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Coordination of Cellular Pattern-Generating Circuits that
Control Limb Movements: The Sources of Stable Differences
in Intersegmental Phases
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Neuronal mechanisms in nervous systems that keep intersegmental phase lags the same at different frequencies are not well understood.
We investigated biophysical mechanisms that permit local pattern-generating circuits in neighboring segments to maintain stable phase
differences. We use a modified version of an existing model of the crayfish swimmeret system that is based on three known coordinating
neurons and hypothesized intersegmental synaptic connections. Weakly coupled oscillator theory was used to derive coupling functions
that predict phase differences between neurons in neighboring segments. We show how features controlling the size of the lag under
simplified network configurations combine to create realistic lags in the full network. Using insights from the coupled oscillator theory
analysis, we identify an alternative intersegmental connection pattern producing realistic stable phase differences. We show that the
persistence of a stable phase lag to changes in frequency can arise from complementary effects on the network with ascending-only or
descending-only intersegmental connections.

To corroborate the numerical results, we experimentally constructed phase-response curves (PRCs) for two different coordinating
interneurons in the swimmeret system by perturbing the firing of individual interneurons at different points in the cycle of swimmeret
movement. These curves provide information about the contribution of individual intersegmental connections to the stable phase lag. We
also numerically constructed PRCs for individual connections in the model. Similarities between the experimental and numerical PRCs
confirm the plausibility of the network configuration that has been proposed and suggest that the same stabilizing balance present in the
model underlies the normal phase-constant behavior of the swimmeret system.
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Introduction
Because of body mechanics, effective locomotion in most com-
plex animals requires that movements of different parts of the
body maintain a particular phase relative to other parts despite
variations in the frequency of these movements. Phase stability is
a necessary feature of the motor patterns that drive these move-
ments, and it is a significant outstanding challenge to explain this
feature in terms of the properties and interactions of the control-
ling neurons. Two recent advances in our knowledge of the cray-
fish swimmeret system have created the possibility of under-
standing in cellular terms how the crayfish nervous system
achieves stable coordination of limb movements during forward
swimming.

Each swimmeret is innervated by a pattern-generating mod-
ule that includes a set of motor neurons, three kinds of nonspik-
ing local interneurons, and three coordinating interneurons that
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project axons to targets in other modules (Paul and Mulloney,
1985a,b; Namba and Mulloney, 1999; Mulloney and Hall, 2000).
These modules drive alternating power stroke and return stroke
movements and are, in principle, independent (Murchinson et
al., 1993). In practice, their activity is always coordinated despite
changes in frequency, with a posterior-to-anterior progression of
power strokes that differ in phase by ~90° between neighboring
swimmerets. The coordinating interneurons found in each mod-
ule fire bursts of impulses at particular phases in each cycle of the
activity of that module. These bursts are necessary and sufficient
for normal coordination (Namba and Mulloney, 1999).

Skinner and Mulloney (1998) developed a model of the sys-
tem that produces this anterior-going phase progression and
maintains this phase difference despite changes in frequency. It
assumes that the pattern-generating core of each module is alocal
circuit of nonspiking local interneurons and that coordinating
axons from other modules synapse with these interneurons. The
opportunity to compare the structure of this model with the
properties of the coordinating interneurons arose from the ob-
servation that perturbing individual coordinating interneurons
causes measurable, phase-dependent changes in the output of the
target module of the interneuron (Namba and Mulloney, 1999).

In our study of this model we first applied general theories of
weakly coupled oscillators (Ermentrout and Kopell, 1984; Kopell
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and Ermentrout, 1986) to this cellular model to derive coupling
functions that predict the phase lags that exist for several patterns
of intersegmental connections. [The same formalism has been
shown to hold under less restrictive conditions (Kopell, 1988).]
Single intersegmental connections coordinated activity in differ-
ent modules, but the phase lags were unrealistic. When parallel
excitatory and inhibitory connections were permitted, the phase
lag changed to ~90°. When both ascending and descending connec-
tions were permitted, the phase lag also stabilized near 90° and no
longer was affected by changes in frequency over a wide range. The
coupling functions computed for each connection explain why.

We then computed phase-response curves (PRCs) for the
model with two ascending connections and compared them with
PRCs from stimulating individual ascending interneurons. Sim-
ilarities in these PRCs suggest that these interneurons make con-
nections that have the same properties of those in the model. This
suggests that the same mechanisms that achieve stable interseg-
mental coordination in the model also coordinate limb move-
ments in the crayfish.

Materials and Methods

Modeling the local circuit. The motor neurons that control the power and
return stroke movements of a swimmeret fire alternating bursts of im-
pulses (Hughes and Wiersma, 1960; Ikeda and Wiersma, 1964). The
power stroke (PS) and return stroke (RS) motor neurons (PS and RS in
Fig. 1) are driven by a set of nonspiking local interneurons whose synap-
tic organization is the core of the pattern-generating circuit within each
module (Heitler and Pearson, 1980; Paul and Mulloney, 1985a,b; Sherff
and Mulloney, 1996). A minimal local pattern-generating circuit consis-
tent with experimental data includes four nonspiking interneurons (Fig.
1): two identical interneurons (combined and labeled 2) that excite PS
motor neurons and two other interneurons (labeled 1A and 1B) with
different synaptic inputs that excite RS motor neurons. Thus the dynam-
ics of the entire local module can be modeled by a three-cell, nonspiking,
local interneuron circuit organized by graded synapses, as developed in
Skinner and Mulloney (1998). The depolarized states of cells 1A and 1B
are assumed to be in phase with the bursting activity of the RS motor
neurons, and the depolarized state of cell 2 is in phase with the bursting
activity of the PS neurons.

motor local interneuron circuit

neurons

o WA

Figure 1.  Diagram of the neuronal circuits thought to regulate the activity of motor neurons
that innervate a single swimmeret. The module consists of a population of power and return
stroke motor neurons (cells PS and RS, respectively), a circuit of nonspiking local interneurons
modeled with three cells (cells 1A, 1B, and 2) that are coupled by synaptic inhibition, and three
coordinating interneurons, two that project anteriorly (ASCL and ASCE) and one that projects
posteriorly (DSC). Dashed lines are drawn between cells that fire in phase. Open circles symbol-
ize either populations of similar neurons (PS, RS, 2) or individual neurons (1A, 1B, ASCE, ASCL,
DSC). Connections between neurons that end in a small filled circle symbolize inhibitory syn-
apses. Arrows pointing upward mark ascending axons that project to more anterior segments;
the arrow pointing downward marks the descending axon that projects to the more posterior
segment. The inhibitory synaptic conductance strength from 2 to 1A (or 1B) in the three-cell
local interneuron circuit is double the strength of that from 1A (or 1B) to 2.
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The dynamics of each local interneuron of the three-cell circuit are
modeled by the following equations:

