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Abstract

In this work we propose a novel Gaussian process-based spatio-temporal model of time series of 

images. By assuming separability of spatial and temporal processes we provide a very efficient 

and robust formulation for the marginal likelihood computation and the posterior prediction. The 

model adaptively accounts for local spatial correlations of the data, and the covariance structure is 

effectively parameterised by the Kronecker product of covariance matrices of very small size, each 

encoding only a single direction in space. We provide a simple and flexible framework for within- 

and between-subject modelling and prediction. In particular, we introduce the Hoffman-Ribak 

method for efficient inference on posterior processes and its uncertainty. The proposed framework 

is applied in the context of longitudinal modelling in Alzheimer’s disease. We firstly demonstrate 

the advantage of our non-parametric method for modelling of within-subject structural 

changes.The results show that non-parametric methods demonstrably outperform conventional 

parametric methods. Then the framework is extended to optimize complex parametrized covariate 

kernels. Using Bayesian model comparison via marginal likelihood the framework enables to 

compare different hypotheses about individual change processes of images.

1 Introduction

Modelling longitudinal changes in organs is fundamental for the understanding of biological 

and pathological processes. For instance the development of a spatio-temporal model of 

disease progression in Alzheimer’s disease (AD) from time series of magnetic resonance 

images (MRIs) would be highly valuable for the fundamental understanding of the disease 

process, for diagnostic purposes and individual predictions, and for testing the efficacy of 

disease modifying drugs in clinical trials.

The consistent modelling and prediction of spatio-temporal changes in longitudinal MRI is 

still an important challenge from both methodological and computational perspectives. In 

fact, flexible modelling instruments are required in order to robustly capture meaningful 
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pathological accelerations specific to sensitive brain regions. Moreover, since a biological 

model of local brain changes is often unknown, it is important to develop optimal models in 

terms of statistical complexity.

Many of the previous works on spatio-temporal modelling of image time series are based on 

non-linear image registration, describing signal differences between images as local spatial 

transformations [1,2,3,4]. However, statistical inference in registration models is often 

limited, due to the computational complexity, and since image-registration is generally not 

flexible enough to perform model comparisons and clinical prediction, to account for 

covariates and for the within- and between subjects heterogeneity.

A statistical focus on the modeling of image time series is commonly provided by 

parametric linear modelling frameworks (GLM) [5]. However, GLM approaches are often 

limited by the choice of arbitrary model complexity and spatial resolution at which the data 

is analyzed. Even though flexible non-parametric models have been proposed for the 

analysis of spatio-temporal signals in brain images [6,7], their computational complexity 

still prevents the straightforward application in time series of high-resolution MRIs. Non-

parametric Gaussian process (GP) models have emerged as a flexible and elegant Bayesian 

approach for prediction and modelling in manifold applications [8], and have been recently 

successfully introduced to the field of neuroimaging, e.g. in the context of single-case 

inference in aging [9]. However, the application of GPs to the voxel-wise modelling of 

image time series is to date very challenging, since the specification of the joint covariance 

structure of the image features is in general computationally prohibitive.

In this work we introduce a generative model of spatio-temporal changes based on GPs, to 

provide a flexible and computationally efficient approach to the analysis of aligned image 

time series by accounting for spatial and temporal correlation. In particular, by assuming a 

local spatial correlation model and the separability between spatial and temporal changes, 

we introduce a very efficient formulation based on a covariance structure parameterized by 

the Kronecker product of small size covariance matrices [10]. The proposed model extends 

GLM approaches by providing a flexible and efficient statistical tool for the analysis of 

image features from spatially aligned time series, for instance by allowing statistical 

inference on the model parameters.

