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The results of calculations of the second interaction (cross) virial coefficient B, for water vapor
and air, based on enhancement data obtained at NBS at 30, 40, and 50 °C, are presented. Comparisons
are made with the results of calculations based on the enhancement data of Politzer and Strebel,
Webster, and Goff et al. and with the results of the theoretical calculations of Mason and Monchick
and of Chaddock. An empirical equation is given for interpolation and extrapolation.

The random (one standard deviation) uncertainty in the mean values of B 4., arising from the scatter
of previously obtained NBS values of the enhancement factor, is estimated to range from 0.7 percent
at 30 °C to 1.4 percent of 50 °C. The estimated systematic uncertainties range from 4 percent at 30 °C

to 6 percent at 50 °C, respectively.

Key words: Interaction virial coefficients; moist air; second virial coefficient; virial coefficients; water

vapor.

1. Introduction

The water vapor content of real gases, and of air in
particular, saturated under known conditions of pres-
sure and temperature, is not predicted adequately by
ideal gas laws [1].! In air, the deviations from ideality
must be accounted for in order to obtain accuracies
better than 0.5 percent at pressures as low as 900
millibars [2]. On any isotherm, the saturated water
vapor content increases with pressure to some, as yet,
undetermined limit, in a manner consistent with that
described by Haar and Sengers [3]. For example, at
0 °C and 200 bars, the water vapor concentration or
density in air is about twice that of the pure phase.

This increase in water vapor content with pressure is
the algebraic sum of the increases in apparent vapor
pressure because of the superimposed pressure of air
(the Poynting effect), and the Van der Waals type
interactions between different molecular species, and
the decrease in apparent vapor pressure due to the
solution of the air in the liquid water (the Henry’s law
effect). Of the three the largest is due to the nonideality
of the gas phase (the Van der Waals type interactions).

Given a real gas equation of state of a water vapor-
air mixture, say an equation expressed in virial form,
it is possible to derive theoretically an expression
for the saturation water vapor content of the gas
mixture as a function of the mole fraction of the
constituents, the parameters of state, and the virial
coefficients. In such a formulation, the air-water

! Figures in brackets indicate the literature references at the end of this paper.

interactions are in large part characterized by the
second cross virial interaction term for the air and
water molecules. Unfortunately there are no definitive
values for the second cross interaction virial coefh-
cients, although previously obtained values [2] may
be sufficient for some applications.

Attempts have been made to derive second cross
interaction virial coefficients from statistical me-
chanics [4, 5]. However, the assumptions (form of
potential) on which these derivations are based are
far from exact so that the predicted coefficients are
of limited value. What are needed are good experi-
mental values of the second (cross) interaction coeffi-
cients. Recently, Hyland and Wexler [6] at NBS have
reported precise experimental values of enhancement
factors for water vapor in COs-free (CO, content on
the order of 2 ppm) air at temperatures of 30, 40, and
50 °C. It is the purpose of this paper to use these new
data, as well as the limited older data in the litera-
ture, in order to compute values of the second inter-
action virial coefficient. The formal derivations and
basic experiments strictly apply to CO,-free air. This
limitation is unimportant when using the B, values
in real air situations, as any errors introduced by the
roughly 300 ppm of CO, molecules should be well
within the limits caused by the uncertainties in Bgy.

2. Theory
2.1. General Considerations

We will derive an equation which relates the inter-
action virial coefficient to the enhancement factor,
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thermodynamic parameters of state, and several
physical constants.?

Initially, it should be stated that the treatment of
air as a single-component gas leads to no theoretical
inconsistencies, for the following reasons: (1) Over
the experimental range of temperatures, we can ignore
chemical reactions. (2) The experiments involved a
continuous air flow over the liquid surface, so that
the molar ratios of the air components are constant,
for all experimental conditions of pressure and
temperature, once equilibrium has been established.
(3) We deal with only the chemical potential of the
water in each phase, and since the required chemical
potential difference in the liquid phase depends only
on the mole fraction of water (see eq (19)) and not on
the amount of dissolved species, it doesn’t matter
that the gas mixture dissolved in the water is of
different composition than that of the gas-phase air.
(This difference arises because the degree of absorp-
tion in water varies from one air component to the
next.) Thus, in this paper, it will be assumed that air
acts as a single component substance with a known
molecular weight.

Let air be in thermodynamic equilibrium with a sur-
face of the condensed water substance. The chemical
potential w; of each component in the gas phase is
equal to that in the condensed phase. For our purposes
we need only examine the chemical potential of the
water, thus

wi (TP g ,nt) = ul (T,P,ng,ng) 1)

where superscripts g and ¢ designate the gaseous
and condensed phases, T is the thermodynamic
temperature, P the total system pressure, n!; (where
k=g or ¢) is the number of moles of water, and n/
is the number of moles of air. Water is a vapor in the
gas phase, and either liquid or solid (ice) in the con-
densed phase.

In the equations which follow, the independent
variables are always P, T, and n/, whether stated
explicitly or not. It will be understood that the vari-
ables which do not explicitly appear are being held
constant, so that subscripts are unnecessary for that
purpose.

Consider the difference in chemical potential in
each phase between pressure states P, and P.,. We
may write

ml (Po) — s (Pr) = us (Ps) — us (Py). (2)

We now write
aG*

R
ank

B 3)
(see e.g., [7]) where G* is the total Gibbs free energy of

either the gas or condensed phase.
To obtain G* we use the thermodynamic relationship

? The theoretical basis for our work, which is reviewed below, is discussed in most
good thermodynamics texts. It has been used in various derivations similar to ours, for
example, by Haar and Sengers [3], and Goff and Bates [37].

_ Gk

s B
v P

4)

where V* is the total volume of the phase. The Gibbs
free energy difference between states P, and P.,
obtained by integrating eq (4), is

E2
(}"'(Pg)—GA‘(Pl)=f VEdP. (5)
Py
Differentiating with respect to n’ it follows that

W (Py) — b (Py) = = [GH(Py) — GF(Py) ]

onk
= [a—% ( L :2 V’-‘dP)]. ©)

Substituting eq (6) into (2) yields

P2 P2
[i ( f V-"dP)] = [ d V"dP]. @
ony \ I, ong, Jr,

2.2. Gas Phase

The equation of state of a gas may be expressed in
virial form as a power series in reciprocal molar volume

Pv B C
RT_l+v+vz+' (8a)

Or as a power series in pressure
&=1+B'P+C'P2+ 8b
— . (8b)

where P is the total pressure, T is the absolute thermo-
dynamic temperature, v is the molar volume, R is the
gas constant, B and B’ are second virial coefficients,
and C and C' are third virial coefficients. In the en-
hancement measurements considered in this paper,
volume is not one of the experimental parameters. For
this reason eq (8b) is used in our derivation.