Via = e — [90r = W) + (Vi) (V14 — v
+ gma(via — v) + 28153;52—1A(Vinh = Via)
i = el (na(viy) — nyy) (1)
5 i Esx("z) T S-1a
k(1= s.(ry)
vy = e — [&(; = W) + gt (v) (v, — V)
+ g (v, — w) + gls(;;SZA(Vinh - )
+ s(;rcnSZB(‘/inh - VZ)
1y = g\ 1) (n.(v,) — ny)
! Esx(‘/m) — S1a-2 2)
e k (1= s.(v14)
$i5s Esw(le) — SiB-2
k (1= s.(vp)
m.(v) = 0.5(1 + tanh((v — v1)/v2))
1..(v) = 0.5(1 + tanh((v — v3)/v4))
A(v) = cosh((v — v3)/(214))

Here, cis the capacitance of the cellular membrane; v. is the membrane
potential of cell *, where * denotes 1A, 1B, or 2; i, is a general imposed
current; g, g, and g, are maximal conductances of the leak, calcium, and
potassium currents, respectively; v;, v, and v, are the reversal potentials
of the leak, calcium, and potassium currents, respectively; m,, and n,, are
the fractions of open calcium and potassium channels at steady state,
respectively; # is the fraction of potassium channels that are actually
open; €A, is the rate constant of potassium channel opening, and €, is a
small parameter that represents the minimum of A,; vl and v3 are the
voltages at which one-half of the channels are open at steady state; and v2
and v4 are voltages with reciprocals that are the slopes of the voltage
dependence of calcium and potassium channel opening at steady state.

The variable s. is a synaptic gating variable controlling a synapse within
a local circuit. The * denotes the presynaptic—postsynaptic cells. The
parameter (€,/k(1 — s,.)) is the rate constant of s.; g{‘{,‘n is the maximal
synaptic conductance, and V;,,, represents the reversal potential for an
inhibitory synapse. The function s..(V,,,.) gives the steady-state synaptic
activation value of a postsynaptic cell in a local circuit as a function of the
voltage of a presynaptic cell,

Vpre — Vin . .
Soe(Vpre) = tanh| ———— 1, if v,,)Vy,, and 0 otherwise.  (3)
slope

The dynamics of s. imply that the synaptic activation variable of a local
postsynaptic cell asymptotically approaches the value of s..(v,,,) when
Vpre > Vi, and then decays slowly (at a rate proportional to (€,/k)) when
Vpre < Vth'

The equations for v,p, 1,5, and s, are the same as those for cell 1A,
with all of the A’s replaced by B’s.

When there is no intersegmental coupling present, the voltages of the
local circuit cells exhibit stable “relaxation-type” oscillations: stable limit
cycles that are caused by their synaptic interactions. Cells 1A and 1B
oscillate together in antiphase to cell 2 (Fig. 2A). This is typical behavior
of mutually inhibitory cells (Wang and Rinzel, 1992; Skinner etal., 1994);
here, cells 1A and 1B inhibit cell 2 with equal strength but do not inhibit
each other, and cell 2 inhibits both cells 1A and 1B with equal strength.

Modeling the intersegmental synaptic connections. A separate circuit of
coordinating interneurons that originate in each module projects
through the minuscule tract (MnT) and couples together swimmerets on
neighboring abdominal segments. These interneurons are referred to
collectively as MnT interneurons. Three types of MnT coordinating neu-
rons have been identified, namely ASCE, ASCL, and DSC. These neurons
are known to fire bursts of impulses in phase with the swimmeret motor
pattern and have axons that extend intersegmentally in either the ascend-
ing or descending direction (Wiersma and Hughes, 1961; Stein, 1971;
Naranzogt et al., 2001) (Fig. 1). The MnT coordinating interneurons are
central to the experimental results presented in this paper, but in the
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Alternating depolarizations of local interneurons in the reciprocally inhibitory model circuit. Shown are voltage versus time traces for cells 2 (gray trace) and 1A (= 1B) (black trace). B,

Physiological recordings of PS—RS activity corresponding to A and used to measure the phase of the experimental system. The time scale is the same as in A.

posterior unit

Figure3. Diagram ofa circuit with ascending-only intersegmental connections. The ascend-
ing intersegmental connections consist of one excitatory connection (open triangle) and one
inhibitory connection (filled circle) from cell 4 (in the posterior unit) to cells 1B and 1A, respec-
tively (in the anterior unit).

computational model they are not defined explicitly as separate cells. Like
swimmeret motor neurons, they are driven by graded synaptic currents
from local interneurons (Namba and Mulloney, 1999). In this model
they are assumed to fire bursts of impulses whenever the nonspiking local
interneurons that drive them are depolarized (Fig. 2A). The cell corre-
sponding to cell 2 (Fig. 1) in the posterior ganglion drives the two
anterior-projecting connections that correspond to ASCE and ASCL; cell
1A drives the posterior-projection connection that corresponds to DSC.
Each connection becomes active whenever the cell that drives it is depo-
larized (Fig. 3). Thus, in the model, firing by ASCE and ASCL is repre-
sented by depolarization of cell 2, and firing by DSC is represented by
depolarization of cell 1A or 1B.

We modified the dynamics regulating the intersegmental synapses
from that presented by Skinner and Mulloney (1998). In Skinner and
Mulloney (1998), intersegmental synapses were modeled with a “spike-
mediated transmission threshold” method. Here, intersegmental con-
nections are modeled with instantaneous on and off synapses, as de-
scribed below. This modification does not alter qualitatively the results of
Skinner and Mulloney (1998).

When the intersegmental synapses are present, additional terms of the
form:
B3gumUlpre = Vi) (Vs = Vo) » (4)

are added to the voltage equation of the postsynaptic cell, where 0 < § <<
1 represents the small amplitude coupling, v, is the voltage of the

post
postsynaptic cell, and v,,,. is the voltage of the forcing cell in the neigh-
boring segment. Also, g, i\, Vigy, > 0 are parameters representing the

maximal synaptic conductance for an intersegmental synapse, the inter-
segmental coupling threshold value, and the reversal potential for an
intersegmental synapse, respectively. Unlike the local coupling, which is
purely inhibitory, the intersegmental coupling can be either inhibitory
or excitatory. Hence V‘g';; can equal either V, or V., where V_
represents the reversal potential for an excitatory synapse. The function
Uvppe = Vi) turns on and off the intersegmental coupling; it has a value
of 1 when the voltage of the neighboring presynaptic cell is above the
threshold value Vi, but it is zero otherwise.

We study the interactions between a single pair of neighboring seg-
ments, as in Skinner and Mulloney (1998). The cells in the anterior unit
are referred to as 1A, 1B, and 2, and the corresponding cells in the pos-
terior unit are referred to as 3A, 3B, and 4 (Fig. 3). The equations regu-
lating the cells in the posterior unit are identical to those given above. The
intersegmental phase lag of interest is that lag measured between the
power stroke motor neurons, i.e., between cells 4 and 2.