The paper is organized as follows. In Section 2 we propose our generative model of 

longitudinal changes in image time series, while in Section 3 we provide computationally 

tractable optimization and prediction schemes. We also introduce a novel computational 

scheme based on the Hoffman-Ribak method for the statistical inference in high dimensional 

GP-based spatio-temporal models. Finally, in Sections 4 and 5, we apply the model in the 

context of longitudinal data from from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) for 1) within-subject modelling and prediction of local and regional brain 

longitudinal changes, and 2) group-wise joint modelling of local ventricle growth rates 

based on socio-demographics, genetic factors, and clinical scores.
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2 A generative model for within-subject image time series

Let u = (x, y, z) be the 3-dimensional spatial coordinate system and t the temporal 

dimension. We consider the image time series I as a discretely sampled spatio-temporal 

signal of dimensions N × N × N × NT, where N is the dimension of the sampling grid on a 

single spatial axis, and NT is the number of time points3. In the following sections we 

represent the image time-series I as a single dimensional array of dimensions N3NT. We 

model the image time series I(u, t) as a realization of a latent spatio-temporal process f (u, t) 
with additive noise:

I u, t = f u, t + ϵ u, t . (1)

The true signal will be modelled as a GP with zero mean and covariance Σ, while ϵ is 

assumed to be i.i.d. Gaussian distributed measurement noise ϵ(u, t) ~ (0, σ2). Here we 

first assume that spatial and temporal processes are separable, and thus that the covariance 

matrix Σ can be factorised in the Kronecker product of independent spatial and temporal 

covariance matrices: Σ = ΣS ⊗ ΣT.

This is a valid modeling assumption when the temporal properties of the signal are similar 

across space; for instance, when analyzing within-subject time series of brain MRIs in AD 

the expected pathological change rates are generally mild and slowly varying across the 

brain. Second, a central assumption made in this paper is that the spatial dependencies of the 

signal are local, i.e. that the image intensities are smoothly varying and correlated within a 

spatial neighborhood of radius ls. We note that our assumptions about separability and 

stationarity are compatible with the spatio-temporal correlation models commonly assumed 

by registration-based approaches.

A reasonable choice for such a local spatial covariance structure is a negative squared 

exponential model ΣS u1, u2 = λsexp(−
u1 − u2

2ls

2
), where λs is the global spatial amplitude 

parameter, and ls is the length-scale of the Gaussian spatial neighborhood. We observe that 

such a covariance structure is stationary with respect to the space parameters. Furthermore 

we can exploit the separability properties of the negative exponential function to note that 

given two separate spatial locations u1 = (x1, y1, z1) and u2 = (x2, y2, z2) we have

ΣS u1, u2 = λsexp(−
x1 − x2

2

2ls
)exp(−

y1 − y2
2

2ls
)exp(−

(z1 − z2)2

2ls
) .

For this reason the covariance matrix ΣS can be further decomposed as the Kronecker 

product of covariance matrices of 1-dimensional processes: Σ = Kx ⊗ Ky ⊗ Kz ⊗ ΣT. We 

observe that the model is here conveniently represented by the product of independent 

covariances of significantly smaller size, and is completely identified by the spatial, 

3For simplicity we focus on an even sampling across spatial directions, even though the generalization of the proposed model to the 
uneven case is straightforward.
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temporal and noise parameters. In particular the proposed model is flexible with respect to 

the temporal covariance matrix ΣT, which can be expressed in terms of complex mixed-

effects structure, and can account for covariates and different progression models. For 

instance, in this work the matrix ΣT is first specified in order to model the temporal 

progression observed in time series of images (Section 4), and then is used to model the 

influence of anatomical, genetic, clinical, and sociodemographic covariates on individual 

atrophy rates modelled by non-linear registration (Section 5).

3 Inference in Gaussian processes with Kronecker structure

The GP-based generative model with Kronecker covariance structure outlined in this work 

provides a powerful and efficient framework for prediction using image time series. Here we 

provide the main results concerning the marginal likelihood computation, the hyper-

parameter optimization and the posterior prediction.

Let UKx,SKx
= diag λ1

x, …, λN
x and UT, ST = diag λ1

t , …λNT
t  be the eigenvectors and 

eigenvalues associated to the one-dimensional spatial and temporal covariance matrices Kx 

and ΣT. This eigendecomposition problem can be easily and efficiently solved beforehand 

offline. We further introduce the shortform notation ⊗ A = Ax ⊗ Ay ⊗ Az.

