility that USFs
may contribute to the inducible expression of activity-regulated
genes in addition to BDNF. In fact, a number of genes character-
ized in vitro by EMSA and by reporter gene assays as USF target
genes (Paterson et al., 1995; Howcroft et al., 1999) also are known
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system. a, USFs bind to the promoters of several activity-requlated neuronal genes in vivo.
Cultured E18 + 5 DIV rat cortical neurons were treated with formaldehyde to cross-link DNA
binding proteins to chromatin and were subjected to chromatin immunoprecipitation with
antibodies specific to USF1 and USF2 or a number of control antibodies. After reversing the
cross-linking, we subjected eluted genomic DNA fragments to PCR with primers specific for
(OX-2, Nur77, nAchRce7, and GAP-43 promoters. b, Neuronal activity-regulated genes that are
known USF targets.

to be induced by neuronal activity in vivo (Fig. 6b), although the
USFs previously have not been suggested to mediate this induc-
tion. We used the ChIP assay (described in Fig. 4b) to assess
whether the USFs bind to the endogenous promoters of several of
these activity-regulated genes in neurons. As shown in Figure 64,
anti-USF1 and anti-USF2 antibodies specifically precipitate the
promoters for COX-2 and nAchRa7, which are known to be
activity-regulated in vivo (Yamagata et al., 1993; Zhou et al,,
2001) and to be USF target genes in vitro (Liu et al., 1999; Naga-
varapu et al., 2001). Anti-USF antibodies also precipitated the
promoter for the immediate early gene Nur77, suggesting that
Nur77 also may be a USF target gene. To determine the specificity
of anti-USF antibodies in these ChIP experiments, we showed
that these anti-USF antibodies do not pull down the GAP-43
promoter, which is neither activity-regulated nor a known USF
target gene. Given that the transcriptional activity of the USFs is
regulated by Ca*" signaling in neurons and that USFs are bound
to the endogenous promoters of a number of activity-inducible
genes, these findings suggest that USF1 and USF2 may orches-
trate the activity-regulated expression of a sizable group of neu-
ronal genes that are important for neural development and syn-
aptic plasticity.

Discussion

USFs regulate activity-dependent transcription from BDNF
promoter III

In this study we have defined a new Ca®"-responsive E-box ele-
ment, CaRE2 (ATCATATGAC), in BDNF promoter III. This el-
ement is required to confer Ca®"-responsive transcriptional ac-
tivation of BDNF promoter III. Using a yeast one-hybrid screen,
we identified the upstream stimulatory factors (USF1 and USF2)
as CaRE2 binding proteins. Several lines of evidence indicate that
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the USFs are relevant regulators of activity-dependent BDNF
transcription through CaRE2. We have shown that endogenous
USF1 and USF2 from neuronal nuclear extracts bind to the
CaRE2 sequence in vitro. The USFs are sufficient to bind directly
to the CaRE2 sequence and only bind CaRE2 sequences that sup-
port activity-dependent transcription of the BDNF promoter III
luciferase reporter. Overexpression of dominant-negative forms
of the USFs block activity-dependent transcription from BDNF
promoter III, suggesting that the transcriptional activity of the
USFs is required for this induction. Finally, using a chromatin
immunoprecipitation assay, we demonstrate that in neurons
both USF1 and USF2 are bound to the CaRE2-containing region
of promoter III in the endogenous BDNF gene. Either USF1 or
USF2 appears to be sufficient to support activity-dependent
BDNF expression, because we observe that depolarization-
induced increases in BDNF promoter III activity occur normally
in mice null for either USF1 or USF2, as well as in USF1(—/—)/
USF2(+/—) and USFI1(—/+)/USF2(—/—) mice. Because the
constitutive USF1/2 double knock-out mice exhibit early embry-
onic lethality (Sirito et al., 1998), loss-of-function studies that
corroborate the role played by the USFs in BDNF transcription
will await the generation of conditional or brain-specific USF1/2
double knock-out mice. Nonetheless, in total, our data strongly
support a critical role for the USFs in the induction of activity-
dependent transcription from BDNF promoter III.

