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Group I metabotropic glutamate receptors (mGluRs) 1 and 5 frequently colocalize in the same neurons throughout the CNS. Because both
receptors can couple to the same effector systems, the purpose of their cellular coexpression remains unclear. Here, we report that group
I mGluR1 and mGluR5 have distinct functional roles in type II neurons of the rat globus pallidus (GP). Type II GP neurons form a large
population of GABAergic projection neurons that are characterized by the presence of inwardly rectifying current Ih , low-threshold
voltage-activated calcium current It , and activity at rest. Although immunocytochemical analysis reveals a high degree of neuronal
colocalization of the two group I mGluRs in the GP, activation of mGluR1 only directly depolarizes type II GP neurons. Interestingly,
blockade of mGluR5 by a highly selective antagonist, methylphenylethynylpyridine, leads to the potentiation of the mGluR1-mediated
depolarization in this neuronal subpopulation. Metabotropic GluR1 desensitizes during repeated activation with the agonist in type II GP
neurons, and blocking mGluR5 prevents the desensitization of the mGluR1-mediated depolarization. Elimination of the activity of
protein kinase C (PKC) by an application of 1 �M bisendolylmaleimide or 1 �M chelerythrine, both protein kinase C inhibitors, potentiates
the mGluR1-mediated response and prevents the desensitization of mGluR1 in type II GP neurons, suggesting that the effect of mGluR5
on mGluR1 signaling may involve PKC. Together, these data illustrate a novel mechanism by which mGluR1 and mGluR5, members of the
same family of G-protein-coupled receptors, can interact to modulate neuronal activity in the rat GP.
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Introduction
Eight metabotropic glutamate receptors (mGluRs) have been
cloned thus far, and they have been subdivided into three groups
on the basis of sequence homology, agonist selectivity, and cou-
pling to specific second-messenger cascades. The metabotropic
glutamate receptors 1 and 5 belong to the group I mGluRs. There
are many similarities in the effector systems activated by either
receptor (for review, see Hermans, 2001). Classically, both
mGluR1 and mGluR5 are known to activate phospholipase C via
coupling to Gq/11-proteins, which leads to intracellular Ca 2� re-
lease and activation of protein kinase C (PKC) (for review, see
Conn and Patel, 1994). In turn, PKC can negatively feedback on
the group I mGluR signaling by phosphorylation of mGluR1
(Francesconi and Duvoisin, 2000) and mGluR5 (Gereau and
Heinemann, 1998), which leads to the receptor desensitization
(Kawabata et al., 1996; Alagarsamy et al., 1999). Desensitization
of group I mGluRs can also occur via proteins that regulate
G-protein signaling, protein kinase A or G-protein-coupled re-
ceptor kinases (Sallese et al., 2000) (for review, see Alagarsamy et
al., 2001; De Blasi et al., 2001).

Despite many similarities in the effector systems that are acti-
vated by mGluR1 or mGluR5, it is becoming increasingly clear
with the introduction of subtype-selective antagonists that

mGluR1 and mGluR5 fulfill distinct functional roles whenever
they coexist in the same neurons (Calabresi et al., 2001; Gubellini
et al., 2001; Mannaioni et al., 2001; Pisani et al., 2001b) (for
review, see Valenti et al., 2002).

Group I mGluRs are both present in the globus pallidus (GP),
the subthalamic nucleus (STN), the substantia nigra pars reticu-
lata (SNr), and the striatum (Tallaksen-Greene et al., 1998; Han-
son and Smith, 1999; Awad et al., 2000; Marino et al., 2001) (for
review, see Rouse et al., 2000). Metabotropic GluR1 and mGluR5
carry distinct functions in the STN, SNr, and the striatum in
which they colocalize to the same neurons (Pisani et al., 2001a;
Marino et al., 2002). However, functional roles of these receptors
in the GP, a component of the so-called “indirect pathway” of the
basal ganglia (BG), have been primarily unexplored.

GP neurons are GABAergic, and they are known to vary in
morphology and physiological criteria. A consensus from many
studies is that type A, also referred to as type II neurons (Nambu
and Llinas, 1994; Stanford and Cooper, 1999; Shindou et al.,
2001), are the predominant electrophysiological phenotype in
the rodent GP (Cooper and Stanford, 2000). Here, we report
that activation of mGluR1, but not mGluR5, depolarizes type II
GP neurons. However, blockade of mGluR5 potentiates the
mGluR1-mediated response to stimulation by preventing the de-
sensitization of mGluR1 in these neurons. The potentiation of the
mGluR1-mediated depolarization and the prevention of the de-
sensitization of mGluR1 are both mimicked by the blockade of
PKC. Our data provide evidence for the functional specificity of
mGluR1 and mGluR5 when coexpressed in the same neurons
and reveal a novel mode of functional interaction between the
group I mGluRs in the CNS.
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Materials and Methods
Materials. (RS)-3,5-dihydroxyphenylglycine (DHPG), L(�)-2-amino-4-
phosphonobutyric acid (L-AP-4), (S)-(�)-�-amino-4-carboxy-2-methyl-
benzeneacetic acid (LY367385), and methylphenylethynylpyridine (MPEP),
were obtained from Tocris Cookson (Ballwin, MO). (�)-2-Aminobicy-
clo[3.1.0]-hexane-2,6-dicarboxylate monohydrate (LY354740) was a gift
from D. Schoepp and J. Monn (Eli Lilly, Indianapolis, IN). Bisendolylmale-
imide I, HCl (Bis), and chelerythrine chloride (Chel) were obtained from
Calbiochem (Cambridge, MA). Phorbol 12-myristate 13-acetate (PMA),
4-�-phorbol 12-myristate 13-acetate (4-�-PMA), tetrodotoxin (TTX), and
all other reagents were obtained from Sigma (St. Louis, MO).