Log-Marginal Likelihood

The marginal likelihood of the model (1) is the following:

log ℒ = − 1
2 ∑

i, j, k, l
log(λi

xλ j
yλk

zλl
t + σ2) − 1

2V I
T( ⊗ SK ⊗ ST + σ2Id)

−1
V I + const, (2)

with const = −
N3NT

2 log 2π , V1 = vec (UKz
T ⊗ UT

T)I (UKx
⊗ UKy

) , and where Ĩ is the 

matricization of I into a 2 dimensional matrix of dimension N2 × NNT, and λi
x, λ j

y, λk
z and λl

t

are the eigenvalues of respectively Kx, Ky, Kz and Σt. The computation of the vector VI 

requires the storage and multiplication of matrices of relatively small sizes, respectively N2 

× N2, N2 × NNT and NNT × NNT. The product ( ⊗ SK ⊗ ST + σ2Id)
−1

V I can be finally 

computed as the solution of the linear system ( ⊗ SK ⊗ ST + σ2Id)X = V I, which is 

straightforward since ( ⊗ SK ⊗ ST + σ2Id) is diagonal.

Hyperparameter optimization

The derivative of the log-likelihood (2) with respect to the model parameters θ is:
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d
dθ log ℒ = − 1

2Tr ( ⊗ K ⊗ ΣT + σ2Id)
−1 d

dθ ( ⊗ K ⊗ ΣT + σ2Id)

− 1
2

d
dθ IT( ⊗ K ⊗ ΣT + σ2Id)

−1
I .

(3)

It can be shown that formula (3) can be efficiently computed with respect to each model 

parameters. For instance, the gradient with respect to the noise parameter can be expressed 

in the form:

d
dσ2 log ℒ = − 1

2 ∑
i, j, k, l

(λi
xλ j

yλk
zλl

t + σ2)−1 + 1
2V I

T( ⊗ SK ⊗ ST + σ2Id)
−2

V I . (4)

Prediction

A major strength of a GP framework for image time series is that it easily enables 

probabilistic predictions based on given observations. The proposed generative model allows 

us to consider the predictive distributions of the latent spatio-temporal process at any testing 

locations u* and timepoints t*. Given image time series I(u, t), we now aim at predicting the 

image I* at N* × NT* testing coordinates {u*, t*}. Let us define ΣI,I* = Σ(u, t, u*, t*) the 

cross-covariance matrix of training and testing data, and ΣI*, I* = Σ(u*, t*, u*, t*) the 

covariance evaluated on the new coordinates. The joint GP model of training and testing data 

is:

I u, t
I* u*, t* ∼ 𝒩 0

0 ,
Σ + σ2Id ΣI, I *

ΣI * , I ΣI * , I * + σ2Id
, (5)

and it can be easily shown that the posterior distribution of I* conditioned on the observed 

time series I and parameters θ is [8]:

I* I, u*, t* , θ ∼ 𝒩 μ*, Σ* , where μ* = ΣI, I*Σ−1I and Σ* = ΣI*, I* − ΣI, I*Σ−1ΣI*, I
+ σ2Id .

(6)

From the practical perspective, we notice that by definition the new covariance matrices still 

have a Kronecker product form: ΣI,I* = Kx,x* ⊗ Ky,y* ⊗ Kz,z* ⊗ Σt,t*, and ΣI*,I* = Kx*,x* ⊗ 
Ky*,y* ⊗ Kz*,z* ⊗ Σt*,t*. The predicted mean µ* at coordinates {u*, t*} is then
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μ* = (Kx, x*UKx
⊗ Ky, y*UKy

⊗ Kz, z*UKz
⊗ Σt, t* UT)( ⊗ SK ⊗ ST + σ2Id)−1

VI,

which can be computed efficiently by noting that the matrix to be inverted is diagonal and by 

using the product rule of the Kronecker operator. While the posterior form (6) can also be 

used to evaluate the posterior marginal covariance, certain considerations are necessary for a 

tractable approach. Indeed, the covariance matrix Σ* is computed from Σ, ΣI*,I* and ΣI*,I, 

which are evaluated on different sets of spatial and temporal coordinates. In particular, the 

Kronecker structure is lost and in the absence of further assumptions the matrix Σ* must 

therefore be explicitly computed, generally leading to impractical solutions.

Hoffman-Ribak method for posterior sampling

We propose to compute the sample distribution of (6) using the Hoffman-Ribak method 

(HR) introduced in the late 1990s in the astrophysics literature [11]. Given the Gaussian 

distribution (5) partitioned into training (observed) and testing (unobserved) components, the 

HR method provides a computationally efficient and exact algorithm for sampling from (6) 

consisting of the following two steps:

– Sample a random observation (Y, Y*) from the joint distribution (5),

– Compute a sample Z of the marginal posterior (6) according to Z = Y* + ΣI*,I (Σ 
+ σ2Id)−1Y.