A new role for the USFs in the CNS

Although the USFs were among the first bHLH transcription
factors to be identified and they were shown to be expressed in
brain (Sirito et al., 1994), little was known about their function in
the nervous system. Our data now suggest that these transcrip-
tion factors may play an important role in the regulation of
activity-dependent gene expression in neurons. We find that
both USF1 and USF2 are expressed in the nuclei of neurons
throughout the brain, including both the neocortex and the hip-
pocampus (Fig. 54; data not shown), brain regions in which neu-
ronal activity induces transcription of a large set of genes. In these
neurons both USF1 and USF2 are bound to the endogenous pro-
moters of a number of activity-induced genes for which the prod-
ucts are important regulators of synaptic maturation and func-
tion, including BDNF, nAchRa7, and COX-2. In addition, we
find that USF1 and USF2 are bound to the promoter for the
Nur-77 gene, an immediate early gene that encodes a transcrip-
tion factor for which the expression is upregulated dramatically
by neuronal activity.

On BDNF promoter IIT we have shown that the USFs cooper-
ate with other transcription factors to regulate activity-
dependent gene expression. We have identified three discrete
Ca*"-response elements (CaRE1, CaRE2, and CaRE3/CRE) in
BDNF promoter III that are required for the induction of exon I1I
transcription in response to Ca>" influx in neurons (Tao et al.,
1998, 2002). Mutation of any one of the CaREs effectively blocks
the activity-dependent induction of BDNF exon III transcription,
indicating that within the context of BDNF promoter III these
three elements cooperatively promote transcription. However,
when isolated from BDNF promoter III, each of these elements is
independently inducible by neuronal activity, and each is bound
by distinct transcription factors (CaRF, USF1/2, or CREB) for
which the transcriptional activity can be modulated by Ca*™ sig-
naling in neurons (Tao et al., 1998, 2002). These observations
raise the question as to why all three factors are required to
promote transcription in the context of the intact BDNF
promoter III.
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One possibility is that each of the BDNF regulatory factors
serves a unique but essential role in regulating Ca>* induction of
BDNF transcription. Like the induction of BDNF exon III expres-
sion itself, the activity of the CaRE1 binding protein CaRF is
regulated in a Ca*>*- and neural-selective manner, suggesting
that this factor may confer stimulus and cell type selectivity with
the expression of BDNF exon III (Tao et al., 2002). In contrast,
the CaRE3/CRE binding protein CREB can be activated by a wide
variety of stimuli, all of which lead to the phosphorylation of
CREB at Ser'*>. However, recent studies have shown that Ca?"
influx into neurons induces phosphorylation of CREB at two
additionalsites, Ser '** and Ser '**, both of which also are required
for calcium-mediated CREB-dependent transcription in neurons
(Kornhauser et al., 2002). Phosphorylation at these two addi-
tional sites appears to disrupt the interaction of CREB with CBP
(Parker etal., 1999), raising the possibility that a factor other than
CBP may mediate Ca** regulation of CREB-dependent tran-
scription in neurons. USF activity together with CaRF and CREB
may be required for the modification of chromatin structure and
the recruitment of the basal transcriptional machinery to BDNF
promoter III, thereby facilitating effective Ca* regulation of
BDNF promoter III.

Interestingly, USF binding elements are found in tandem with
CREB binding elements in a number of promoters (Cvekl et al.,
1994; Durham et al., 1997; Kingsley-Kallesen et al., 1999), sug-
gesting that cooperative activation of these two factors may be
critical for the transcription of a number of Ca®"-inducible neu-
ronal genes. A recent report suggests that the USFs may also be
involved in the regulation of BDNF promoter I (Tabuchi et al.,
2002). Anti-USF antibodies were able to supershift a CRE bind-
ing complex on BDNF promoter I, and a dominant-interfering
form of USF (A-USF) was found to reduce moderately the cal-
cium inducibility of BDNF promoter L. It remains to be deter-
mined whether the USFs directly interact with BDNF promoter I
and whether USFs associate with this promoter in vivo as assessed
by chromatin immunoprecipitation analysis. Because A-USF can
act to sequester other USF interacting proteins such as E47 (Dear
et al., 1997), the exact role of USF family members in BDNF
promoter I regulation awaits further characterization. However,
the potential involvement of USFs together with CREB in the
regulation of alternative BDNF promoters provides support for
the idea that cooperation between these two calcium-responsive
factors plays a role in regulating activity-dependent transcription
in neurons.