The virial coefficients of the pressure series are re-
lated to those of the volume series by

, B
B'=rr (8c)
and
, C—Be
¢'= (RT)* (8d)

The virial coefficients are functions only of tempera-
ture; those of eq (8a) are derivable from statistical
mechanical relationships [8] if the form of the inter-
molecular potential is known. (A very large “if”,
indeed! See, for example, Hanley and Klein [9]). The
second virial coefficients may be considered to express
the effects of interactions between two molecules, the
third virial coefficients may be considered to express
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the effects of interactions among three molecules, and
so forth. The number of terms or coefficients necessary
to adequately represent Pv/RT will depend on the gas
(or gases) involved and the PuT state.

If the gas under consideration is a mixture, then the
coefficients B, C, B', C’, etc., become mixture virial
coefficients B iy, Cmix, etc., and can be written in
terms of the mole fractions of the pure components,
the virial coefficients of the pure components, and
quantities called interaction (cross) virial coefficients.
For a two-component gas mixture, and in particular for
water vapor-air mixtures, statistical mechanics shows
that [8]

Bmix = x?,B aat 2% aXwB aw~+ xi, Buww (93)

lex -x(l(l aaat 3x uxu Cuu'u'+ 3x3x u'Cuau'+ x,:ivcwwu' (gb)
where x, and x,, are the mole fractions of air and water
vapor, B., and By, are the second virial coefhicients
for pure air and pure water vapor, and C 4uq and C 0
are the third virial coefficients for pure air and pure
water vapor. Bga, is the second interaction virial
coefficient expressing the effects of interaction be-
tween an air molecule and a water molecule. Cqqy is
the third interaction virial coefficient expressing the
effects of interaction between two air molecules and
one water molecule whereas C . is the third inter-
action virial coefficient expressing the effects of
interaction between two water molecules and one air
molecule.

The mole fractions of air and water vapor are
given by

nil

Xa = m—+n—" (10a)
and
e ng + ny

The molar volume vy, is related to the total volume
Vmix by

Vmix = (100)

(na + nu‘)vmix
where n, and n, are the number of moles of air and
water vapor, respectively, in the total volume V.

Substituting eqs (10), (9), (8¢), and (8d) into (8b) we
obtain

2

n2

RT
Vinix = (7a + nw) |:n—"+a—nu
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2
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3
+ a -
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3nZny A
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_— C.o
(na ac nw).) www
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4 n4
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Y B(mB(ur e Bu'u*Baw

(na=n5)2 (o AR )
B dn’n? . nen’ o ] P

(na+ne)® ™ (ng+ne)? ““|RT
SR a1

Now Vmix=V?; therefore eq (11) may be substituted
into the left-hand side of eq (7). We let P, be the pure
phase saturation vapor pressure es(7) of the water
substance and P, be any other greater total pressure
P. When the total pressure P reduces to e, then
x.=0 and x,=1. For the sake of simplicity, the
superscript g will be deleted. After performing the
integration and then the differentiation the left-hand
side of eq (7) becomes

Xl

€s

[6 le'(dP] RTln - x.;),Bth F 2Bau\x.;;P
Nw Jeg

2

(Cu'uu B 2RT

r (P == s hm—

+ I:Cu‘u‘u' (1 * 2x")2(1 — xa)' - Cu(mx + BCuuwx,,( xa)
C 3x,~’,(l—2x,,) (1+3xu)(1_x(,)3
aaw 9 ST 9
— BaaBuwr2(1— 320) (1 — 24) + ]Pl
aad wwX, Xa Xa @ T
+[5 2 (2 = Bhag)= @2 (1l = g5)2IE”
[ aa RT ww RT ] Bllw
D2l = 53)) (1l = Sz /22
B)
+ aw RT (12)

The ratio Zub which appears in eq (12) will be called

the “enhancement factor” and be designated by the
symbol f. It has been variously called “the coefficient
f,” “the function f,” and “the correction factor f”
[2, 10, 11]. It is closely related to the ‘“‘vapor con-
centration enhancement” of Haar and Sengers [3].
Thus

=2t (13)

€s

The quantity x,,P may be thought of as an “‘effective”
vapor pressure of the water substance in a real gas
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mixture analogous to a partial pressure in an ideal
gas mixture. As P approaches e, x, approaches
unity, and at P=e; and x,,= 1, the enhancement factor
f becomes unity.

2.3. Condensed Phase

We will confine our consideration of the condensed
phase to the liquid state. Consider the right-hand side
of eq (7) which expresses the difference in chemical
potential for the water substance in the condensed
phase between two pressure states P; and P.. As
before, we let P; be the pure phase saturation vapor
pressure es(T) of the water substance and P, be any
other greater pressure P. Performing the differentia-
tion yields

P
pio(T, P, ni, ng) —ui(T, ey, ng, 0) = : f vedp
€5

ang,
(14)

where V¢ is the total volume of the condensed phase
(i.e., liquid water containing dissolved air), and where
we have emphasized that at Py =ey, nS=0. Thus

pé(es) =l (es) (15)
where w! (es) is the chemical potential of the pure
phase liquid water substance at pressure es.

Consider now the pure phase (single component)
liquid water substance at the same pressure states P
and e,. The difference in chemical potential is

I

vl dP

s

Y f 6)

where v!, is the molar volume of pure phase liquid
water.

Combining eqs (14), (15), and (16) yields

ad
an

P P
poP) =Py == ["veap—[Tuyap a7

¢
w

or

2 P
aif V<-dP=f vl dP+pc (P) —pl(P).  (17b)

The laws of dilute solutions [7] predict that for a solu-
tion of dissolved air in water the chemical potential of
the solvent, in this case liquid water, at pressure P
differs from that of the pure phase of the same sub-
stance under the same pressure by an amount given by

S (P) —pl (P)=RT In x5+ C (18)

where x¢ is the mole fraction of water in the solution,
and C is a corrective term expressing the excess
chemical potential of a real solution over that predicted
by the laws of ideal dilute solutions.