Despite its simple formulation, the HR method cannot be straightforwardly applied in our 

case as sampling from the very high dimensional joint distribution is generally prohibitive. 

Therefore, instead of focusing on predicting time series at arbitrary spatial and temporal 

coordinates, we provide here an efficient scheme for spatio-temporal prediction at arbitrary 

time points T* = {t*} evaluated in the same spatial coordinates of the training image time-

series I. Under this assumption the matrices Σ, ΣI*,I* and ΣI*,I differ in the temporal part 

only,

Σ = ΣS ⊗ ΣT + σ2Id; ΣI*, I* = ΣS ⊗ ΣT*, T*; ΣI*, I = ΣS ⊗ ΣT*, T + σ2Id,

and it is simple to show that the joint covariance is Σjoint = P(ΣS ⊗ ΣTj + σ2Id)PT, where P is 

a structured permutation matrix, and Σ
T j =

ΣT Σt, t*
Σt*, t Σt*, t*

. A sample Z from the joint 

distribution can thus be easily computed as Z = P(UΛ)X, where X is a standard multivariate 

normal distributed vector, and UΛ2UT is the eigen-decomposition of the covariance (ΣS ⊗ 
ΣTj + σ2Id). Eigen-decomposition and matrix multiplication can be efficiently computed by 

virtue of the properties of the Kronecker product.

In the following sections, after validating the proposed framework in a controlled setting, we 

provide a modelling application in the context of longitudinal modelling in AD.
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4 Model Validation

Estimation of the Spatio-temporal Properties in Synthetic Data

Here, we test the ability of the proposed GP model to correctly estimate the underlying 

spatial and temporal properties prescribed in synthetic data. We chose a time-series of brain 

MRIs composed of 6 aligned longitudinal gray matter (GM) segment images of an example 

ADNI patient, and we applied Gaussian smoothing to obtain synthetic samples of a spatio-

temporal process with predefined spatial correlation and signal to noise ratio. Moreover we 

generated synthetic longitudinal progressions of increasing temporal complexity following 

respectively voxel-wise linear, quadratic and cubic functions of time estimated through a 

general linear model (GLM). Furthermore, longitudinal changes in the synthetic time series 

were modelled with the proposed GP model. We applied a squared exponential model for 

the temporal covariance parameterized by the temporal length-scale lt. A maximum-a-

posteriori (MAP) estimate of the parameters was obtained by using Gauss-Newton 

optimization scheme of the log-hyperparameters, using multivariate uninformative Gaussian 

hyperprior with log-hyperparameters µh = [−2, −2, 0, 3] and Σh = diag([5, 5, 1, 5]) for 

respectively (σ2, ls, λs, lt).

Table 1 shows the relationship between the spatio-temporal properties of the synthetic data 

and the MAP estimates of the GP parameters. Noticeably, the estimated spatial length-scale 

closely resembles the global smoothness parameter of the synthetic data, adaptively 

accounting for image smoothness properties. Additionally, we observed that the estimated 

temporal length-scale decreased when modeling longitudinal progressions of higher order 

models. Thus, the model also correctly denotes the increased complexity of the temporal 

changes.

Within-Subject Modelling and Prediction of Longitudinal Changes

We chose high-resolution longitudinal images of 10 AD patients, 10 patients with mild 

cognitive impairment (MCIc) subsequently converting to AD, and 10 healthy controls from 

the ADNI dataset. AD patients and healthy controls (HC) had 4 images per participant, 

corresponding to baseline, 6 months, 1 and 2 years scans, while for MCIc patients additional 

images corresponding to 3 or 4 years were available. The images were processed according 

to established procedures consisting of joint bias correction, tissue segmentation, alignment 

to the within-subject average anatomy, and non-linear normalization to a group-wise 

anatomical reference [12]. The final image size was of 1003 cubic voxels with isotropic 

resolution of 1.5 mm.