Group I mGluRs immunocytochemistry. All animal work was per-
formed in accordance with Emory University Institutional Animal Care
and Use Committee protocols and procedures. Two 15-d-old Sprague
Dawley rats were anesthetized with isoflurane and transcardially per-
fused with normal saline, which was supplemented with 0.005% sodium
nitroprusside. Saline was followed by a 10 min perfusion with a mixture
of 4% paraformaldehyde and 0.1% glutaraldehyde in phosphate buffer
(PB) (0.1 M), pH 7.4. The brains were then removed and postfixed in the
same fixative overnight at 4°C. Sections (50-�m-thick) were cut in cold
PB on OTS-4000 Tissue Slicer (Frederick Haer Company, Bowdoinham,
ME). Before processing for immunocytochemistry, sections were stored
in a mixture of 30% sucrose and 30% ethylene glycol in PB at �20°C.

All incubations for the immunocytochemistry were performed at
room temperature, and all washes were done with PB. Sections were
washed and incubated for 10 min with 3% hydrogen peroxide–PB solu-
tion. After another wash, sections were preincubated for 30 min with a
mixture of avidin (10 �g/ml), 5% normal goat serum, and 5% normal
horse serum in PB. Sections were again washed with PB and incubated
overnight with a mixture of antibodies, raised against mGluR1a (mouse
monoclonal; PharMingen, San Diego, CA) and mGluR5 (rabbit poly-
clonal; Upstate Biotechnologies, Lake Placid, NY). Specificity of these
antibodies was demonstrated in a previous study (Marino et al., 2001).
Metabotropic GluR1a and mGluR5 antibodies were diluted 1:2000 and
1:1000, respectively, in a mixture of avidin (50 �g/ml), 1% normal goat,
and 1% normal horse sera in PB. Sections were then washed and coincu-
bated for 1 hr with donkey anti-rabbit IgGs (1:100) conjugated to rho-
damine and biotinylated goat anti-mouse IgGs (1:100). Both secondary
antibodies were obtained from The Jackson Laboratory (Bar Harbor,
ME). Sections were again washed. Metabotropic GluR1a staining was
further amplified with ABC (1:500, 30 min; Vector Laboratories, Burlin-
game, CA), followed by tyramide conjugated to FITC (1:100, 10 min;
PerkinElmer Life Sciences, Boston, MA). After another wash and incu-
bation for 30 min with a mixture of 10 mM cupric sulfate and 50 mM

ammonium acetate, pH 5.0, sections were wet mounted on Superfrost
Plus glass slides (Fisher Scientific, Atlanta, GA) and coverslipped with
Vector Laboratories Vectashield mounting medium. Slides were always
stored in the dark at 4°C. Metabotropic GluR1a and mGluR5 staining in
the GP was visualized on a Zeiss (Oberkochen, Germany) confocal mi-
croscope and acquired images were processed using Adobe PhotoShop
software (Adobe Systems, San Jose, CA).

In control experiments, each primary antibody was omitted in turn,
although the rest of the double-labeling procedure remained the same.
This led to labeling for only one receptor subtype, which indicates that
there was no cross-reactivity between secondary antibodies in the
double-labeling procedure.

Biocytin histochemistry. To visualize biocytin-filled GP neurons, slices
were incubated at room temperature in 10% paraformaldehyde over-
night. Slices were then washed with PB and preincubated with a mixture
of 1% hydrogen peroxide, 10% methanol, and 2% albumin in PB for 30
min at room temperature. The preincubation was followed by washes in
PB and an overnight incubation at 4°C with Vector Laboratories ABC
solution diluted in 0.1% Triton X-100 and 2% albumin in PB. Slices were
washed again with PB and incubated for �10 min with Vector Labora-
tories SG Chromagen. Slices were then washed with PB and wet mounted
on Fisher Scientific Superfrost Plus slides. Sections were then allowed to
dry overnight at room temperature and dehydrated by sequential incu-
bations in 70, 90, and 100% ethanol and xylene before being coverslipped

with Permount, viewed using a Hoffmann modulation contrast micro-
scope, and processed using Adobe PhotoShop software.