Substituting eqs (18) and (17b) into (14) one obtains

P
pE U2) = (@) =f vL,dP+RT In x¢ + C. 19)

Because x¢, +x$=1 we may write
Inx¢=In (1—x¢). (20)

For very dilute solutions * Henry’s law may be used
to calculate x¢, i.e.,
LSRR (21)

where £(T, P) is the Henry’s law “constant’ which is
a function of T and P, and 2 is the mole fraction of

air in the gas phase.

The term C in eq (19) is given by [7]

C=W(x)* (22)
where W is a function of the interaction energies of
the molecular species in the solution. The term C
can be shown [see appendix 1| to be negligible in its
contribution to B, and so is dropped from further
consideration.

Equation (19) therefore becomes

P

po (P) — e (e;) = f ! dP+RTn (1—kx'P).  (23)

€s

Kell and Whalley [12] have shown that the specific
volume of the pure liquid phase of the water sub-
stance can be represented with high accuracy by the
following equation of state:

P(eP) _ .

= = it (P—P,)J
V(t,1atm) 1 Ea, ( 2

0 j=1

(24)

5 3

where V(t,P) is the specific volume at temperature
t (Celiuis) and pressure P, V (¢, 1 atm) is the specific
volume at temperature ¢ and standard atmospheric
pressure (1 atm), and P, is standard atmospheric
pressure. Kell [13] has shown also that

1+ bt )

2 ant"

n=0

V(¢,1atm) = (25)

3 At pressures up to at least 200 bars and at temperatures from 0 to 100 °C, the mole
fraction of water in an equilibrium solution of dissolved air in water is very near unity.
At 0° and 200 bars, x¢=0.997.
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It therefore follows that

vi=M.V(t,P)=
S 3
Me[143 3 ap—py| <[] s)
i=0 j=1 2 (lnt"
Let
m
[ wap=ear.p. 1)
Inserting eq (27) into (23) we obtain
d P .
ooz [ vedp| = (P) = i (e =
€s Tong
g(T,P)+RTIn (1—kxtP) (28)

2.4. Second Interaction Virial Coefficient

By equating eq (12) and (28) and rearranging terms
we obtain

RT In f=g(T, P) +RT In (1 — kx.P)

aF B.mx;-;P — Buw (P —es— x;’r[))

x4pP* 3 (1 =gy 2~ (1l =gy
ar Cuuu Cuu w = aww =
RT 2RT RT
4 — 2P2 _ 52
—B, Shiee — Cum (1l =k 2r) (1| =z VP =2
2RT 2RT
- B(mbu xq( 3x(l) ( x")P-
RT"
B, (1+3x(,)( x")3P2
2RT

N 2x%(2 — 3xq) P*
+ Bnu*[ 2qu Baa RT

6x'—’(l—x,,)'~’P2]
+pB, ———a\- 2T
Bu RT
o 2%2(1 — xq) (1 — 3x,) P2
Baw RT (293.)

For the sake of simplicity in nomenclature, all super-
scripts have been omitted, it being understood, how-
ever, that mole fractions x, and x,, refer only to the gas
phase. Let

o= g(T P)+RT In (1 kx,, )+Blmx;‘iP

— Buw (P_e\_xf:P) (29b)

3x2(1— 2x,) P?

X
,3 C(um (,P +C(mw

2RT
S =)
C(lu‘u' RT
4 0
_p T —Cuws (1 2F 2z (| =) F7 2 =2
aa 2RT 2RT
(l ?)x")(l_Xa)P2
BunBuu RT
o — (14 3x4) (1 —x4q)3P2
B2, SRT (29¢)
y=a+f (29d)
D=—2x2P (29¢)
S—B 2x3 (2—3xa) P2 622 (1 —x4)2P2
- aa RT ww RT (29f)
¢=D—3% (29¢)
:—-2x?, (1—2xq) (1 —3x4) P2 (29h)
RT
then
RT lnf: v+ d) Bt GB?m* (29i)
so that
i_l_[<i)2_i B ]1/2
Baw= % 2 . . (y—RT Inf) (30)

The quadratic term appearing in eq (29i) introduces
a small correction into the calculated value of Ba..
Therefore the value of Bgw obtained from eq (29i)
without that term must be nearly the same as that cal-
culated from eq (30). It may be shown that this condi-
tion is satisfied only if the minus sign is used in front

of the radical in eq (30).

3. Sources of Data
3.1. Virial Coefficients

There are several sources of data for the second
and third virial coefficients of air [14, 15, 16]. Probably
the best and most up to date values of B,, are those of
Sengers et al. [16] which cover the temperature range
from 100 to 1400 K. Sengers et al. assign a standard
deviation of 0.4 ¢m3/mol to B,.. We have chosen three
sigmas as our best estimate of the maximum syste-
matic error, i.e., 1.2 ¢m3/mol. The Hilsenrath et al.
[14] values of C,qq are used here. These range from
90 to 1500 K. We have compared these values with
those of Hall and Ibele [15] over temperatures from 0
to 100 °C, our range of interest. The two sets disagree
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by about 10 percent. This disparity was arbitrarily
increased to 15 percent and assigned as the estimated
systematic uncertainty in Cgq.

The values given by Goff [2] are used for the second
and third virial coefficients of water vapor. Wexler and
Greenspan [17] recently have shown that from 0 to
100 °C the Goff values lead to highly precise correla-
tions of theoretical and experimental values of satura-
tion vapor pressure. Other second and third virial
coefficients for water vapor are available but only those
of Keyes [18] are both experimentally based and cover
our experimental range of interest. Goff assigned toler-
ances to his values, which he stated were equal to twice
his estimated probable error. These were converted
to one-sigma errors, and compared to the differences
between corresponding values of Keyes and Goff. For
Buw, the agreement between Keyes and Goff, below
70 °C, is better than 2 percent, while the Goff one-sigma
uncertainties range from 8 to 2 percent between 30 and
60 °C. It was felt that the more conservative Goff uncer-
tainties were appropriate here, and as estimates of the
maximum systematic uncertainties in By, we used
three-sigma errors. In the case of Cyuw below 70 °C,
the Keyes and Goff values agree to about 45 percent,
whereas the one-sigma errors computed from Goff
range from 200 percent at 30 °C to 52 percent at 70
°C. These are felt to be overly conservative. Thus the
difference between the Keyes and Goff values was
taken as an estimate of the systematic uncertainty
in waw.