Parameter values. The standard values of the parameters used for the
equations listed above and throughout the article are, unless otherwise
stated, consistent with those used by Skinner and Mulloney (1998) and
are as follows. The capacitance, ¢, of each cellular membrane is set at 1
wF/cm? (F, farad). The external applied current is i, = 1nA/cm?. The
maximal conductances in mS/cm? (S, siemens) and reversal potentials in
mV are g = 0.2, v, = —60, g, = 0.3, v, = 100, g = 0.3, v, = —80,
g{‘;; = 0.5, g;‘;; = 0.3, V,,, = —65 (for both local and interseg-
mental, V%! synapses), V... = 0 (when the intersegmental synapse is
excitatory), V,;, = —50, t‘ff = —30, V. =10,vl= —25,v2 = 20,

XC

nh

syn>
slope
v3 = —30,v4 = 15. Also, k = 3, €, = 0.006, 6 = 0.0151, and €, is from
the baseline case in which its value is set at 0.006. Time ¢ is in
milliseconds.

To maintain the stable limit cycle oscillations of the local circuits, as
shown in Figure 2, we kept fixed most of the parameters listed above for
all of the simulations that are presented. We investigated changes in the
frequency of the local oscillations by varying the parameter €, = 0.006
and changes in intersegmental coupling strengths by varying the param-

int
eter syn®
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All simulations were performed by using G. B. Ermentrout’s package
for solving ODEs, XPPAUT (Ermentrout, 2002). The usual method of
integration was a fourth-order Runge—Kutta method.

Numerical generation of coupling functions (H functions). When the
coupling between cells is not too strong, we can derive coupling func-
tions, referred to as H functions, that predict the existence and stability of
phase lags between the coupled three-cell local interneuron circuits (Er-
mentrout and Kopell, 1984; Kopell and Ermentrout, 1986) under various
intersegmental coupling configurations.

Each local three-cell circuit that controls a swimmeret can be consid-
ered as a local oscillator that has its own intrinsic frequency, . The
activity of this oscillator can be described by one variable, 6, the phase of
this oscillator as it moves around its stable limit-cycle. In a set of similar
oscillators that have identical frequencies, w, and no intersegmental con-
nections, each oscillator, 7, is independent, and its phase, 0;, is given by
the equation 0, = w, where 6;’ is the derivative of 6; with respect to time.
In our cellular model of the local swimmeret circuit this formalism can be
applied to particular cells. For example, 6," = w describes the phase of
cell 2 in its local circuit in the absence of connections from other
oscillators.

If we add an intersegmental connection from a cell in one oscillator to
a cell in a second oscillator, the phase of the second oscillator will no
longer be independent of the phase of the first oscillator. For example, if
there is a weak synapse from cell 4 to a cell in the circuit of cell 2 (Fig. 3),
then according to the general theory (see Ermentrout and Kopell, 1984;
Kopell and Ermentrout, 1986) the dynamics of the system can be de-
scribed to leading order by:

0,=w+ H(H,— 6,
0= w ' (5)

Here H is a coupling function, the value of which depends on the phase
difference between the anterior and posterior oscillators. Higher order
corrections, proportional to 82, are omitted from Equation 5, where
recall §is defined in Equation 4. These equations imply that the posterior
oscillator continues to be independent of the anterior oscillator, but the
frequency of the oscillator that includes cell 2 now is affected by phase
differences between it and the more posterior oscillator. A requirement
to derive such coupling functions is that the attraction of each oscillator
to its limit cycle is strong when compared with the inter-oscillator cou-
pling; in the present model this attraction is strong because of the ampli-
tude of the local inhibition.

In the case that there is a second ascending intersegmental connection
from the posterior oscillator to cells in the anterior oscillator, a second H
function is added to the first equation in system 5 such that the sum of the
two functions yields the combined effects of the two connections (for the
general theory, see again Ermentrout and Kopell, 1984; Kopell and Er-
mentrout, 1986). We refer to the H function representing all ascending
connections as H, .

In the case that there are new intersegmental connections that project
in the descending direction, i.e., from the circuit of cell 2 posteriorly to
the circuit of cell 4, then the frequency of cell 4 is no longer independent
of 0,, and a new term, Hy,, (6, — 6,), is required in the second equation
in system 5:

0/2 =o+ Hasc(04 - 02)
64,& o+ Hdesc(ez - 64) ' (6)

Analytical techniques for calculating the coupling functions are given
in the appendix of Ermentrout and Kopell (1991), and we generated the
coupling functions by using the H function facility of the XPPAUT soft-
ware package (Ermentrout, 2002), which is based on the above-
mentioned mathematical analysis.

The coupling functions that were generated were used to predict the
existence of stable fixed phase lags, ¢* = 0, — 0, between oscillators i
and j. According to the general theory (see Ermentrout and Kopell, 1984;
Kopell and Ermentrout, 1986; Skinner et al., 1997), a phase difference,
¢*, for which H(¢p*) = 0 and for which the slope of H at ¢* is positive,
corresponds to a stable phase lag. More specifically, we define the phase
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difference ¢ = 6, — 0,. In the case of ascending-only connections, the
rate of change of ¢ may be computed by using Equation 5,

- Hasc(‘b)' (7)

Therefore, the phase difference ¢* for which H,,.(¢*) = 0 corresponds
to a fixed phase lag (fixed since ¢’ = O then), and itisstable if H' ;, (¢*) >
0, because then ¢* is an attracting fixed point of the ordinary differential
equation (Eq. 7).

When only descending connections are present, the rate of change of ¢
may be computed as:

¢ =0, — 0, =

(;b/ = Hdesc( - d)) (8)

In this case the phase difference ¢* for which Hy ., (—¢*) = 0 is a stable
fixed phase lag if H' 4.,.(—¢*) > 0.

When both ascending and descending connections are present, the
rate of change of ¢ may be computed by using Equation 6 as:

(b’ = Hdcsc( - d)) - Hasc(d))' (9)

Then, defining the composite function via:

Hfull(¢) = = Hdesc( - (b) + Hasc((r’))) (10)

we see that Equation 9 may be written succinctly as:

¢' = — Hy(). (11)

A fixed phase lag ¢* for Equation 11 will be stable if H';;,(¢*) > 0.

Experimental preparation. Our methods are described in detail by Mul-
loney (1997) and Namba and Mulloney (1999). In summary, crayfish
Pacifastacus leniusculus were purchased from local suppliers. At the be-
ginning of an experiment a crayfish was anesthetized by being chilled on
ice and then exsanguinated by perfusion. The ventral nerve cord, consist-
ing of abdominal ganglia 1-6, was removed from the abdomen and
pinned out dorsal-side up in a Sylgard-lined Petri dish. The sheath was
removed from the dorsal side of ganglia A2, A3, A4, and A5. Extracellular
electrodes were placed on selected branches of the nerves that innervate
swimmerets (Mulloney and Hall, 2000). If the preparation did not ex-
press the swimmeret motor pattern spontaneously, it was bathed in 3 um
carbachol (Mulloney, 1997).