Slice preparation and electrophysiology. All whole-cell patch-clamp re-
cordings were obtained as described previously (Marino et al., 1998;
Bradley et al., 2000). Fourteen- to 18-d-old Sprague Dawley rats were
used in all experiments. After decapitation, brains were removed and
quickly submerged in the ice-cold oxygenated sucrose buffer (in mM:
223.4 sucrose, 20 glucose, 47.3 NaHCO3, 3 KCl, 1.9 MgSO4, 1.2 KH2PO4,
and 2 CaCl2), which was always supplemented with sodium pyruvate (80
�M) and glutathione (0.78 �M). Parasagittal slices (250- or 300-�m-
thick) were made on a tissue slicer (World Precision Instruments, Sara-
sota, FL) in ice-cold oxygenated sucrose buffer. Slices were transferred
into a holding chamber containing normal artificial CSF (ACSF) (in mM:
124 NaCl, 2.5 KCl, 1.3 MgSO4, 1.0 NaH2PO4, and 2.0 CaCl2), which was
continuously bubbled with 95% O2–5% CO2 gas mixture. The osmolar-
ity of the ACSF was �330 mOsm. ACSF in the holding chamber was
always supplemented with sodium pyruvate (0.125 mM), glutathione
(0.0012 mM), and kynurenic acid (0.06 mM). These additives tended to
increase slice viability and had no effect on experiments. In two experi-
ments, we found that omission of sodium pyruvate, glutathione, and
kynurenic acid from the ACSF and the sucrose solution did not alter the
DHPG-induced effect on the membrane potential in type II GP neurons.
We, therefore, included these results in our DHPG pool in Figures 4, B
and E, and 7, B and D. GP neurons were visualized with a 40� water
immersion lens using a Hoffman modulation contrast microscope. Slices
were continuously perfused with room temperature oxygenated ACSF.
Borosilicate glass patch electrodes were pulled on a vertical patch pipette
puller (Narashige, Tokyo, Japan) and filled with an intracellular patch
solution (in mM: 140 potassium gluconate, 16 HEPES, 10 NaCl, 2 EGTA,
2, MgATP, and 0.2 NaGTP, pH 7.5). Biocytin at 0.5% was sometimes
included in the intracellular solution to permit post hoc analysis of mor-
phology and location of GP neurons. Bis (1 �M), Chel (1 �M), PMA (10
or 100 nM), or 4-�-PMA (100 nM) was included in the intracellular patch
solution in experiments in which the role of PKC in the function of
mGluR1 was evaluated. The osmolarity of the intracellular solution was
always adjusted to �310 mOsm. All neurons were visually classified into
two types on the basis of electrophysiological criteria described in Re-
sults. If a neuron did not fit into either type, it was discarded before an
experiment began. Series resistance (20 –30 M�) was recorded at the
beginning and at the end of each experiment, and an experiment was
discarded if the series resistance changed by �20%. Ten picoamperes of
hyperpolarizing current injections were given intermittently throughout
each experiment to monitor the effect of agonists–antagonists on input
resistance. Slices were perfused with TTX (0.5 �M) for at least 5 min
before the commencement of all experiments.

I–V relationship. Electrodes were filled with the following (in mM): 140
potassium gluconate, 16 HEPES, 10 NaCl, 2 EGTA, 2 MgATP, and 0.2
NaGTP. Standard ACSF was used with addition of the following (in �M):
1 TTX, 10 bicuculline, 25 CNQX, and 50 APV. Depolarizing pulses (�10
mV amplitude and 40-msec-long) were periodically applied to monitor
membrane conductance, and a chart recorder was used to monitor the
holding current. The I–V relationship was assessed by ramping the mem-
brane potential from �10 to �130 mV (20 mV/sec) before drug appli-
cation and at the time of maximal DHPG-induced inward current.
Voltage-dependent calcium currents were inactivated by holding the
membrane potential at �10 mV for 1 sec before initiating the ramp.

Data analysis. All statistical data analyses were performed using
SigmaStat and SigmaPlot software packages at � level of �0.05 (SPSS,
Chicago, IL). Values are reported as mean � SEM.

Results
Cellular phenotypes in the rat GP
We recorded from �200 GP neurons. Consistent with the pub-
lished reports, the predominant cellular phenotype encountered
in our preparation (�70%) possessed two cardinal electrophys-
iological properties, both of which were recorded at the begin-
ning of the experiments. The first property was a sag in mem-
brane potential during a hyperpolarizing current injection in
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current clamp that corresponds to a time- and
voltage-dependent inward current Ih. The sec-
ond property was the presence of anodal breaks
after a hyperpolarizing step, suggesting the pres-
ence of a low-threshold-activated Ca 2� current
It (Nambu and Llinas, 1994; Stanford and Coo-
per, 1999; Cooper and Stanford, 2000). These
neurons were also characterized by a high input
resistance (712 � 150 M�) and spontaneous ac-
tivity at rest (Fig. 1B). This cellular phenotype
closely corresponds to type II or type A GP neu-
rons described previously by Nambu and Llinas
(1994), Cooper and Stanford (2000), and Shin-
dou et al. (2001). Type II neurons are also
thought to be the predominant cellular subtype
encountered in the rat GP during in vivo record-
ings (Hassani et al., 1996). In the present study,
we termed this neuronal subgroup type II GP
neurons (Fig. 1B). We also encountered a much
less frequent cellular phenotype (�10%) that
was characterized by the absence of Ih and It and
the presence of a ramp-like depolarization dur-
ing a depolarizing current injection. These neu-
rons were always quiescent at rest and possessed
lower input resistance (405 � 20 M�). We
termed these neurons type I GP neurons (Fig.
1A). This cellular subgroup corresponded to
type C GP neurons described previously by Coo-
per and Stanford (2000).