Regulation of USF transcriptional activity

In addition to showing that CaRE2 is required for activity-
dependent induction of BDNF promoter III, our findings suggest
that the activity of USFs may be induced by calcium influx into
neurons. As shown in Figure 5, membrane depolarization in-
duced robust activation of USF-dependent transcription. This
effect was blocked completely by L-type VSCCs-specific inhibi-
tors but was unaffected by NMDA receptor inhibitors, suggesting
that Ca** entry via L-type VSCCs mediates the activation of
USF-dependent transcription in membrane-depolarized neu-
rons. In contrast to membrane depolarization with elevated levels
of KCl, the addition of glutamate to cultured neurons failed to
activate USF-dependent transcription. Under these conditions
glutamate induces significant Ca®" influx through NMDA re-
ceptors and a modest amount of calcium influx through the
L-type VSCC (Bading et al., 1995). The failure of glutamate to
induce USF-dependent transcription under these conditions
suggests that Ca" influx through the NMDA receptor may not
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activate USF activity. Glutamate-induced calcium influx through
the L-type VSCC under these conditions appears not to be suffi-
cient to activate the signaling molecules responsible for USF tran-
scriptional activation. It is possible that the calcium signaling
pathways activated by the NMDA receptors may be antagonistic
to those activated by the L-VSCCs. Experiments designed to dis-
tinguish among these possibilities may yield insights into the in-
tegrative effect of calcium signals on activity-dependent neuronal
gene expression.

Because the transcriptional activity of a Gal4-USF2 fusion
protein also can be regulated rapidly by calcium signaling path-
ways in neurons, we postulate that a post-translational modifica-
tion of either USFs or components of the transcriptional machin-
ery that USFs bring to the promoters of Ca**-responsive genes
may mediate Ca*>" induction of USF-dependent transcription.
Phosphorylation is a common means of regulating the activity of
transcription factors, and USF1 has been reported to be a phos-
phoprotein in HeLa cells (Galibert et al., 1997). In melanocytes
UV stress induction of the phosphorylation of USF1 by p38 MAP
kinase is required for UV-induced expression of Tyrosinase (Gali-
bert et al., 2001). Our preliminary data from two-dimensional
isoelectric focusing experiments suggest that, when overex-
pressed in neurons, both USF1 and USF2 exist as multiple species
with distinct isoelectric focusing points, consistent with the phos-
phorylation of the USFs at multiple sites (data not shown). Sev-
eral kinases are known to be activated in neurons in response to
calcium influx via L-VSCCs, including the MAP kinases Erk1/2
and p38, the calcium-calmodulin kinases II and IV, and protein
kinase A (Mao et al., 1999; Shaywitz and Greenberg, 1999; Dol-
metsch et al., 2001). However, whether phosphorylation of USFs
or USF-associated factors is regulated by neuronal activity re-
mains to be determined.

One mechanism by which neuronal activity might control the
function of the USFs is by regulating the interaction between
USFs and components of the basal transcription machinery. The
USFs have been shown to interact physically with TAFII55, and
via this interaction USFs can recruit the TATA-box binding com-
plex TFIID (Workman et al., 1990; Reach et al., 1991; Kokubo et
al., 1993; Chiang and Roeder, 1995). The USFs also have been
shown to interact with TFII-I, a factor highly expressed in brain
that is thought to mediate transcription from TATA-less promot-
ers via binding to an Inr element (Roy et al., 1991, 1997; Cher-
iyath et al., 1998). BDNF promoter III is a TATA-less promoter
that contains an Inr element near the transcriptional initiation
site (Timmusk et al., 1993), suggesting that BDNF promoter III
could be regulated by a TFII-I-dependent mechanism. Future
studies aimed at elucidating the molecular events that control the
recruitment of these and other basal transcription factors to
activity-dependent promoters such as BDNF promoter III may
help to identify the mechanism by which USFs mediate Ca*"-
dependent transcription in neurons.
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