Mason and Monchick [5] and Hyland and Mason
[19] give the only known values of Cauw and Caw,
respectively.* These are theoretical calculations based
on the Lennard-Jones (12-6) potential, the first cover-
ing the temperature range — 80 to + 300 °C, the second
from 0 to 100 °C. For purposes of this analysis we
ascribe an uncertainty of 50 percent in these values
although there is no genuinely sound basis for this
choice, and the errors may be larger.

Interpolation equations for the various virial coeffi-
cients are tabulated in appendix 2.

3.2. Saturation Vapor Pressure

The following equation, formulated by Wexler and
Greenspan [17], is used to calculate e, the saturation
vapor pressure of water:

Ine,=3 ETjz'+B In T (31)

i=0

where Tss is the absolute temperature on the Interna-
tional Practical Temperature Scale of 1948 [20, 21]
and e; is expressed in pascals.> The coefficients E;
and B are given in table 1.

4Incorrect values of C, are listed in table 1 of the paper by Hyland and Mason. A
B2, term was omitted in the calculation. Although the error propagates through the paper,
the preferred C,.. values (calculated from viscosities) remain unaltered; the effect on the
conclusions of the paper is negligible.

3Pascal=1 N/m*=10"% bar=10"2 mb=7.50062 X 10-> mm Hg.

TABLE 1. Coefficients to vapor pressure formulation eq (31)*

E, —7.51152 X 10?

E, 9.65389644 X 10!

E, 2.3998970 X 102

E; —1.1654551 X 10>

E, —1.2810336 X 10-*

E; 2.0998405 X 10"

B —1.2150799 X 10!

a Units: ey, pascals; T, kelvins.

3.3. Function g(T, P)

The coefficients «jj, a and b, given by Kell and
Whalley [12] and Kell [13] are tabulated in table 2.
These are needed in order to compute v}, using eq
(26) which, in turn, permits the computation of g(7, P)
using eq (27). Kell and Whalley estimated that the
standard deviation of the differences between observed
values of V(T, P)/V(t, 1 atm) and eq (24) does not
exceed 10 ppm. Kell estimated that V(z, 1 atm),
given by eq (25) has a standard error of 10 ppm or less
for temperatures up to 100 °C.

TABLE 2. Coefficients to eq (26)
Coefficients ajj
J
i 1 2 8
0 —50.9769 X 10-¢ 8.2627 X10-* |—9.109 X 10-'3
1 3.71999 X10-7 |- 1.3794 X 10-1° | 2,626 X 10~ '*
2 —7.01760 X 10-? | 3.4032X10-'2 |—8.913 X 10-'¢
3 6.00227 X 10-""| —3.6432 X 10-'* | 11.467 X 10~ '®
4 —3.09041 X 10-'3| 2.0836 X 10-'6 |—7.102 X 10-2¢
5 5.93416 X 10-'6| —4.1744 X 10" | 14.841 X 10-23
n Coefficients a,
0 0.9998396
1 1.8224944 X 102
2 —7.922210 X106
3 —5.544846 X 10~
4 1.497562 X 10~ '°
5 —3.932952 X 1013

Coefficient b

1.8159725 X 102

a Units: t, °C; P, bar; P4, 1.01325 bar; v':,, cm3/mol.

3.4. Constants

The solubility data of Winkler [22, 23] for air in
water, as reported by Dorsey [24], was used to calculate
the Henry’s law “‘constant” / at standard atmospheric
pressure. In the absence of any known air data on the
pressure dependence of this “constant,” it was assumed
that the percentage changes in k between the same
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TABLE 3. Henry's law “constants” k for nitrogen and air dissolved in water"

Nitrogen® Air Air®
Teor(r_‘lp. Pressure, bars Pressure, bars Pressure, bars
1 50 100 1t 50°¢ 1004 1 50 100

0 18.65 17.00 15.62 23.25 21.19 19.48 23.20 21.20 19.49

5 16.42 I5A1 13.96 20.45 18.82 17.39 20.53 18.81 17.37
10 14.89 13.69 12.70 18.26 16.80 15.58 18.30 16.79 15.58
15 13.51 12.41 11.60 16.49 15.15 14.15 16.46 15512 14.10
20 12.52 11.42 10.72 14.93 13.62 12.78 14.96 13.75 12.88
25 11.61 10.68 10.01 13.84 12.73 11.92 13.76 12.64 11.90
30 10.88 10.00 9.46 12.83 11.79 11.16 12.79 .77 11.13
35 10.23 9.44 8.97 12.00 10.08 10.53 12.02 11.10 10.52
40 9.67 9.02 8.57 11.34 10.58 10.05 11.40 10.58 10.05
45 9.27 8.70 8.25 10.84 10.17 9.64 10.87 10.19 9.68
50 8.90 8.44 8.00 10.44 9.90 9.39 10.39 9.89 9.38

aData based on solubilities in references [24, 25, 26, 27, 28, 29, 30].
bData based on solubilities in references [22, 23, 24].
¢Calculated by assuming that the percent difference for air is the same as for nitrogen

between 50 and 1 bars.

dCalculated by assuming that the percent difference for air is the same as for nitrogen

between 100 and 1 bars.
¢ Calculated from eq (32).

"Units: k£, 10~% mole fraction per bar; P, bars.

pressure levels at given temperatures were the same
for air as for nitrogen, for which there are solubility
data both at atmospheric pressure [25, 26, 27, 28], and
at high pressure for temperatures above 20 °C [24, 29,
30]. Using solubility data for nitrogen in water and con-
verting these to A, values for air were extropolated
accordingly. Below 20 °C, solubilities of nitrogen in
water were calculated using the method of Krichevsky
and Kasarnovsky [31] and the fugacities reported by
Demming and Shupe [32]. The polynomial

3
108 =3 Cit' (32)

i=0

was fitted by the method of least squares to the Henry’s
law “constant’ for air in water at 1, 50, and 100 bars,
where /£ is in units of mole fraction per bar, C; are
coefficients, and t is the temperature in degrees Celsius.
Linear interpolations were employed between isobars.
Values of k for nitrogen and air are given in table 3
and for C; in table 4. The values of k for air are con-
sidered uncertain, at most, by 10 percent.

On the unified carbon-12 scale the molecular weight
of water M, is 18.0154 g/mol with a maximum total

TABLE 4. Coefficients to eq (32)?