The axons of motor neurons that innervate power stroke muscles are
found in the posterior branch of the nerve that innervates each swim-
meret; the axons of motor neurons that innervate return stroke muscles
are found in the anterior branch (Mulloney and Hall, 2000). Electrodes
placed on these two branches will record the entire motor output to the
swimmeret (Fig. 2 B). To measure the period of the motor pattern, we
measured the time between the start of each PS burst and the start of the
next PS burst. To calculate the phases in the cycle of activity of the system
of PS bursts recorded from a given segment, we defined the start of each
cycle as the start of the PS burst in A5 (Fig. 4), and we measured the delay
between the start of this PS5 burst and the start of the PS burst in the
given segment. Phase was defined as the ratio of this delay to the period of
that cycle (Mulloney and Hall, 1987).

The axons of the three coordinating interneurons that originate in
each module project through the MnT, where their impulses can be
recorded with a suction electrode, and continue into the interganglionic
connectives (Namba and Mulloney, 1999). Individual MnT coordinating
interneurons were penetrated with a sharp microelectrode in the lateral
neuropil of the ganglion in which they originated. Each neuron was
identified physiologically by the criteria given in Namba and Mulloney
(1999). These identifications later were confirmed independently by fill-
ing the neuron with Neurobiotin (Vector Labs, Burlingame, CA) and
recording the structure of the neurons with the use of a confocal
microscope.

Microelectrodes contained 5% Neurobiotin, 1 M KCl, and 10 mm
K,PO,, pH 7.4, and had a resistance of 30-50 M(). After each experiment
the preparation was fixed overnight in 4% paraformaldehyde in PBS. The
filled cell was visualized later with streptavidin AlexaFluor 488 (Molecu-
lar Probes, Eugene, OR), using the protocol described in detail in Namba
and Mulloney (1999).
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Figure4. Experimental recordings of the output from power stroke (PS) motor neurons on
neighboring ganglia. These recordings illustrate the characteristic ~90° intersegmental phase
difference.

Phase—response curves (PRCs). We investigated the effects of coupling
between neighboring segments in the real and model swimmeret system
by using PRCs. PRCs are used rather than H functions because, unlike H
functions, they readily can be generated experimentally. PRCs give infor-
mation about the effect of unidirectional forcing from one oscillating
unit to another. In the present case the circuits regulating the motor
activity of a swimmeret were considered an oscillating unit (Fig. 1),
whose phase was measured in terms of the activity of the PS motor
neuron. The phase at which the forced oscillator receives input was plot-
ted on the horizontal axis, and the net change in the period of the forced
oscillator was plotted on the vertical axis. We obtained effects of multiple
intersegmental connections by summing the PRCs for individual con-
nections; such addition is valid when the coupling is weak.

Unlike H functions, which represent the average of the effects of an
ongoing periodic input over a cycle of the recipient oscillator, PRCs
measure the effect on spike timing of a specific short input given to an
oscillator at different times in its cycle. If the input is sufficiently weak
and has a form close to a delta function, the information from the PRC
can be used to construct an H function; continuous input is treated as an
infinite set of small delta functions, and the H function is computed as a
convolution from the “infinitesimal” PRC (Hansel et al., 1995). If the
input is not very short or weak, H functions and PRCs are not directly
comparable. In our case the input is not very short (lasting the duration
of a burst), and the effects from a single perturbation can persist for
several cycles. Here we use PRCs only to make direct comparisons be-
tween the model and the experimental data.

Experimental generation of PRCs. Once an individual MnT interneu-
ron had been identified in a preparation that was expressing the swim-
meret motor pattern continuously, the firing of the neuron was per-
turbed by periodically injecting pulses of depolarizing current (0.5 nA for
ASCE; 0.8 nA for ASCL) through a balanced bridge circuit. The durations
of these pulses were approximately the duration of a normal burst. These
experimental bursts occurred at frequencies less than one-tenth of the
frequency of the on-going swimmeret activity and had no fixed phase
relative to this activity. By recording continuously a series of >100 pulses
while we recorded motor output from the target ganglion and the firing
of the MnT interneuron, we collected a series of perturbations and the
changes that they caused to generate a phase—response curve.

To graph the PRC, we first measured the periods of the four PS bursts
in the target ganglion that immediately preceded the start of the ith
current pulse, and we measured the period of the PS cycle during which
the pulse began. The mean of these four preceding periods, X;, made a
good predictor of the expected period of the forced cycle. We then nor-
malized the difference, Dif;, between each experimental period X; and
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the mean period just preceding it, X;, as Dif; = (X; — X;)/X; and plotted
these normalized differences as functions of the phase in the cycle of the
PS neuron in the target ganglion at which the current pulses that caused
them began. A horizontal line is drawn at y = 0 to emphasize no change
in period.

Numerical generation of PRCs. To compare the model directly to the
experimental results, we generated PRCs numerically that correspond to
the input from each of the ascending connections in the model (Fig. 3).
We began with each local circuit oscillating on its steady-state trajectory
independently (Fig. 2A) because there was no intersegmental coupling
present. At the beginning of an arbitrary cycle the coupling from cell 4 to
the circuit of cell 2 was turned on for one cycle of cell 4 (480 msec). The
synapse from cell 4 included a variable delay so that its effects on the
anterior circuit would begin at a variable phase in the period of cell 2. This
procedure was performed for a sequence of 48 different delays spaced
7.5° apart. For each value of the delay the resulting change in the period of
cell 2 was plotted, and we denoted this function as the numerical PRC.

Results

Two quite different levels of analysis, coupled oscillator theory
and cellular modeling, have been applied to the swimmeret sys-
tem, but it has been difficult to join these analyses into a unified
understanding of the dynamics of the system. We start with an
investigation of why particular patterns of intersegmental con-
nections are able to produce a stable difference in the phase of
motor activity in neighboring segments, using the methods of
coupled oscillator theory. Because earlier work had established
that unidirectional information alone, either “ascending” or “de-
scending” connections, could produce stable phase lags under
restricted circumstances (Skinner et al., 1997; Skinner and Mul-
loney, 1998), we examined the properties of an effective interseg-
mental circuit that had only ascending connections. We continue
with an examination of a similarly effective circuit that has only
descending connections. These computational results yield hy-
potheses about how patterns of inhibitory and excitatory synaptic
connections and particular ranges of synaptic strength combine
to cause phase differences that do not change despite changes in
the frequency of the motor pattern.

Ascending connections: excitation and inhibition combine to
create an ~90° intersegmental phase lag

The modeling work of Skinner and Mulloney (1998) shows that
an ~90° phase lag between cells 4 and 2 is possible with a specific
pattern of ascending-only connections from the posterior to the
anterior unit. The configuration they propose consists of an as-
cending inhibitory connection from cell 4 to cell 1A and an as-
cending excitatory connection from cell 4 to cell 1B, as shown in
Figure 3, where the amplitudes of the couplings are small. Recall
that cell 4 represents the simultaneous activity of two different
axons, ASCE and ASCL. Synapses from these two axons may have
opposite effects on the target neurons, depending on the recep-
tors at their respective targets. This architecture is used in this
study as a standard case.