The longitudinal changes in the resulting time series of processed gray matter density maps 

were modelled according to the proposed GP model. The model was estimated for each 

subject by using 3 training images corresponding to baseline, 6 months and 1 year scans. In 

order to capture meaningful non-linear trends during disease progression to AD, we also 

applied the GP model in the MCIc group by using 4 and 5 training images, corresponding to 

the time range from baseline to respectively 2 and 3 years follow-up.

We applied the optimization scheme illustrated in Section 4 while imposing an informative 

prior on the temporal length-scale parameter with log-mean and -variance of 3 and 0.1 
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respectively. This choice was done in virtue of the experimental results illustrated in Table 1 

in order to promote a moderately non-linear behaviour of the GP model, and at the same 

time avoid overfitting on the limited number of within-subject observations. The resulting 

computational time for the parameter estimation was of about 5 minutes per subject on a 

standard PC (with 2.6 GHz, QuadCore, 16GB RAM). The predictive accuracy of the model 

was then tested by voxel-wise comparison of the extrapolated image series with respect to 

the corresponding ground truth follow-up images, and compared with respect to a standard 

linear and quadratic voxel-by-voxel model using within-subject GLM. The group-wise 

average voxel-wise absolute differences between extrapolated images and real ones are 

shown in Figure 1. Errors were generally found to be proportional to the extrapolation time. 

Table 2 shows that the results of the GP model are comparable to those obtained by linear 

modelling when training on 3 time points only. However, the prediction of the GP model 

significantly improves the linear one when using more training points. This result indicates 

that the GP model is able to capture meaningful accelerations of the time process when 

sufficient data is provided, while it stays essentially linear otherwise. Figure 2 shows the 

mean hippocampal progression and associated confidence interval from the posterior latent 

process for a MCIc patient. We observe that the GP-based model of hippocampal loss is 

non-linear and fairly predicts the acceleration of volume loss observed in the follow-up 

testing images.

5 Application: Between-Subjects Prediction of Individual Rates of 

Ventricle Growth using Multi-Kernel Learning

In this second application, we exploit the flexibility of our model to make covariate-based 

predictions of individual rates of atrophy in elderly subjects. In contrast to typical 

multivariate models which predict or classify scalar values, our GP framework allows 

prediction of images. In particular, we here focus on predicting the rate of volumetric growth 

in the lateral ventricle regions.

Firstly, we used computational morphometry to obtain the rates of atrophy in a large sample 

from the ADNI longitudinal dataset. To obtain these features for training and testing, we 

used 1143 and 569 MRI scans of 206 and 105 elderly subjects respectively (ages 59-91, age 

mean ± std: 76.0 ± 6.0 years). In order to enable predictions across a broad range of clinical 

states, the sample was pooled across clinical groups. It contained 111 healthy elderly and 

108 subjects with stable and 92 subjects with progressive MCI. After longitudinal 

registration, tissue segmentation and inter-subject alignment [12], we calculated each 

subject’s ventricle growth rate from registered CSF images using a linear model.

Secondly, using the preprocessed images as features we considered a special case of 

generative model (1) to implement a prediction model based on individual subject’s 

covariates, e.g. age, cognitive scores, etc. This is realized by a different choice of covariance 

function ΣT compared to the above within-subject application. In order to enable a 

prediction based on multiple available covariate sets e.g. genes, clinical scores, etc. we used 

an additive multi-kernel learning covariance
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ΣT = ∑
r = 1

4
Kr, with Kr c1, c2 = αr exp(− 1

2 c1 − c2
TMr c1 − c2 ) (7)

using a sum of (up to four) squared exponential covariances Kr with amplitudes αr, and c1, 

c2 denoting pairs of covariate vectors from each of (up to four) covariate sets. The 

symmetric matrices Mr were chosen to be either MISO = ℓ−2Id or MARD = diag(ℓ)−2. Like in 

typical GP regression applications, using (7) explicitly models covariance of (latent) 

observations f as a function of similarity of inputs c (here the covariate vectors of subjects). 