_ Pressure, bars
i
1 50 100
0 23.195 21.197 19.493
1 —0.58037 —0.51768 —0.46024
2 9.7392 X 10-3 8.2103 X 10-3 7.3781 X 10-3
3 —6.5058 X 10-5 —4.7585 X 10-5 —4.4401 X 10-5

aUnits: t, degrees Celsius; &, mole fraction per bar.

uncertainty of 0.0009 g/mol [33]. The gas constant R is
equal to 83.1434 bar cm?/mol K with a standard devia-
tion of 0.0035 bar cm?/mol K [34].

3.5. Enhancement Factor

The NBS enhancement factor data [6] are given in
table 5. It is estimated that the systematic uncertainty
in fis 0.07 percent and the random uncertainty is 0.2
percent. Two 30°C runs, reported as being suspicious
in [6], have not been considered for the calculation
of B .

4. Results

Values of B, calculated from these data using
e (30) are given in table 5. The values were normalized
from the experimental temperature to the nominal
isotherm temperature. The changes, where they occur,
are small.

Our best estimates of the magnitudes of B, and
associated random uncertainties are represented
respectively by the means of the normalized isotherm
values and the standard deviations of the mean nor-
malized values. These are reported in table 6, along

with the standard deviations of the individual
determinations.

5. Effect of Third Virial Terms
Statistical mechanics predicts that the virial

coefficients are functions solely of temperature [8].
An apparent dependence of B4, on pressure can be
introduced via the calculations if a sufficient number of
terms are not included in the truncated infinite
series of the equation of state. If this equation were
terminated at the second virial term rather than the
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TABLE 5. Second interaction virial coefficients based on NBS enhancement data

Saturation Saturation Total Interaction Normalized
temp. vap. press. pressure Mole fraction| | Enhancement | Vvirial coeff. [ inter. vir. coeff.
Run “C mbar bar water vapor Aactor cm3/mol cm3/mol
No.
t es l) xu‘ f B’“l" B’lu'
Isotherm temperature, 30 °C
39 29.9994 42.4278 10.7312 0.0040827 1.0326 —29.962 —29.962
47 30.0065 42.4451 15.1088 .0029354 1.0449 —29.389 =1297392
42 29.9999 42.4290 19.9344 .0022534 1.0587 = 29515 =295115
20 30.0112 42.4566 30.1929 .0015317 1.0893 —28.988 —28.944
40 29.9999 42.4290 3550133 .0013201 1.1049 —28:763 —28.763
Isotherm temperature, 40 °C
34 40.0104 73.8143 14.6417 0.0052436 1.0405 —26.286 — 26.289
19 39.9969 73.7612 30.1957 .0026497 1.0847 —26.978 —26.977
27 39.9648 73.6350 40.4557 .0020231 1.1115 —26.124 —26.114
22 40.1505 74.3673 50.3962 .0016810 1.1392 —25:831 S$25%816
21 40.1366 74.3122 60.9945 0014285 1.1725 —26.158 —26.199
Isotherm temperature, 50 °C
32 49.9898 123.3233 10.5512 0.0120190 1.0283 —23.443 —23.440
31 49.9942 123.3503 10.6310 .0119361 1.0287 =R UIS —23°71'1
36 50.0042 123.4115 10.7441 .0118214 1.0292 232915 —23.916
43 50.0047 123.4146 10.7546 .0117992 1.0282 —22.714 —22.715
46 49.9971 123.3680 10.7953 .0117446 1.0277 —21.977 —21.976
35 50.0011 123*3925 10.7989 .0117614 1.0293 —23.946 —23.946
31 49.9891 123.3191 14.6231 0.0087902 1.0423 = 273135 28132
83 50.0064 123.4250 14.8620 .0086263 1.0387 —23.399 —23.401
30 49.9967 123.3656 2593585 .0051773 1.0642 —23.186 —23.185
17 50.0101 123.4477 30.1977 0044266 1.0828 —25.846 —25.849
16 50.0050 123.4164 30.2324 .0044135 1.0811 == 259117 —25.118
29 50.0009 123.3913 36.5953 .0036782 1.0909 —22.605 —=122:605
26 49.9766 123.2426 40.8462 .0033228 1.1013 —22.502 —22.495
23 50.0049 123.4158 50.3229 .0027681 1.1287 —23.227 —23.228
24 49.9784 123.2536 76.3139 .0019376 1.1997 —23.088 —23.082
28 49.9815 123.2726 96.9356 .0016749 1.2355 —22.298 228202
25 49.9788 123.2561 102.704. .0015264 1.2719 —22.483 22547

TABLE 6. Mean normalized second interaction virial coefficients
B.. based on NBS data
Isotherm norm(:llir;e d Stan(iafr(sii:gelzlatlon Standard deviation

Temp. B aw determination efimesn
=€ cm3/mol cm?/mol | Percent | cm3/mol | Percent
30 —29.245 0.46 1.6 2] 0.7
40 —26.291 41 1.6 .18 q
50 —23.595 1.35 5.7 33 1.4

third, the terms associated with the parameters e,

8, and B would reduce to zero and from eq (29i) we
would have

Baw= RT Inf— a)/D. (33)

The change introduced by using eq (33) instead of

(30) is significant as shown graphically in figure 1

using the NBS enhancement data. Because of this the

third virial coefficients were included in the calcula-
tion of Baw, even though there are large uncertainties
associated with them. It will be shown that the accuracy
in B4y is relatively insensitive to the accuracies of the
third virial coefficients.

6. Error Analysis

An analysis was made of the effect of suspected
systematic and random errors on the accuracy of the
values of By given in the results.

6.1. Enhancement Factor

It can be shown that the uncertainties in the experi-
mental parameters P, e;, and x,, contribute to the error
in B 4, primarily from their appearance in the enhance-
ment factor term and negligibility because of their
presence in the other terms of eq (30).6 Therefore, for

8This was checked by making arbitrary changes in these parameters and nolir;g the
corresponding c_hanges in the individual terms contributing to B, as well as in Bgy itself.
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FIGURE 1. The percentage changes in calculated values of B,y, when third virial

terms are dropped from eq (30).

purposes of error analysis, the higher order virial
coefficients may be neglecied and eq (33) used with
adequate accuracy for examining the effect of an error
in f on By, Differentiating Bg, with respect to f,
replacing the differential with finite increments, and
considering only magnitudes, we obtain