We investigated separately the excitatory and inhibitory con-
nections in the ascending-only configuration shown in Figure 3.
We numerically evaluated the corresponding H functions from
the mathematical theory of weakly coupled oscillators (see Mate-
rials and Methods) to show that the combined effects of excita-
tion and inhibition create a stable ~90° intersegmental phase lag.
Here the coupling strengths are set equal to establish a standard
case for later comparison.

The coupling function H,, generated in a network containing
only excitatory forcing from cell 4 to cell 1B (Fig. 3) is shown in
Figure 5A. We can infer from the point at which H,,. crosses zero
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from below that, in the stable steady state,
the voltage of cell 4 will oscillate ~189°
ahead of that of cell 2. The simulation
shown in Figure 5B verifies this.

The function H;,;,, generated in a net-
work containing only the inhibitory con-
nection from cell 4 to cell 1A, also is
shown in Figure 5A. In this case the volt-
age of cell 4 will oscillate ~333° ahead of
that of cell 2, as verified by the data shown
in Figure 5C.

The sum of the functions H,. and
H,,;,» denoted H,, is shown in Figure 5D.
It crosses zero from below at 84°, which is
within 7% of 90° (relative error, i.e.,
within 6.3°). Thus, the excitation and in-
hibition combine to cause the voltage of
cell 4 to oscillate ~90° ahead of that of cell
2. The simulation shown in Figure 5E ver-
ifies this prediction.

We emphasize that the point at which
H,. crosses zero from below depends on
the shapes and amplitudes of both H,,
and H,,, not just on their zeros.

Relative intersegmental coupling strengths
affect intersegmental phase lag

There is a range of values of intersegmen-
tal coupling strength over which the inter-
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Figure 5. The coupling functions H,, (), Hi(h), and H,. () and voltage traces when only ascending intersegmental
connections are present. A, The functions H,,. and H,,,, generated numerically in circuits containing an ascending excitatory-only
connection from cell 4 to 1B and inhibitory-only connection from cell 4 to cell 1A, respectively. The vertical dotted line marks the
portions of the functions that sum to zero. B, Voltage versus time traces for cell 4 (black solid curve), cell 2 (black dashed curve), and
cell 1B (gray curve) when only the excitatory connection from cell 4 to cell 1B is present. C, Voltage versus time traces for cells 4, 2,
and 1Awhen only the inhibitory connection from cell 4 to cell 1Ais present. D, The function H, generated numerically in a network
containing both excitatory and inhibitory connections (see Fig. 3). The stable phase lag between cells 4 and 2 occurs at ~84°for the
parameter values of this representative simulation (arrow). £, Voltage versus time traces for cells 4 and 2 when both ascending
connections are present.

segmental phase lag remains ~90°. We
use H functions to show this by first fixing
Zexe = 0.3, as above, so that the function H,,. remains as in Figure
5A (redrawn in Fig. 6 B) and by investigating the effects of both
decreasing and increasing g;,;, (from the standard case of g, =
0.3). When we decrease g, from 0.3 to 0.16, the intersegmental
phase lag remains within 10% of 90° (in particular 99°). For
smaller values of g, the phase lag increases to values outside of a
10% range of 90°. This shift emerges from the effects of changes in
Zinn ON the amplitudes of the corresponding functions H,;,. For
example, Figure 6 B displays a new function H;,;, generated with
Zinh = 0.1. The point at which H,,;, crosses zero from below and
the general shape of the new H,,,, are approximately the same as
they were in Figure 5A, but the amplitude of this function is
smaller. When this new function, H;,;,, is added to the function
H.,,., the point at which the resulting sum function, H,, (Fig.
6C), crosses zero from below increases to 180°. Moreover, we
observe that, when we instead increase g;,;, (still with g... = 0.3),
the amplitude of H,,, increases; hence the point at which the
resulting H,,. crosses zero from below decreases (data not
shown).

Finally, using the same analysis as above, we see that if we
instead keep g1, fixed at 0.3 (as in the standard case) and decrease
the relative strength of the ascending excitatory connection, then
the amplitude of H,,. decreases and the point at which the result-
ing sum function, H,,, crosses zero from below decreases (data
not shown). Similarly, an increase in the relative strength causes
an increase in the value of the zero.

SC

Intersegmental coupling configuration affects intersegmental
phase lag

Although many ascending-only network configurations are con-
sistent with the known anatomy of the swimmeret system, most
of these will not create an ~90° intersegmental phase lag (Skinner
and Mulloney, 1998). Analysis of the H functions can be used as a

tool to determine which configurations may exist in the real
swimmeret system. Here we give an example of an ascending-
only network configuration that is consistent with the known
anatomical information (Wiersma and Hughes, 1961; Stein,
1971; Naranzogt et al., 2001) but show with H functions that it
does not create an ~90° intersegmental phase lag.

Figure 7B shows the new function H,,, obtained from an
inhibitory-only connection from cell 4 to cell 2, rather than to cell
1A (Fig. 7A). This plot shows that the voltage of cell 4 oscillates
153° ahead of that of cell 2. The new function H,,;, sums with the
previous function H,, (Fig. 5A) to form a new function H, (Fig.
7C). The function H,, crosses zero from below at 173° hence the
stable lag is far from 90°.

Descending connections: inhibition and excitation combine
to create an ~90° intersegmental phase lag

The descending-only configuration we study consists of inhibi-
tion from cell 1A to 3A and excitation from cell 1A to 3B (with
Zexe = 0.3 and g;.,, = 0.3, respectively; see Fig. 8A). We note that
it is possible for a single descending connection to produce both
inhibitory and excitatory effects on neurons if the neurotransmit-
ter it produces has opposite effects on receptors on different neu-
rons in the target segment or if at least one of the effects occurs
through a relay neuron. Moreover, this descending-only config-
uration is consistent with experimental evidence showing that
only one coordinating neuron has a descending connection (DSC
in Fig. 1).

The new coupling functions —H,,.(—¢) and —H;,,,(— ¢) are
shown in Figure 8 B, and their sum, —Hg.,.(—¢), is shown in
Figure 8C. Asin the case for the ascending connections, the values
at which these functions cross zero from below are near stable
phase lags between cells 4 and 2 (see Materials and Methods).
Here a stable phase lag between cells 4 and 2 occurs at ~350°
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strength g;,,, = 0.1 (a decrease from the default value of g,,,, = 0.3) and an excitatory-only connection from cell 4 to 1B with maximal conductance strength g, = 0.3, respectively. C, The function
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Figure7.  The pattern of intersegmental coupling connections affects phase lags. A, Schematic of a network containing ascending-only intersegmental connections in which cell 4 inhibits cell 2,

rather than cell A as in Figure 3, and excites cell 1B. 8, The coupling functions H,,,, and H,, generated numerically in a network containing an ascending inhibitory-only connection from cell 4 to 2
and an excitatory-only connection from cell 4 to 1B. C, The function H,, generated numerically in the circuit shown in A. The stable phase lag occurs at ~173° (arrow).

when only the excitatory descending connection is present and at
~200° when only the inhibitory descending connection is
present. The vertical dashed line marks the portions of the func-
tions that sum to zero. The function —Hyg.,.(—¢) crosses zero
from below at ¢ = 96°, which is within 8% (relative error) of 90°.
Hence, we see again that the combination of excitatory and in-
hibitory connections, now both descending, causes the network
to exhibit an ~90° intersegmental phase lag.