In an attempt to correlate the morphology and relative posi-
tion of GP neurons with their electrophysiological profiles, re-
corded neurons were filled with biocytin. However, we failed to
find any consistent or significant differences in morphology or
location between type I and type II GP neurons (Fig. 1C,D).
Approximately 20% of recorded GP neurons that displayed
mixed electrophysiological properties of type I and type II GP
neurons were not included in our analysis. Similarly, purported
GP interneurons that are characterized by smaller cell bodies
were excluded from our study (Millhouse, 1986; Cooper and
Stanford, 2000).

Stimulation of group I mGluRs depolarizes type I and type II
GP neurons
Previous immunocytochemical studies demonstrated that
mGluR1a is expressed in the rodent GP (Testa et al., 1998) and
both mGluR1 and mGluR5 are postsynaptically expressed in the
primate external GP (Hanson and Smith, 1999), but the possibil-
ity that both group I mGluRs are coexpressed in individual GP
neurons has not yet been tested. To address this issue, we performed
a double-labeling immunofluorescence study at the confocal micro-
scope level. This set of experiments revealed that virtually all neurons
in the GP display immunolabeling for both mGluR1a and mGluR5.
Both receptors were found in the cell body, dendrites, and neuropil
(Fig. 2).

Consistent with these immunocytochemical data, the group
I-selective agonist DHPG depolarized type I (Fig. 3) and type II
(Fig. 4) GP neurons in the presence of 0.5 �M TTX. The ampli-
tude of the DHPG-induced depolarization was concentration de-
pendent in type II GP neurons and reached its maximum at 17 �
1.2 mV (Fig. 4C). Type I GP neurons were encountered so rarely
in our preparation that we could not examine the dose–response
relationship in this subgroup of GP neurons. Activation of group
II and group III mGluRs with selective agonists LY354740 and

L-AP-4, respectively, had no effect on the membrane potential of
either type I or type II (Figs. 3A,B, 4A,B). In type II GP neurons,
stimulation of group I mGluRs with DHPG resulted in a consis-
tent decrease in input resistance (Fig. 4A), whereas activation of
group I mGluRs in type I GP neurons resulted in mixed effects on
input resistance (data not shown).

Activation of group I mGluRs has been shown to affect a
variety of conductances in different systems throughout the CNS
(for review, see Anwyl, 1999). For instance, in hippocampal area

Figure 1. Electrophysiological and morphological profiles of type I and type II GP neurons. A, Type I GP neurons are
characterized by the presence of a ramp-like depolarization during a depolarizing current injection, lack of time- and
voltage-dependent current Ih , and low input resistance. B, Type II GP neurons are characterized by lack of ramp depo-
larization during a depolarizing current injection, presence of time- and voltage-dependent current Ih , activity at rest,
the presence of rebound depolarization after a hyperpolarizing step, and high input resistance. C, No consistent differ-
ences in cellular morphology are observed between type I ( i ) and type II ( ii ) GP neurons. D, No consistent differences in
the position of cell body or dendritic arborization were observed between type I ( i ) and type II ( ii ) GP neurons. Str,
Striatum; GP, globus pallidus; D, dorsal; P, posterior. Scale bars: C, 20 �m; D, 100 �m.

Figure 2. mGluR1a and mGluR5 are colocalized in rat GP neurons. A, Low-power micrograph
of mGluR1a immunoreactivity in the GP. B, High-power micrograph of the same field showing
neuronal cell bodies immunoreactive for both mGluR1a ( i ) and mGluR5 ( ii ). Str, Striatum; GP,
globus pallidus. Scale bars: A, 200 �m; B, 15 �m.
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CA3, DHPG depolarizes neurons by inhibition of a leak potas-
sium conductance (Guerineau et al., 1994) or by an increase in a
nonspecific cationic conductance (Guerineau et al., 1995). Re-
duction in input resistance after stimulation with DHPG in type
II GP neurons is consistent with an increase in conductance
downstream of group I activation. We, therefore, tested whether
activation of group I mGluRs depolarized type II GP neurons via
a similar mechanism. To do so, we examined the current–voltage
relationship of the group I mGluR-mediated inward current in-
duced by application of DHPG (30 �M). Application of DHPG
induced a change in slope of the whole-cell current-voltage rela-
tionship (Fig. 5A). Subtracting the predrug I–V trace from the
trace in the presence of DHPG reveals a V-shaped I–V relation-
ship, the DHPG-induced current reversing polarity at two poten-
tials: �9.3 � 7 and �83.6 � 13 mV (n 	 4) (Fig. 5, inset and
dotted boxes 1 and 2, respectively). Such an I–V relationship could

indeed be explained by a mixed effect of DHPG. Group I mGluR
activation could cause both a decrease of potassium outward
currents (Charpak et al., 1990; Guerineau et al., 1994), which
theoretically reverse at �95 mV, and an increase of a nonspecific
cationic current (Crepel et al., 1994; Guerineau et al., 1995),

Figure 3. Activation of mGluR1 depolarizes type I GP neurons. A, Type I GP neurons are
depolarized by 30 �M DHPG, a group I-selective agonist, whereas group II- and III-selective
agonists LY354740 and L-AP-4, respectively, do not change the membrane potential in these
cells. B, Mean � SEM of data for type I GP neurons; number of cells per condition is given above
each bar in parentheses. *p � 0.05, denotes statistical significance and difference compared
with DHPG as determined by one-factor ANOVA and Tukey’s pairwise comparison procedure. C,
The DHPG-induced depolarization is predominantly mediated by mGluR1 in type I GP neurons.
Preincubation with 100 �M LY373685, an mGluR1-selective blocker, significantly reduced the
amplitude of the DHPG-induced depolarization. However, a preincubation with both 100 �M

LY373685 and 10 �M MPEP, an mGluR5-selective antagonist, completely blocked the response
to DHPG. D, Mean � SEM of data for type I GP neurons; number of cells per condition is given
above each bar in parentheses. *p � 0.05, denotes statistical significance and difference com-
pared with DHPG as determined by one-factor ANOVA and Tukey’s pairwise comparison proce-
dure. TTX (0.5 �M) was bath applied for at least 5 min before the beginning of all experiments.
All antagonists were bath applied for 10 min before exposure to DHPG.