That implements the idea that subjects with similar covariates are expected to have similar 

rates of atrophy. In particular, the choice of Mr = MISO parametrizes an isotropic covariance 

assuming equal length-scale for different covariates of the same covariate set. An alternative 

choice of Mr = MARD implements automatic relevance determination (ARD) with separate 

length-scales estimated for each variable. We compared successively complex prediction 

models using (1) only global brain volumes (tgmv, twmc, tcsv) or (2) additionally using 

demography (age, sex, education, marital status, year of retirement), or (3) also including 

genetic risk in terms of the number of ApoE4 allele and (4) finally also using the clinical 

neuropsychological test scores MMSE, ADAS, and CDR. The models (1) to (4) step-by-step 

increased the amount of subject-specific information to predict maps of rates of ventricle 

growth. Comparison across models was performed using log marginal likelihood balancing 

model fit and model complexity with varying numbers of hyperparameters. We found an 

increasing marginal likelihood for more complex models using ARD covariance (see Table 

3) and decreased model evidence for model 4 under ISO covariance. Highest marginal 

likelihood was observed for ARD model 4 including all predictors. This trend is also 

reflected in terms of mean absolute error maps demonstrating increased prediction accuracy 

and generalization ability during testing in an independent test sample of 105 subjects 

(Figure 3A). Results also showed a correlation of up to 0.52 of predicted and true growth 

rates (Figure 3B).

6 Conclusions

We presented a novel framework for modelling and prediction of spatio-temporal processes 

in image time series. It is flexible and computationally efficient thanks to the proposed 

Kronecker structure of the covariance, and to the use of the Hoffman-Ribak method for 

efficient sampling from the posterior. Our model provided promising results when tested in 

very different experimental scenarios concerning longitudinal modelling in AD, and opens 

the path to the effective use of GPs for the generative modeling of neuroimaging data. The 

strength of the framework relies on assuming separability of spatial and temporal processes. 

We show that this assumption leads to meaningful results when applied to the longitudinal 

modeling in AD, where the expected pathological changes are generally mild and slowly 

varying across brain regions. This assumption might be relaxed in future work in order to 

also model spatially varying processes that might underlie biological progressions with 

different properties. It may be indeed possible to further extend the framework to allow non-

stationary correlations and noise models without compromising the computational 
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efficiency, by accounting for local smoothly varying stationary processes as previously 

proposed in geostatistics [13]. Finally, further extensions of the proposed work will be 

devoted to the group-wise non-parametric mixed-effect modeling of disease progression in 

clinical cohorts such as ADNI, by exploiting the flexibility of the proposed spatio-temporal 

covariance structure in accounting for subject and group-specific progressions and 

confounders.

Acknowledgements

Marco Lorenzi is grateful to Prof. John Ashburner, for his help in finalizing this work, and to Dr. Richard Turner, 
for his precious suggestions on the train toward London. Sebastien Ourselin receives funding from the EPSRC (EP/
H046410/1, EP/J020990/1, EP/K005278), the MRC (MR/J01107X/1), the EU-FP7 project VPH-DARE@IT (FP7-
ICT-2011-9-601055), the NIHR Biomedical Research Unit (Dementia) at UCL and the National Institute for Health 
Research University College London Hospitals Biomedical Research Centre (NIHR BRC UCLH/UCL High Impact 
Initiative- BW.mn.BRC10269). Gabriel Ziegler is supported in part by the German Academic Exchange Service 
(DAAD). The Wellcome Trust Centre for Neuroimaging is supported by core funding from the Wellcome Trust 
[grant number 091593/Z/10/Z].

References

1. Davis BC, Fletcher PT, Bullitt E, Joshi SC. Population shape regression from random design data. 
IJCV. 2010; 90(2):255–266.

2. Ashburner J, Ridgway G. Symmetric diffeomorphic modeling of longitudinal structural MRI. 
Frontiers in Neuroscience. 2013 Feb.6(197)

3. Niethammer M, Huang Y, Vialard FX. Geodesic regression for image time-series. MICCAI. 
2011:655–662. [PubMed: 21995085] 

4. Lorenzi M, Ayache N, Frisoni GB, Pennec X. Mapping the effects of Aβ 1-42 levels on the 
longitudinal changes in healthy aging: hierarchical modeling based on stationary velocity fields. 
MICCAI. 2011:663–670. [PubMed: 21995086] 

5. Friston KJ, Holmes A, Worsley KJ. Statistical parametric maps in functional imaging: a general 
linear approach. Human Brain Mapping. 1995; 2:189–210.