Full network: ascending and descending connections

combine to create an ~90° intersegmental phase lag

The combined effects of ascending and descending connections
(Fig. 9A) are obtained by adding the coupling functions H,.(¢)
and —Hg. (—¢), plotted as functions of ¢ (see Materials and
Methods), each of which has one zero crossing (from below) at
~90°. The resulting sum function, denoted Hy;(¢) and shown in
Figure 9B, has a very small amplitude over an interval of ¢ values

containing ¢ = 90, and it actually has three zero crossings near
90°. Hence on the basis of just this leading order function, one
might predict that there are two stable phase lags. However, we
recall that there are higher order terms, proportional to §7, that
correct the predictions of the leading order function Hg,. These
corrections must be taken into account when the amplitude of
the leading order H function is so small.

Therefore, we computed the full coupling function, which
includes all of the contributions to the frequency changes, not
just the leading order contribution. We used the method devel-
oped in Williams (1992), which is designed to find the full cou-
pling function on those intervals over which it has positive slope
only. The result for the representative case is shown in Figure 9C
for a range of ¢ values near 90. The full function has just one zero
(at ~85°) near ¢ = 90, and it has a positive slope there. Therefore,
the analysis that uses coupling functions predicts that the full
network maintains a fixed phase lag of ~90° between cells 4 and
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The coupling functions —Hi.,(— ), —He, (— ), and —Hyes (— ob), plotted as functions of ¢, when only descending intersegmental connections are present. A, Schematic of a

network containing descending-only intersegmental connections. B, The functions —H,, (— ¢) and —Hj,,(— ¢) generated numerically in a network containing a descending excitatory-only
connection from cell 1A to 3B and inhibitory-only connection from cell 1B to 3A, respectively. The vertical dotted line marks the portion of the functions that sum to zero. (, The function — Hy. (— ¢b)
generated numerically in a network containing both excitatory and inhibitory connections as shown in A. When both descending connections are present, the stable phase lag occurs at ~96° for the

parameters of this representative simulation (arrow).
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The coupling function H,,(¢b) from the fully coupled network (A). B, The leading order function Hy,,, generated numerically in a network containing both ascending and descending

connections as shown in A. G, The function Hy,, , including all contributions to frequency changes, not just the leading order ones. There is one stable phase lag at ~85° for the parameters of this

representative simulation (arrow).

2. Numerical simulations of the full model (data not shown)
confirm the presence of this phase lag.

Stability of phase differences despite changes in frequency

We now investigate how changes in the frequency of the oscilla-
tion of each cell affect the intersegmental phase lag in the full
network (Fig. 9A4). To compare with the results of Skinner and
Mulloney (1998), we investigated changes in the frequency of the
oscillations by varying the rate constant of an outward potassium
current via the parameter €, (see system 1-2); this is the same
parameter used by Skinner and Mulloney. Increasing €, from
0.003 to 0.009 linearly increases the frequency of the oscillations
from 1 to 3 Hz.

The coupling functions H,,.(¢) and —Hgy...(—¢) for these
three frequencies are shown in Figure 10, A and B. We see that
there is a range of ¢ values from ~45 to 90° over which the
function H,,(¢) qualitatively shifts to the right, and from ~90 to

asc

135° the function — Hy., (— ¢) qualitatively shifts to the left as the
frequency increases. These complementary effects cancel each
other out approximately when the functions are summed; hence
there is a range of frequencies over which the function H,(¢)
crosses zero from below at ~90° (Fig. 10C; for 2 and 3 Hz, i.e,,
€, = 0.006 and € = 0.009). Thus when both ascending and
descending connections are present, the voltages of cells 4 and 2 are
held at an ~90° phase lag despite changes in frequency. On the other
hand, if the frequency is lowered too much, then the phase lag is no
longer ~90° (Fig. 10C; for 1 Hz, i.e., €, = 0.003). Moreover, the
lower boundary of this phase-constant regimen appears to be just
below 2 Hz, as is confirmed by the data shown in Figure 10C. Also,
this boundary point appears to coincide with the transition from the
regimen (near 1 Hz) in which H;;(¢) has three distinct roots, with
the middle one nearest 90° being an unstable phase lag to the regi-
men (atand above 2 Hz), in which there is only one root near 90° and
it corresponds to a stable phase lag.
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Figure 10.  Persistence of the ~90° phase lag to changes in frequency. A, The coupling
function H,, (¢) for three frequencies, generated in a circuit with an ascending-only interseg-
mental coupling configuration, as shown in Figure 3. The function H, qualitatively shifts to the
right as the frequency increases (see arrow), i.e., €, increases. B, The coupling function
—Hges(— ), for three frequencies, generated in a circuit with a descending-only interseg-
mental coupling configuration, as shown in Figure 8 A. The function —Hy, qualitatively shifts
to the left as the frequency increases (see arrow). C, The coupling function He, (<) for three
frequencies, generated in a full network configuration, as shown in Figure 9A. In this case there
is a parameter regimen in which the phase lag between cells 4 and 2 remains near 90° despite
changesin frequency (see arrow at the points at which the function Hg,, crosses zero from below
for 2and 3 Hz). In each figure 1 Hz (€, = 0.003) is represented with a red curve, 2 Hz (e, =
0.0006) is represented with a blue curve, and 3 Hz (€, = 0.009) is represented with a green
curve.

Phase-response curves: experimental data are consistent with
predicted types of ascending connection synapses
As explained in Materials and Methods, we now switch from H
functions to PRCs to show how the results of this computational
study bear on the swimmeret system itself. We generated exper-
imental PRCs for each of the ascending coordinating interneu-
rons. We then used the model to generate numerical PRCs for
each of the ascending connections and qualitatively compared
the two sets of curves. The shapes and intercepts of the experi-
mental and computed curves are similar, and so they support the
idea that the stability of intersegmental phase lags in the swim-
meret system emerges from the factors we identified by applying
coupled oscillator theory.

Two types of MnT coordinating neurons with axons that
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project anteriorly, ASCE and ASCL in Figure 1, have been iden-
tified (Namba and Mulloney, 1999). When the swimmeret sys-
tem is active, each MnT coordinating neuron fires a burst of
impulses at a characteristic phase in each cycle of activity in its
home ganglion (Namba and Mulloney, 1999; Naranzogt et al.,
2001). These bursts are driven by synaptic currents from neurons
within the local pattern-generating circuit, and the firing of each
MnT interneuron within one local circuit is independent of the
other two (Namba and Mulloney, 1999). As one part of a multi-
faceted exploration of MnT interneurons and their targets, B.
Mulloney and W. M. Hall (unpublished data) have done phase—
response experiments on ASCE and ASCL neurons. Here we
show two examples of PRCs from their experiments and compare
them with PRCs generated from the model. We find good qual-
itative agreement between the experimentally generated PRCs for
each of these ascending interneurons and the PRCs for each of the
ascending connections in the model. These similarities suggest
that, like the connections in the model (Fig. 3), one ascending
interneuron is excitatory but the other is inhibitory, and the ef-
fects of both connections combine to promote a 90° phase lag
between the PS bursts in neighboring ganglia.