Figure 4. Pharmacology of group I-mediated depolarization in type II GP neurons. A, Acti-
vation of the group I mGluRs with 30 �M DHPG causes a depolarization and reduces the input
resistance in type II GP neurons, whereas group II- and III-selective agonists LY354740 and
L-AP-4, respectively, do not change the membrane potential or the input resistance in these
cells. B, Mean � SEM of data for type II GP neurons; number of cells per condition is given above
each bar in parentheses. *p � 0.05, denotes statistical significance and difference compared
with DHPG as determined by one-factor ANOVA and Tukey’s pairwise comparison procedure. C,
Dose–response relationship for DHPG-induced depolarization in type II GP neurons. D, MGluR1
solely mediates DHPG-induced depolarization in type II GP neurons. Preincubation with the
mGluR1-selective antagonist LY363785 abolishes the DHPG-induced depolarization, whereas
preincubation with MPEP, an mGluR5-selective blocker, potentiates the response to DHPG. E,
Mean � SEM for type II GP neurons; number of cells per condition is given above each bar in
parentheses. *p � 0.05, denotes statistical significance and difference compared with DHPG as
determined by one-factor ANOVA and Tukey’s pairwise comparison procedure.
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which theoretically reverses at 0 mV. Because application of
DHPG induced a decrease in input resistance together with a
15.9 � 1.7 mV depolarization (Fig. 4A,B), the increase in the net
transmembrane conductance appears to be dominated by a
group I mGluR-mediated increase in a nonspecific cationic con-
ductance at depolarized potentials.

Pharmacology of the DHPG-induced depolarization in
the GP
Coexpression of both mGluR1a and mGluR5 has been reported
in the STN, the SNr, and the striatum, three nuclei of the BG
circuitry (Tallaksen-Greene et al., 1998; Awad et al., 2000;
Marino et al., 2001). However, the DHPG-induced depolariza-
tion and the potentiation of NMDA receptor currents in the STN
is mediated solely by mGluR5, whereas activation of mGluR1
only is responsible for depolarization and induction of a slow
EPSP in SNr neurons (Awad et al., 2000; Marino et al., 2001).
Because GP neurons also coexpress both group I mGluR subtypes
(Fig. 2), we tested whether mGluR1 or mGluR5 mediated DHPG-
induced depolarization. In type I GP neurons, 10-min-long pre-
treatment with 100 �M LY367385, an mGluR1-selective antago-
nist, blocked the effect of DHPG on the membrane potential
( p 	 0.011; one-factor ANOVA; Tukey’s pairwise comparison
test) (Fig. 3C,D). Pretreatment with 10 �M MPEP, an mGluR5-
selective antagonist, led to a small reduction in the amplitude of
the DHPG-induced depolarization. This effect, however, was not
statistically significant (Fig. 3C,D).

In type II GP neurons, the DHPG-induced depolarization was
found to be mediated solely by mGluR1 (Fig. 4D,E), because
pretreatment with the mGluR1-selective antagonist LY363785
completely eliminated the response to DHPG. Interestingly,
when a type II GP neuron was exposed to MPEP before the ap-
plication of the agonist, the response to DHPG was significantly
potentiated ( p 	 0.016; one-factor ANOVA; Tukey’s pairwise
comparison test) (Fig. 4D,E). Pretreatment with MPEP did not
alter the input resistance of these neurons (data not shown).
Blockade of mGluR5 with MPEP also induced oscillations in the
membrane potential during application of DHPG (n 	 8) (Fig.
4D). These oscillations were never observed when DHPG was

applied alone. The mechanism that underlies these oscillations
remains to be established.

Blockade of mGluR5 eliminates desensitization of mGluR1 in
type II GP neurons
In the next series of experiments, we explored the mechanism(s)
that underlies the potentiation of the mGluR1-mediated depo-
larization by mGluR5 blockade. We postulated that mGluR5 was
involved in regulating the desensitization of mGluR1 and de-
signed a series of experiments to test this hypothesis. We applied
DHPG locally to the cell body of type II GP neurons for 20 sec
every 2 min. The mGluR1-mediated depolarization desensitized
almost completely during the second or third application of the
agonist (Fig. 6A). In control experiments, the second application
of DHPG elicited a depolarization that was 28.9 � 14.9% of the
first response (Fig. 6B, control). However, if type II neurons were
pretreated with MPEP for 10 min before the first application of
DHPG, the desensitization of mGluR1-mediated depolarization
was blocked (Fig. 6A, bottom trace). In the presence of MPEP, the
second application of DHPG elicited a depolarization that was
80.08 � 18.0% in amplitude of the first response (Fig. 6B). There
was no significant difference in the magnitude of the response
between the first and second application of DHPG in the pres-

Figure 5. DHPG-induced current reverses polarity at two membrane potentials in type II GP
neurons. The group I-mediated depolarization observed in type II GP neurons is associated with
an increase in membrane conductance (Fig. 4 A). This increase in membrane conductance is
evident in the whole-cell current–voltage relationship shown. The inset shows the subtraction
of the currents that reveals a V-shaped relationship with two distinct potentials, at which the
current polarity is reversed (see also dotted boxes 1 and 2). Axis titles apply in the inset. This
figure is representative of results observed in four cells.