6. Flandin G, Penny WD. Bayesian fMRI data analysis with sparse spatial basis function priors. 
NeuroImage. 2007; 34(3):1108–1125. [PubMed: 17157034] 

7. Harrison LM, Green GG. A Bayesian spatiotemporal model for very large data sets. NeuroImage. 
2010; 50(3):1126–1141. [PubMed: 20026230] 

8. Rasmussen, CE, Williams, CKI. Gaussian Processes for Machine Learning. The MIT Press; 2005. 

9. Ziegler G, Ridgway GR, Dahnke R, Gaser C. Individualized Gaussian process-based prediction and 
detection of local and global gray matter abnormalities in elderly subjects. NeuroImage. 2014 Apr.
97:333–348. [PubMed: 24742919] 

10. Stegle O, Lippert C, Mooij JM, et al. Efficient inference in matrix-variate gaussian models with iid 
observation noise. Advances in Neural Information Processing Systems 24. 

11. Hoffman Y, Ribak E. Constrained realizations of Gaussian fields - A simple algorithm. Astrophys J 
Lett. 1991 Oct.380:L5–L8.

12. Ashburner J, Friston K. Unified segmentation. NeuroImage. 2005; 26:839–851. [PubMed: 
15955494] 

13. Gelfand, A, Fuentes, M, Guttorp, P, Diggle, P. Handbook of Spatial Statistics Chapman & 
Hall/CRC Handbooks of Modern Statistical Methods. Taylor & Francis; 2010. 

Lorenzi et al. Page 10

Inf Process Med Imaging. Author manuscript; available in PMC 2019 September 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 1. 
Group-wise average absolute differences between extrapolated images and real ones. The 

GP model was trained on scans from 3 time points corresponding to baseline, 6 months and 

1 year. Errors were generally found to be proportional to the extrapolation time.
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Fig. 2. 
Predicted hippocampal progression for a sample MCIc patient. The model was estimated 

from 4 image time points (baseline to 2 years) in a bounding region including the 

hippocampus. The longitudinal sample distribution (gray dots) and mean prediction (red 

line) are estimated according to the marginal GP posterior of Section 3 by using the 

Hoffman-Ribak method.
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Fig. 3. 
(A) Mean absolute error (MAE) of prediction maps in an independent testing sample of 105 

subjects show increasingly better predictions using more predictor sets and Gaussian process 

models with ARD. (B) Predicted over true growth rates using model 4 in an example voxel 

showing correlation of r = 0.52.
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Table 1

Estimation of the global spatial and temporal properties. The estimated spatial length-scale ls closely 

correspond to the global smoothness of the synthetic data, while the noise term and the signal amplitude 

decrease with increasingly smoother data. The estimated temporal length-scale is inversely proportional to the 

underlying complexity of the temporal progression.

Spatial smoothness (mm) ls σ2 λs

0 0.09 9e-6 0.7

0.5 0.81 5e-6 0.64

1 1.2 3e-6 0.53

2 2.3 1e-6 0.5

3 3.3 3e-10 0.48

4 4.3 7e-11 0.47

Temporal progression lt (log-values)

linear 4.3

quadratic 1.79

cubic 1.72
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Table 2

Mean absolute error (averaged over the whole brain and subjects) between predicted extrapolated image and 

real one (values are scaled by a factor 1e3). The proposed GP model significantly outperformed predictions 

obtained from GLM when trained on 4 and 5 time points, from baseline to 2-3 years follow-up (* for 

statistically significant difference, p < 0.05, paired t-test).

AD HC MCI

N train points 3 3 4 5

GP 1.9 1.9 2.9* 2.5*

GLM linear 1.9 2 3.1 2.7

GLM quadratic 6.7 2.6 8.7 5.4
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Table 3

Log marginal likelihood (ml) of Gaussian process covariance using MISO and MARD for prediction of ventricle 

growth rate maps based on sets of subject’s covariates. Hyperparameters were optimized in 206 subjects 

training sample. Column 3 shows mean absolute error (mae) averaged across voxels in prediction of unseen 

105 test subjects from independent test sample.

model ml - ISO ml - ARD mae - ARD

1 1.6697 1.6769 0.0059

2 2.4309 2.0249 0.0058

3 2.4356 2.0513 0.0080

4 2.2768 2.4434 0.0057
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