RT RT A
ABqp= Afz——f (34)
2Px?2 P i
[ | [ T |
41— -
3
L]
m
= 3
w 2 50 °C ]
o /
[+
=
=
§ 2 =
0
& Vi
i 30°c
== —
| | | | |
20 40 60 80 100
PRESSURE, BARS
FIGURE 2. Percentage errors in B,y as a function of temperature

and pressure, arising from the estimated systematic error of 7
parts in 10* in the enhancement factor.
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where x, is assumed roughly equal to unity. The

taimty 1n tha NTRQ es o
criainuy in the NBS values of enhanc

systematic unc
ment factor 1s 0.07 percent [6]. By substituting this
into eq (34), and using the mean values of B4, given
in table 6 to convert AB,, to percent, the curves
shown in figure 2 were generated. It may be noted that
for a fixed relative uncertainty in f the corresponding
uncertainty in B4, decreases with increasing pressure.
This relationship suggests that for interaction virial
coefficient determinations it would be advantageous
to perform enhancement measurements at high
pressures. However, as we will show below, this gain
in accuracy is offset by the increasing uncertainties
contributed by the terms in eq (30) containing the
third virial coefficients.

uicv

6.2. Virial Coefficients

The effects of the estimated systematic uncertainties
in the virial coefficients (given in sec. 3.1) on B4, were
calculated using eq (30). The results are given in table
7 at the experimental pressures and temperatures.

6.3. Henry's Law

It is shown in appendix 1 that dropping the correc-
tion term C to Henry’s law, (eq (22)), may lead to an
uncertainty in Bgy, of about 0.13 percent. An uncer-
tainty is contributed also by the “constant” k. The
second interaction virial coefficient may be written as
follows:

— RTkx.P
Baw S e e
2

+ various terms. (35)



TABLE 7. Estimated systematic uncertainties in Bay

Source of error Quadrature®
Bllﬂ ‘ Bwu‘ l Cﬂﬂ(l | Cu‘u‘u‘ C(mu‘ L C’lll‘u' l f , Other Virial
Temp. Press. . . coefficient All
Estimated error in parameter, percent errors errors
- 1
@ \ ®) ‘ 15 \ ©) ‘ 50 50 ’ 07 ’ @ £
’ . Estimated in Bow,
°C |  bar Estimated error in B, percent ° 1ma§er§£;otr e
30 - 10.7 2.0 1.9 0.14 0.05 0.42 0.42 2.8 0.14 2.8 4.0
19.9 2.0 1.1 .26 .03 .81 .45 1.5 14 255 2.9
35%5) 2.0 .68 47 .02 1.4 .47 0.85 14 2.6 24
40 14.6 2.2. 1.6 .20 .08 .62 .66 2.4 14 2.9 hi/
40.5 2.1 .66 .56 .04 1.7 .71 .85 14 2.9 3.0
61.0 2.1 .48 .84 .03 2.6 .75 .57 14 3.6 3.6
50 10.6 2.6 215 .16 21 0.46 .98 3.8 14 3.8 5.4
25.4 285 1.1 .38 .10 12 1.0 1.6 .14 352 3.6
50.3 2.4 0.64 .76 .06 2.3 1.1 0.79 .14 3.6 3.7
76.3 283 .48 15> .04 385 1.2 852 14 4.5 4.6
103 283 .40 1.6 .04 4.8 1.2 .39 .14 SN/ 5.7

a Estimated 3o error is 1.2 em®/mol; error is 17, 23, and 34 percent at 30, 40, and 50 °C, respectively.

b Estimated error is 24, 16, and 11 percent at 30, 40, and 50 °C, respectively.

¢ Estimated error is nominally 43 percent at 30, 40, and 50 °C.

d'Quadrature of errors contributed by Henry’s law, gas constant, and ignoring the correction to the law of ideal

solutions.

¢ Computed by the square root of the sum of the squares of the individual terms.

Hence, neglecting the sign,

RT,

AB gy = > Ak = 13000 Ak . (36)

The estimated uncertainty in &£ is 10 percent. Over
the pressure and temperature range of the NBS data,
the variation in £ is small. With sufficient accuracy for
this calculation, Ak=1.1X10-6 and therefore AB 4y
=0.014 cm3/mol. Assuming a nominal magnitude of
26 cm3/mol for Bqw, k induces an uncertainty in B 4,
of about 0.05 percent.

6.4 Function g(P, T); Gas Constant

The largest contributions from the term g(P, T) to
the uncertainties in B, arise from uncertainties in
the specific volume of water V (¢, P) and the molecular
weight of water, while the largest contribution from the
gas constant R arises through the enhancement factor
term. The uncertainties in P and ¢ in the NBS data are
insignificant in their effect on V' (¢, P). The systematic
errors in V(t, P), My, and R (secs. 3.3 and 3.4) like-
wise produce negligible uncertainties in the calculated
values of B .

6.5 Estimated Systematic Uncertainty in Bay

The estimated systematic uncertainties in the
individual parameters at the experimental values of
P and T are summarized in table 7. These were com-
bined by quadrature to give the estimated overall

systematic uncertainty in Bga,. Two quadrature
columns are shown. The left column is the estimated
uncertainty in the calculated value of By, contributed
solely by the virial coefficient terms whereas the right
column is the estimated uncertainty in B, due to all
suspected sources of systematic error. Along each
isotherm, as the effect on B4y, from the fixed percentage
uncertainty in enhancement factor decreases with
pressure, the effect from the uncertainties in the virial
coefficients increases in such a way as to keep the
overall systematic uncertainty in B, more or less
constant over the pressure range considered. The
systematic uncertainty increases from 4 percent at
30°C to 6 percent at 50°C, and applies to the mean
value of By as well as to the individual values.

6.6. Estimated Random Uncertainty in By,

The experimental standard deviations of the single
determinations and of the mean value of Bg, have
been given (table 6) as our best estimates of the random
uncertainties in B, The random uncertainty in By
arises mainly from the random error in the enhance-
ment factor. The latter, based on the residual standard
deviations of fits of f to a pressure function, is 0.02
percent at 30°C, 0.13 percent at 40, and 0.26 percent
at 50 °C [6]. The corresponding calculated uncertainty
in a single B, determination, as a function of pressure
along each isotherm, is indicated in table 8. Also given
for each isotherm is a mean single-determination
uncertainty, based on the three tabulated values.
This calculated mean value should be comparable to
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TABLE 8. Comparison of estimated random uncer-
tainties in a single determination of B,

Random uncertainty in B,
Temp. P
Based on ran- | Based on preci-
dom error in f2 | cision of Baw
qC Bar Percent Percent
30 10.7 0.80
19.9 .43
3515 .24
Mean 0.49 1.6
40 14.6 4.4
40.5 1.6
61.0 1.1
Mean 2.4 1.6
50 10.6 14.0
25.4 5.8
50.3 2.9
76.3 1.9
103 1.4
Mean 5.2 5%

aThe standard deviation of a single determination
of fis 0.02 percent at 30°C, .13 percent at 40°C, and
0.26 percent at 50 °C. [6].

the experimentally determined precision of a single
Buw determination. The latter values are repeated in
table 8, and it is seen that the calculated and experi-
mental random uncertainties are in reasonably good
agreement.