Figure 6. Blockade of mGluR5 prevents the desensitization of the mGluR1-mediated depo-
larization in type II GP neurons. mGluR1-mediated depolarization desensitizes during repeated
application of 100 �M DHPG (A, top trace). Pretreatment with 10 �M MPEP, an mGluR5-
selective antagonist, for 10 min before the first application of 100 �M DHPG prevents the
desensitization of the mGluR1-mediated depolarization (A, bottom trace). B, Mean � SEM of
data for five type II GP neurons per condition. *p � 0.05, denotes statistical significance and
difference between responses to second or third application of DHPG for control (no MPEP) and
10 �M MPEP as determined by two-factor repeated-measures ANOVA and Tukey’s pairwise
comparison procedure. Bars above each trace indicate timed applications of 100 �M DHPG
above the cell body.
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ence of MPEP ( p 	 0.135; two-factor repeated-measures
ANOVA; Tukey’s pairwise comparison test), which suggests that
blockade of mGluR5 is sufficient to prevent the desensitization of
the mGluR1-mediated depolarization.

PKC modulates the DHPG-induced activation of mGluR1 in
type II GP neurons
We then investigated the mechanism(s) by which mGluR5 may
regulate the desensitization of mGluR1. Group I mGluRs are
known to activate and be regulated by PKC, which has been
shown to directly phosphorylate these receptors and diminish
their coupling efficiency to G-proteins (Kawabata et al., 1996,
1998; Alagarsamy et al., 2001) (for review, see De Blasi et al.,
2001). We, therefore, postulated that mGluR5 might regulate
mGluR1 by activation of PKC. To test this hypothesis, we in-
cluded 1 �M Bis, a broad-spectrum PKC blocker, in the intracel-
lular solution and allowed it to diffuse into the cell for 10 min
before the addition of DHPG. Consistent with our hypothesis, a
10 min preincubation with Bis potentiated the DHPG-induced
depolarization in type II neurons ( p 	 0.009; one-factor
ANOVA; Tukey’s pairwise comparison test) (Fig. 7B). The effect
of Bis on the response to DHPG can be also replicated with an-
other PKC blocker, Chel (Jarvis et al., 1994). Our data showed
that a 10-min-long preincubation with 1 �M Chel resulted in a
much stronger potentiation of the DHPG-induced depolariza-
tion than with Bis ( p � 0.001; one-factor ANOVA; Tukey’s pair-
wise comparison test) (Fig. 7B). We chose Bis for all subsequent
experiments because we found that a 10-min-long preincubation
with Chel was often toxic to the cells and made recordings
difficult.

Thus, blockade of PKC activity with either Bis or Chel results
in a potentiation of the DHPG-induced depolarization in type II
GP neurons. Conversely, a 10 min preincubation with PMA, a
general PKC activator, which was also included in the intracellu-
lar solution, significantly reduced the response to the stimulation
with DHPG in these neurons ( p 	 0.023; one-factor ANOVA;
Tukey’s pairwise comparison test) (Fig. 7B). We used PMA at 10
and 100 nM and found no significant difference. We, therefore,
pooled data obtained with the two concentrations in Figure 7B.
To assert the specificity of this drug, we evaluated the effect of
4-�-PMA, an inactive analog of PMA, on the DHPG-induced
depolarization and found that 100 nM 4-�-PMA did not signifi-
cantly alter the DHPG-activated response in type II GP neurons
( p 	 0.697; one-factor ANOVA; Tukey’s pairwise comparison
test) (Fig. 7B).

Next, we assessed whether the effects of mGluR5 blockade
with MPEP and the elimination of PKC activity with Bis on the
DHPG-induced depolarization were additive. These experiments
revealed that a 10-min-long incubation with MPEP and Bis did
not alter the response to DHPG compared with incubation with
MPEP or Bis alone ( p 	 0.821 and p 	 0.997, respectively; one-
factor ANOVA; Tukey’s pairwise comparison test) (Fig. 7D). In
the next set of experiments, we tested whether PMA could still
exert its effect in presence of MPEP. Our findings, indeed,
showed that a 10-min-long preincubation with 100 nM PMA still
reduced the DHPG-induced depolarization in the presence of
MPEP when compared with MPEP alone ( p 	 0.017; one-factor
ANOVA; Tukey’s pairwise comparison test) (Fig. 7D).