ASCE coordinating neuron

Here we consider the ascending connection originating from the
ASCE coordinating neuron in ganglion A4 (see Materials and
Methods). Bursts of activity were generated in ASCE at various
phases in the cycle of the PS motor neurons in A3 (the next
anterior ganglion), referred to as PS3. The difference between the
observed period of the PS3 cycle in which the stimulus occurred
and the expected period of that cycle was plotted as a PRC (Fig.
11A). Data from two experiments were pooled in this example.
The main features of this PRC are that there is a brief period of
phase delays (i.e., negative changes in period, from ~0 to 30°)
followed by a period of phase advances (i.e., positive changes in
period, from ~30 to 90°) and then a more significant period of
phase delays (from ~90 to 360°). This PRC crosses zero from
above just before 90°, as marked with an arrow.

An identical trend of phase advances and delays is seen in the
numerically generated PRC corresponding to ascending excita-
tory input from cell 4 to cell 1B in the model (Fig. 11 B) albeit that
the phases over which the trends occur are different. This numer-
ical PRCalso crosses zero from above in one place (here at ~169°
as marked with an arrow). These strong qualitative similarities
between the experimental and numerical PRCs suggest that the
ASCE connection indeed may be excitatory, as predicted by the
model.

We note that we would not expect perfect agreement between
the experimental and numerical results because in the physiolog-
ical experiments the individual MnT interneurons were being
stimulated in parallel with the ongoing firing of the other coor-
dinating axons, whereas in the numerical experiments the as-
cending connections were activated completely individually.

ASCL coordinating neuron

Next we investigate the effect of the ascending connection origi-
nating from the ASCL coordinating neuron in A4. Bursts of im-
pulses were generated in ASCL at various phases in the cycle of
PS3. Changes in the period of PS3 are plotted as a PRC (Fig. 11C).
The main features of this PRC are that there is a very brief period
of phase advances (~0-10°) followed by a period of phase delays
(~10-90°), then phase advances (~90-250°), then phase delays
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(~250-340°), and finally phase ad-
vances (~340-360°). These features,
along with the inherent periodicity of
PRCs, suggest that the PRC crosses zero
from above in the first quarter of the
period of cell PS3, near 10°, and also just
before 270°, as marked with arrows.

The experimental PRC shares impor-
tant qualitative properties with the nu-
merically generated PRC from the model
that contains an inhibitory connection
from cell 4 to cell 1A (Fig. 11D). The nu-
merical PRC also begins with a very brief
period of phase advances, then a more
prominent period of phase delays, and
then phase advances. This numerical PRC
ends with values in the vicinity of zero and
with slight phase advances. Like the exper-
imental PRC, this PRC crosses zero from
above in two places, here near 10° and just
past 270°, as marked with arrows. As ex-
pected, there are some quantitative differ-
ences between the computed and experi-
mental PRCs, here for inputs arriving late
in the cycle of the cells. However, there are
enough qualitative similarities between
the experimental and numerical PRCs to
suggest that the ascending connection
made by ASCL may be inhibitory, as pre-
dicted by the model.

Effects of ASCE and ASCL coordinating
neurons combine to create an ~90° lag

The experimental data in Figure 11, A and
C, show that the observed change in pe-
riod is relatively small (typically <25%).
This suggests that the intersegmental cou-
pling strength is relatively weak and that
one can add the PRC data to obtain the
combined effect of the two ascending con-
nections. The PRC resulting from the
summation of the data from Figure 11, A
and C, is shown in Figure 11 E. This PRC
begins with a period of phase delays (~0-
60°) followed by a period of phase ad-
vances (~60-140°), then a very short pe-
riod of phase delays (~140-180°), then
another period of phase advances (~180—
250°), then another period of phase delays
(~250-340°), and finally ending with a pe-
riod of phase advances (~340-360°). This
PRC crosses zero from above between 90
and 180° (at ~140°) and just before 270° (at
~250°), as marked with arrows.

The PRC generated from the model con-
taining both excitatory and inhibitory as-
cending connections (Fig. 11 F) shows sim-
ilar trends of phase advances and delays as

the experimental PRC (Fig. 11 E). Furthermore, the numerical PRC
also crosses zero from above in at least two places: one between 90
and 180° (at ~146°) and one just after 270° (at ~281°), as marked
with arrows. We note that the experimental and numerical PRCs
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Figure 11.  Experimental and numerical phase—response curves. A, PRC of ASCE neuron constructed from changes in period of

PS3 bursts in response to bursts of impulses in an ASCE neuron from A4. These bursts were triggered by current pulses injected into
the ASCE starting at different phases in the cycle of PS3 activity. To construct this curve, first we pooled data from two ASCEs
stimulated in different experiments (n = 52 responses) and sorted them by phase. Then phase was partitioned into 20 bins (18°
each), the mean of all responses for which the phase fell in each bin was calculated, and these mean responses were plotted as a
function of phase. B, PRC generated in a model network containing an excitatory-only connection from cell 4 to 1B. The PRCis the
change in the period of cell 2 as a function of the point in its cycle when the excitation from cell 4 arrived. C, PRC of ASCL neuron
constructed from changes in period of PS3 bursts in response to bursts of impulses in an ASCL neuron from A4. The means of binned
data from one ASCL neuron (n = 122 responses) were calculated and plotted as described in A. D, PRC generated in model network
containing an inhibitory-only connection from cell 4 to 1A. £, PRCof the combined ASCE and ASCL connections, created by summing
the curvesinAand C. F, PRCgenerated in a model network containing both inhibitory and excitatory connections, asin Figure 3. We
note thatall of the PRCs have been plotted in terms of 0 —360°; to compute the slope of the curves, one must normalize to0—1.The
PRC values in B, D, and F have been multiplied by 10. In adjacent panels, arrows mark corresponding phases at which the
experimental and numerical PRCs cross zero from above.

have obvious differences in the regions between ~90 and 140° and
between 340 and 360°. In the former region the results are less ex-
perimentally stable; hence comparisons with the numerics should be
taken less seriously. The differences in the latter region follow from
the differences occurring from perturbations arriving late in the
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cycles of the PS3 experimental neuron as compared with the cell 2
model neuron, when the ASCL and inhibitory connections are per-
turbed, respectively (Fig. 11C,D), as mentioned above.