7. Comparisons

There are three known experimental determinations
of the enhancement of water vapor in air from which

the interaction virial coefficient may be calculated.
Politzer and Strebel [35] performed single saturation
isotherm experiments at 50 and 70 °C at total pressure
up to 200 bars. Webster [36] obtained values at — 35,
—20, 0 and 15°C at total pressures up to 200 bars,
also using the single isotherm saturation method. Goff
et al. [37, 38, 39] measured a quantity closely related
to the interaction virial coefficient, from 5 to 25°C at
total pressures near one bar.

Values of B, were computed from the Politzer and
Strebel data using the same procedures, constants
and virial coefficients that had been used with the
NBS data. The 50°C data of Politzer and Strebel
yielded values of B, that appear to scatter independ-
ently of pressure around an average value, except for
four points at 12 bars and below. These four points
are suspect and so were discarded. The mean and the
standard deviation of the mean are given in table 9.
The 70 °C data of Politzer and Strebel show a strong
monotonic pressure dependence, contrary to the
predictions of theory. It is probable that there is a
significant systematic error in the measurements
although the source of this error is not obvious. Because
of this, the 70 °C data were excluded from further
consideration.

Baw was computed similarly from Webster’s data
for each of his isotherms. At —35 and —20°C a minor
change was introduced into the calculations to allow
for the solid state of the condensed phase. This
involved the use for the Henry’s law ‘“‘constant” the
value for water at 0°C and 1 bar and for e, the appro-
priate values of saturation vapor pressure with respect
to ice [40]. The resultant error from the choice of £ is
negligible; in fact, within the uncertainty of the
Webster measurements the Henry’s law “constant”
could be ignored. The mean value of B, for each
temperature, and the standard deviation of the mean
are given in table 9.

TABLE 9. Interaction virial coefficients from literature data

Source
Webster Politzer and Strebel Goff Mason and | Chaddock”
Temperature Monchick
— Buw 7 Baw —Bu 7 Buw — Buw 7 Buw ~ Buw — Baw
cm?/mol cm®/mol cm®/mol cm®/mol cm?/mol cm®/mol cm?3/mol cm®/mol
=5 64.91 U |bosssosasamaoncood boossamsaosascasd batesacomonacamnod beapasananonns Kaeeanomooasat aaREaoremsasaams
—20 50.15 32006 N | NN S 48.2 82 |boscosoncananned lasancacaseasosons
0 38.01 17502 S PR NRNN | NNp 42.0 3.0 50.4 62.0
1) S | WO SN, | NONSSNS | ST RS | S ————— 39.3 3.0 47.3 58.1
15 34.91 344 i e 37.6 2.9 45.4 56.1
A |hooocomeoneussosd begossaanassacnd woosousmmnsaaasot besssamoasesosaod 36.8 2.9 43.9 54.4
8 | naeonnonsitonood o toiatansant moocncasnconcanc haoctanonnmmonns 34.5 2.8 41.0 Sl
40 e e e 3983 2.7 38.2 48.1
() N | V| e 23.16 0.39 30.4 21 35.8 45.2
G0 S | POV | N S | S | 28.5 2.6 3815 42.5

2 Baw = mean value along an isotherm.

b Neither Mason and Monchick nor Chaddock assigns an uncertainty to his theoretical values of B ..
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A set of By values were calculated by an empirical
equation given by Goff [2], and converted to units
consistent with those employed in this paper. The
standard deviation ascribed to the Goff values were
derived from the tolerances he assigned, which were
stated to be two times the estimated probable error.
The values are given in table 9.

No attempt was made to estimate the systematic
errors in the above values of B4y, The standard devia-
tions indicate only the precision of the measurements.

Mason and Monchick [5] and Chaddock [4] have made
statistical mechanical calculations of B4, by assuming
that the forces between air and water vapor molecules
can be represented by the Lennard-Jones (12-6) poten-
tial and that the separate species potential parameters
€o (the depth of the potential “well”’) and o (molecular
“diameter”’) can be combined by simple combination
rules. Their calculations have been extended to encom-
pass our temperature range of interest and the values
so obtained are given in table 9.

experimental data [39]. The NBS values of Bgy, are
smaller in absolute value than these other three sets of
values. Although the NBS, Webster and the 50 °C
Politzer and Strebel values appear to fall on a smooth
curve, this may be fortuitous. Until there is additional
experimental corroboration, this apparent consistency
should be viewed with reservation.

8. Smoothing Function

Given experimental values of B4, over a reasonable
temperature range, it is feasible to determine the form
of the interaction potential between the water vapor
and air species and therefore, to derive a theoretically
based expression for interpolation and extrapolation
of Bup. Unfortunately the NBS data is too limited in
temperature range to warrant this approach.

A polynomial equation was fitted, therefore, to the
NBS, Politzer and Strebel, and Webster data. The

resultant expression is as follows:

=H0)| ==

S I N T R N B

F 0 b

< CHADDOCK —
m MASON

9 GOFF

w WEBSTER
t POLITZER AND STREBEL =
n NBS

I I I I N

-40 -30 =20 =© 0o 10

20 30 40 50 60 70

TEMPERATURE, °C

FIGURE 3.

These several sets of values of By, are compared
graphically in figure 3. The curves representing the
Goff, Mason and Monchick, and Chaddock values are
similar in shape but displaced from each other. It
is not surprising that the curves are alike for they are
based on similar theoretical formulations, but with
somewhat different potential constants. Even Goff’s
empirical equation is based on values calculated from a
potential function similar to the Lennard-Jones that
had been adjusted to yield results consistent with his
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B.w versus temperature, from various investigators.

4
—Baw= z Dt (37)
i=0

where D; are empirical coeflicients, ¢ is the tempera-
ture in deg Celsius and B 4y is in units of cm3/mol. D;
are listed in table 10, along with the residual standard
deviation of the fit. The experimental and predicted
values are compared in table 11.