Blockade of PKC prevents the desensitization of mGluR1 in
type II GP neurons
Because inhibition of PKC mimicked the effect of blocking
mGluR5 on the DHPG-induced depolarization, we sought to

investigate whether PKC regulates the desensitization of mGluR1
in the same manner as mGluR5. Indeed, a 10 min diffusion of Bis
into the cell completely prevented the desensitization of the
mGluR1-mediated depolarization (Fig. 8A). In the presence of
Bis, the second application of DHPG elicited a depolarization
that was 91.95 � 14.75% of the first response. There was no
significant difference between the magnitude of the response af-

Figure 7. PKC regulates mGluR1 response to DHPG in type II GP neurons. A, B, Blockade of
PKC with 1 �M Bis or 1 �M Chel potentiates mGluR1-mediated depolarization, whereas activa-
tion of PKC with 10 –100 nM PMA reduces it. Bis, Chel, PMA, or 4-�-PMA were included in the
intracellular solution and allowed to diffuse into the cell for 10 min before the bath application
of DHPG. B, Mean � SEM of data for type II GP neurons; number of cells per condition is given
above each bar in parentheses. *p � 0.05, denotes statistical significance and difference com-
pared with DHPG as determined by one-factor ANOVA and Tukey’s pairwise comparison proce-
dure. C, D, The effects of Bis and MPEP are not additive. PMA still has an effect on the mGluR1-
mediated response to DHPG in the presence of MPEP. D, Mean � SEM of data for type II GP
neurons; number of cells per condition is given above each bar in parentheses. *p � 0.05,
denotes statistical significance and difference compared with DHPG as determined by one-
factor ANOVA and Tukey’s pairwise comparison procedure.
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ter the first and second application of DHPG when PKC activity
was blocked ( p 	 0.806; two-factor repeated-measures ANOVA;
Tukey’s pairwise comparison test) (Fig. 8B). Together, these data
suggest that both PKC and mGluR5 activity are required for
agonist-induced desensitization of mGluR1 in type II GP
neurons.

Discussion
Data presented in this study reveal a novel type of functional
interaction between mGluR1 and mGluR5 in the CNS. Our find-
ings demonstrate that mGluR5 can regulate mGluR1 signaling by
receptor desensitization. This mode of interaction constitutes an
interesting form of heterologous desensitization in which there is
an absolute requirement for activation of two receptors for the
same neurotransmitter to achieve normal desensitization of the
agonist-induced response. Although heterologous desensitiza-
tion is commonly observed in many receptor families, this most
often occurs in a context in which a receptor is also capable of
homologous desensitization. Also, heterologous desensitization
often provides a mechanism for cross talk between two neuro-
transmitter systems. The heterologous desensitization described
here is rather uncommon because the target (mGluR1) does not
undergo desensitization without coactivation of another receptor
that is responsive to the same neurotransmitter (mGluR5).

Functional interactions between mGluR1 and mGluR5 in
GP neurons
Three sets of data presented in this study suggest that the
mGluR1–mGluR5 interaction is likely to be mediated by PKC.
First, the desensitizing effects of mGluR5 activation on mGluR1
responses can be mimicked by PKC activation (Fig. 8). Second,
PKC blockade potentiates the mGluR1 response to the agonist in
a manner similar to that for the mGluR5 antagonist (Fig. 7B).
Third, the effects of blocking both mGluR5 and PKC on mGluR1
responses are not additive (Fig. 7D). However, the exact mecha-
nism(s) by which PKC elicits its effects on mGluR1 responses
remain(s) to be established. Previous data suggest that two pos-
sibilities should be considered, either a direct phosphorylation of
the receptor or desensitization of the effector systems down-
stream of mGluR1 activation (for review, see Ferguson, 2001;
Choe and Wang, 2002). The finding that both the mGluR5 an-
tagonist and PKC inhibitors virtually eliminate mGluR1 desensi-
tization suggests that the desensitization of the agonist-induced
response is solely mediated by PKC and that mGluR5 likely acts
through this mechanism. However, the possibility that additional
PKC-independent mechanisms are involved in the mGluR5 reg-
ulation of mGluR1 desensitization cannot be ruled out (Dale et
al., 2000; Sallese et al., 2000; Ferguson, 2001; Choe and Wang,
2002).

Metabotropic GluR5 can also undergo desensitization in a
PKC-dependent manner (Gereau and Heinemann, 1998; Alagar-
samy et al., 1999). Moreover, the desensitization state of mGluR5
may, in fact, alter its G-protein coupling and result in the stimu-
lation of different signaling systems (Herrero et al., 1998;
Rodriguez-Moreno et al., 1998; Bruno et al., 2001). If this is true
for the GP, then the desensitization of mGluR5 with manipulat-
ing PKC activity may also result in the potentiation of the DHPG-
induced response. Then, one would expect that PMA, a PKC
activator, would not have an effect when mGluR5 is blocked. Our
data, however, suggest that such is not the case. A 10-min-long
incubation with PMA still reduced the amplitude of DHPG
induced-depolarization in the presence of MPEP (Fig. 7D).
Therefore, PKC modulates the desensitization state of mGluR1
or the signaling system downstream of mGluR1 activation.

Regardless of the exact mechanism by which mGluR5 desen-
sitizes mGluR1, these data are intriguing in that they reveal that
mGluR5 controls signaling of mGluR1 through receptor desen-
sitization. Homologous desensitization of mGluR1 constitutes
only a minor portion of the mechanism regulating the signaling
of this receptor (Fig. 6). This implies that mGluR1 may not be
fully capable of activating PKC or a critical PKC isoform in type II
GP neurons. Alternatively, mGluR1 and mGluR5 may activate
different pools of PKC such that PKC activated by mGluR1 may
not have access to mGluR1 as a substrate. It is conceivable that the
relevant PKC isoform exists in a signaling complex that is orga-
nized such that the enzyme is preferentially activated by mGluR5
but not mGluR1.