Remarkably, the zero crossing near 270° seen in both the ex-
perimental and numerical PRCs agrees with the model prediction
that excitation and inhibition combine to create an ~90° phase
lag between neighboring segments (measured posterior ahead of
anterior segment), and we now briefly explain why. If the effects
of a perturbation from one oscillator to another last only one
cycle, PRCs can be used to predict values of steady-state phase
lags between coupled oscillators. When this assumption holds,
PRC theory (Winfree, 1980) predicts that a steady-state phase lag
(measured forced ahead of forcing oscillator) exists between the
forcing and forced oscillator at phases at which the PRC crosses
zero with a slope between —2 and 0. The slopes of the zero cross-
ings near 270° in Figure 11, E and F, are indeed between —2 and
0; because the posterior oscillator is forcing the anterior one, this
corresponds to a stable 270° lag of the anterior behind the poste-
rior or a 90° lead of the posterior segment. We note that the effects
from the perturbations last more than one cycle, as stated in
Materials and Methods. Thus theoretically we rely only on the H
functions to make such predictions. However, the good qualita-
tive agreement between this zero crossing and that of the exper-
imental PRC supports the model prediction that the ascending
connections alone combine to promote an ~90° phase lag be-
tween the PS motor neurons.

Discussion

The problem we have addressed here is to explain how motor
activity in neighboring segments of an animal’s nervous system
can be coordinated to ensure useful behaviors. The swimmeret
circuit model of Skinner and Mulloney (1998) demonstrated that
a pair of axons like the ASCE and ASCL interneurons (Namba
and Mulloney, 1999), which conduct information from one
pattern-generating module to a second, could produce a phase
difference characteristic of movements of neighboring swim-
merets, provided that these coordinating axons made the right
synapses with the right targets in the model. They did not explain
why this pattern of connections was effective. We applied cou-
pled oscillator theory to investigate how this phase difference
arises and why it is stable when the output frequency of the sys-
tem changes.

In the model of Skinner and Mulloney one ascending coordi-
nating axon makes an excitatory connection with its target, but
the other makes an inhibitory connection. In coupled oscillator
theory the effect of these connections on the phase difference
between two segments is described by an H function that depends
on the difference between the phases of the two modules. The H
functions we calculated numerically for these ascending connec-
tions have different shapes. When only one axon was active in the
model, the two modules displayed a particular phase difference,
but outside the normal range observed in the intact animal.
When the two axons were active in parallel, the inhibition and
excitation combined to produce a phase lag within the normal
range (Fig. 5). These connections simulated chemical synapses
without any use-dependent dynamics, and the performance of
the model was moderately sensitive to their strengths (Fig. 6). An
open question is whether synaptic dynamics like facilitation and
depression also might contribute to phase stability (Manor and
Nadim, 2001).
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Do descending coordinating interneurons work the

same way?

Theory predicts that descending coupling alone also should gen-
erate a 90° difference in intersegmental phase (Skinner et al.,
1997). However, only one MnT axon, DSC, emerges from each
module to connect with the next posterior ganglion, and no other
descending axons are known to be necessary for coordination
(Namba and Mulloney, 1999). Skinner and Mulloney (1998) dis-
covered one pattern of connections that a single descending axon
might make that produces an appropriate phase difference. In
that circuit, all descending connections were inhibitory. In this
paper we described a second pattern of descending connections
that also produces an appropriate phase difference (Fig. 8A). It
more closely resembles the ascending pattern in that it targets the
same local interneurons with the same pattern of excitatory and
inhibitory synapses. The appropriate test of these two alternatives
would be to compare their numerical PRCs with the experimen-
tal PRC of a DSC interneuron. However, these experimental data
are not yet available. We chose to analyze the model in Figure 8 A
completely because it also produces stable phase differences, be-
cause it has both excitatory and inhibitory connections, and be-
cause of its symmetry.

When the full complement of two ascending and one de-
scending connections was present in the model (Fig. 94), the
coupling function connecting two modules predicted a stable
phase difference of ~90° (Fig. 9B), the phase difference we also
observe in the active crayfish. This ~90° difference in the full
system was stable despite changes over a range of frequencies
(Fig. 10). If only ascending or descending connections were
present, the phase difference between modules changed system-
atically with frequency, but the direction of these changes for the
ascending and descending connections was different (Fig. 10).
Thus the stable phase differences of the Skinner and Mulloney
model can be attributed to the different responses of specific
excitatory and inhibitory intersegmental connections to changes
in frequency. For the case of local circuits connected by a single
synapse, S. Jones, T. Kaper, and N. Kopell (unpublished data)
used phase plane analysis and singular perturbation theory to
identify the geometric mechanisms that hold these circuits in a
fixed phase relation. Here we used the theory of weakly coupled
oscillators and numerical simulations to show that, when multi-
ple ascending and descending connections are functional (Fig.
9A), they combine to phaselock near 90° despite changes in the
system frequency (Fig. 10).

Significance of contributions made by individual
coordinating interneurons to the performance of the
swimmeret system

In an experimental preparation of the isolated ventral nerve cord
(Namba and Mulloney, 1999), it is possible to change the num-
bers and timing of spikes in one coordinating neuron by stimu-
lating it with pulses of current injected through a microelectrode.
If the preparation is expressing the swimmeret motor pattern,
these perturbations will affect the phase of the motor pattern in
the target ganglion of the stimulated neuron in a manner that
depends on phase of the perturbation in the cycle of activity in the
target ganglion (Winfree, 1980). We constructed PRCs for ASCE
and ASCL axons from experimental data (Fig. 11). The PRCs for
these two kinds of coordinating axons differed significantly in
their shapes and zero crossings, as we would expect if these axons
made different connections in the target ganglion. Qualitative
similarities between experimentally and numerically generated
PRCs (Fig. 11) suggest that the ASCE interneuron produces ex-
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citatory effects on targets in the neighboring ganglion while the
ASCL interneuron produces inhibitory effects (both testable pre-
dictions); hence the mechanism that stabilizes intersegmental
phase differences to changes in frequency in the real swimmeret
system is the same as the mechanism we have described here.

In this paper and in our earlier theoretical work (Skinner et al.,
1997; Skinner and Mulloney, 1998) we have considered only con-
nections between nearest neighboring modules. Although any
two pair of neighboring abdominal ganglia, isolated from the rest
of the nervous system, can produce the normal intersegmental
difference in phase of swimmeret motor activity (Paul and Mul-
loney, 1986), we know that MnT axons project to more distant
ganglia (Naranzogt et al., 2001). This long-range coupling is less
effective than coupling between nearest neighbors (Naranzogt et
al., 2001) and is not necessary for coordination. Once we know
more about the patterns and relative strengths of these connec-
tions, it will be possible to extend the models by constructing
chains of four modules coupled by connections that span the
complete chain.

In the models we have analyzed, coordinating axons connect
directly with specific local interneurons in the kernel of each
module. Recent anatomical evidence shows that the MnT axons
themselves do not project to the locations in which these local
interneurons are found (Mulloney and Hall, 2001). Instead, in-
formation is relayed from the coordinating axons to the local
interneurons in each module by a commissural interneuron that
targets only that module. As we learn more about their specific
connections, it will be possible to expand the model at the cellular
level to include these commissural interneurons. At the systems
level this discovery does not affect the model or its predictions.
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