The differences between the experimental and pre-
dicted values are well within the standard deviation of



the mean of the experimental values. The maximum
deviation of this equation from NBS values of B 4, is
1.1 percent.

TABLE 10. Coefficients to eq (37)
Dy 38.9221
D, —.384587
D, +.512266 X 10-2
Dy —.117467 X 10-3
D, +.878093 X 10-6
@ 842 c¢m3/mol

where Z is a lattice coordination number (assuming a
local crystal structure), Ny is Avogadro’s number,
€;; are interaction energies between the designated
molecular species.

Let the mole fractions x; in eq (38) be converted to
moles n;. Differentiating with respect to n,, we obtain.

3 (AGE,
—(—M§X—)= W . (40)

This equation gives the excess chemical potential of
the water with dissolved air over that predicted from

TABLE 11.  Comparison of experimental and predicted values of B,

Temperature Interaction virial coefficient Difference Standard deviation
of mean
Experimental Predicted® Pred.—Exp. Experimental Source
{6
cm3/mol cm3/mol cm3/mol Percent cm3/mol Percent
—35 —64.91 —65.01 —0.11 —0.17 7.45 11.5 Webster [36].
—20 —50.15 —49.74 +0.41 +0.82 3.96 7.9 Webster ,36].
0 =380l =38:92 —{.91 —2.34 1.92 5.1 Webster [36].
II5 —34.9] = 33495 +0.96 SR2H(D 3.41 9.8 Webster [36].
20 —32.48
30 —29.24 —29553 —0.29 —0.99 0.21 0.7 NBS.
40 —26.29 —26.47 —0.17 =0165 0.18 0.7 NBS.
50 —23.56 =23230) +0.26 +1.10 0.33 1.4 NBS.
50 —23.16 20800, —0.14 —0.60 0.39 1.7 P & S[35].
60 —20.30

@ Calculated using eq (37).

Equation (37) is offered as a suitable smoothing
function for By, that is valid from 30 to 50 °C, the tem-
perature range of the NBS experiments. We feel
confident in using it from 10 to 60°C. Because it fits
the Webster data well, and within the uncertainty
of that data, the equation may be used to —35 °C. How-
ever, it should be noted that the systematic uncertainty
in the Webster data is unknown so that the reliability
of the predicted Bgy, in the temperature range below,
say, 10°C is unresolved.

9. Appendix 1

For a two component solution of equal-size mole-
cules, such as air dissolved in water, it can be shown
[7] that

W (ne+nw)xexw,=AGE

mix

(38)

where A()ﬁlix is the excess Gibb’s function?, that is, the

departure from that predicted through Raoult’s law;
nq. and n, are the total number of moles of air and
water; and x, and x, are mole fractions of air and
water. The parameter W is given by [7]

_ 2N,

V=3

(2€aw_€aa_€ww) (39)

"Lewis and Randall 7] call this the excess free energy of mixing and designate it by the
symbol AFE, .

Raoult’s law and is therefore equivalent to the term
Cin eqs (18), (19), and (22).

Mason and Monchick [5] and Chaddock [4] both give
€aa/k=99.2 K and €,u/k=380 K (where k is Boltz-
mann’s constant). Mason and Monchick give values of
194 and 222 K for €qu/k, as determined from second
virial coefficient data and viscosity data respectively
whereas Chaddock gives 220.5 K. For the present
purpose, assume €q,/k= 210 K. If a coordination num-
ber of 15 (which should lead to a conservatively large
estimate of C) is assumed, then W is —3.69 X 104 bar
cm?®/mol. Suppose that this is in error by a factor of 5y
then W might be of the magnitude —1.84 X 105 bar
cm?3/mol.

The mole fraction of air dissolved in water x, may
be estimated from Henry’s law using the constants in
table 3. The worst case (i.e., the largest value of 57
which, in turn maximizes C) occurs at 0°C and 100
bars. Using this value for x, and W=—1.84 X 105 atm
cm?/mol, the magnitude of C is then 0.7 bar cm3/mol.

Equation (30), with the C term included, can be
approximated by

T,P C
Baw =~ [Various terms| — % ~5p (41)

The lowest pressure present in the NBS enhancement
data is 10 bars. The maximum contribution of C to B .,
therefore, is about 0.035 cm3/mol. For B a of the order
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of 26 cm3/mol, the relative contribution of C to By is
about 1.3 parts in 1000, which is about one order of
magnitude smaller than the estimated uncertainty in
Baw.

10. Appendix 2

The equations for the virial coefficients for water
are essentially those of Goff [2]. By is given here with
opposite sign to conform to eq (8a). C yuw is a modifica-
tion of Goff’s equation to conform to eq (8a). Goff
suggests the use of his equation for Cuw only at
temperatures 60 to 100 °C whereas we extropolate it to
—20°C. Although this is a potentially dangerous pro-
cedure, no other alternative is available.

The equations for the virial coefficients B and Caea
were obtained by fitting the Sengers et al. data [16] and
the Hilsenrath et al. data [14] respectively, over the
temperature range 260 to 380 K, to polynomials.

The equations for the interaction virial coefficients
C waw and Cquw were similarly obtained by fitting the
Mason and Monchick [5] values from — 20 to + 120 °C
and the Hyland and Mason [19] values from 0 to 100 °C,
respectively, to polynomials.

The standard deviations of the fits for the latter four
equations are given. These equations are convenient
empirical relationships and it is not intended that they
be used beyond the fitted temperature ranges.

72000
Buw=33.97 — 55;,06 X 10 ™ cm? mol
B3
waw = 2.85558 % + Bi;w CmG/mOIZ

Baa=— 13.521 + 0.24234¢ — 0.10022 X 10-2¢>
+ 0.26880 X 10-3t3 cm3/mol; o = 0.024
C uea = 1314.2 — 0.89453t — 0.36372 X 10—-2¢>
+ — .48378 X 1043 — 0.18897 X 10-6¢* cm%/mol?;
o=0.17
C aaw = 860.79 — 2.4203¢t + 0.92144 X 10-2¢2
— 0.14568 X 10-4t3 cm%mol?; o = 0.32
C iww X 10-6=—10.20263 +0.52695 X 10—
—0.74761 X 10-4240.57576 X 10-6¢3
—0.18065 X 10-8t* cm®/mol2; o = 0.614 X 103
T=t+273.16, t = degrees Celsius.
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