Differential roles of mGluR1 and mGluR5 in the CNS
It is generally believed that mGluR1 and mGluR5 can couple to
and activate the same second-messenger cascades. However, the
use of subtype-specific antagonists revealed that the two group I
mGluRs possess unique functions that vary between different
brain structures. For instance, mGluR1 activation mediates the
DHPG-induced depolarization and intracellular Ca 2� release,
whereas mGluR5 modulates the Ca 2�-activated K� current IAHP

in pyramidal cells of the CA1 region of the rat hippocampus
(Mannaioni et al., 2001). On the other hand, activation of both

Figure 8. PKC regulates the desensitization of mGluR1 in type II GP neurons. Metabotropic
GluR1-mediated depolarization desensitizes during repeated activation with 100 �M DHPG (A,
top trace). In the presence of 1 �M Bis, a PKC blocker, which was included in the intracellular
solution and allowed to diffuse into the cell for 10 min before the first application of 100 �M

DHPG, the desensitization of the mGluR1-mediated depolarization is prevented (A, bottom
trace). B, Mean � SEM of data for four type II GP neurons per condition. *p � 0.05, denotes
statistical significance and difference between responses to second or third application of DHPG
for control (no Bis) and 1 �M Bis as determined by two-factor repeated-measures ANOVA and
Tukey’s pairwise comparison procedure. Bars above each trace indicate timed applications of
100 �M DHPG above the cell body.

128 • J. Neurosci., January 1, 2003 • 23(1):122–130 Poisik et al. • Group I mGluRs in the GP



mGluR1 and mGluR5 is required to increase intracellular Ca 2�

release in SNr neurons, whereas activation of mGluR1 only leads
to membrane depolarization (Marino et al., 2002). In contrast,
mGluR5, but not mGluR1, activation results in the depolariza-
tion of STN neurons despite a high level of neuronal coexpression
of both receptor subtypes (Awad et al., 2000). Our data provide
additional evidence for different functions of mGluR1 and
mGluR5 in the rat GP. It is unlikely that the mGluR5-mediated
effects on mGluR1 response described in the present study occur
in all neurons that coexpress the two group I mGluR subtypes.
For instance, such interactions were not seen in SNr, STN, or
hippocampal neurons (Awad et al., 2000; Mannaioni et al., 2001;
Marino et al., 2001). Even in the GP itself, the mGluR5-mediated
desensitization of mGluR1 activity was found in type II, but not
type I, neurons. Together, these observations provide strong ev-
idence for specific, differential, and complementary functions of
the two group I mGluR subtypes in the CNS. The specificity of the
mGluR1 and mGluR5 functions may be determined by the
unique composition of the synaptic signaling complexes or scaf-
folds that associate with these receptors (for review, see Thomas,
2002).

mGluR5 antagonists and Parkinson’s disease
The observation that blockade of mGluR5 potentiates mGluR1-
mediated depolarization of most GP neurons is of interest in the
search for new therapeutic targets for the treatment of Parkin-
son’s disease (PD). PD is a debilitating motor disorder character-
ized by akinesia, bradykinesia, and tremor. Hyperactivity of the
STN has long been associated with some of the hallmark symp-
toms of the disease (for review, see DeLong, 1990). In the STN,
mGluR5 mediates excitatory effects (Awad et al., 2000). Thus,
blockade of mGluR5 activity in the STN can be beneficial in
treating PD pathophysiology. Indeed, there are reports demon-
strating that systemic administration of MPEP ameliorates
parkinsonian-like symptoms in rodent models of the disease (Os-
sowska et al., 2001; Spooren et al., 2001) (for review, see Breysse et
al., 2002). Our findings provide support for another mechanism
by which silencing mGluR5 in the GP may also be beneficial in
PD. Based on our observation that MPEP potentiates the
mGluR1-mediated depolarization of GP neurons combined with
the fact that the GP sends a massive inhibitory projection to the
STN, one can speculate that MPEP exerts its anti-parkinsonian
effects by facilitating the mGluR1-mediated increased activity of
the pallidosubthalamic pathway. This would attenuate the hyper-
active glutamatergic subthalamofugal projection to basal ganglia
output structures, thereby facilitating transmission through the
basal ganglia–thalamocortical loops. It is noteworthy that group
II and group III mGluRs also represent additional potential tar-
gets for future therapeutic strategies in Parkinson’s disease (for
review, see Conn et al., 2000; Rouse et al., 2000; Valenti et al.,
2002).

Concluding remarks
In conclusion, data obtained over the past few years have clearly
shown that the three groups of mGluRs are widely distributed
throughout the basal ganglia in which they play various functions
at presynaptic and postsynaptic levels to regulate GABAergic and
glutamatergic transmission (Conn et al., 2000; Rouse et al., 2000;
Smith and Kieval, 2000; Smith et al., 2000, 2001; Valenti et al.,
2002). Our findings suggest that these receptors may be impor-
tant in regulating neurotransmission in the basal ganglia and
pave the way for the development of novel therapeutic strategies
in Parkinson’s disease.
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