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A B S T R A C T

Occupancy detection using ambient sensors has many benefits such as saving energy and money, enhancing se-
curity monitoring systems, and maintaining the privacy. However, sensors data suffers from uncertainty and
unreliability due to acquisition errors or incomplete knowledge. This paper presents a new heterogeneous sensors
data fusion method for binary occupancy detection which detects whether the place is occupied or not. This
method is based on using neutrosophic sets and sensors data correlations. By using neutrosophic sets, uncertain
data can be handled. Using sensors data fusion, on the other hand, increases the reliability by depending on more
than one sensor data. Accordingly, the results of experiments applied using Random Forest (RF), Linear
Discriminant Analysis (LDA), and FUzzy GEnetic (FUGE) algorithms prove the new method to enhance detection
accuracy.
1. Introduction

Occupancy detection plays a significant role in different applications
ranging from controlling energy consumption and space utilization to
building security surveillance systems. Automatic occupancy detection is
used to automatically control lighting and air conditioning systems based
on the occupancy state. Accordingly, the world energy resources can be
saved from depletion [1]. Occupancy detection is also used in risk
assessment applications in cases of environmental disasters, criminal
operations, or indoor pollution [2]. Security surveillance systems are
another important occupancy detection application [3]. Occupancy
detection is a classification problem concerned with detecting whether a
certain place is occupied or not. This classification problem can be binary
or multi-class. In binary classification, occupancy detection result is
either the place is occupied or not, 1 or 0. On the other hand, the
multi-class occupancy detection detects the number of occupants.

Occupancy detection relies on one of two different types of infor-
mation sources: cameras and environmental sensors. There are many
different sensors data types that have been used for occupancy detection
such as, temperature, humidity, relative humidity ratio, light, Passive
InfraRed (PIR) motion detectors, and CO2. The advantage of sensor-
based occupancy detection over a camera-based one is maintaining the
individual's privacy. Moreover, processing sensors data requires less
storage and lower processing capabilities.
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In spite of the advantages of using environmental sensors for occu-
pancy detection, sensors data suffers from uncertainty and unreliability
due to acquisition errors or incomplete knowledge. As a result, the ac-
curacy of detection is affected. Most of the contemporary researches deal
with occupancy classification methods such as Hidden Markov Models
(HMM) [4, 5], Neural Network (NN) [6, 7], and Support Vector Machines
(SVMs) [8, 9]. Nevertheless, handling data uncertainty and unreliability
is not given much concern. Hence, this paper suggests a newmulti-sensor
data fusion method for binary occupancy detection based on neu-
trosophic sets. Using neutrosophic sets handles the data uncertainty,
whereas fusing more than one neutrosophic sensor feature increases the
reliability. Therefore, the suggested method provides better accuracy
range for occupancy classification. In addition, it is computationally
efficient due to using one fused feature instead of many features for
training and testing. The suggested method is tested using public occu-
pancy detection data set [3].

The rest of this paper is structured as follows. Section 2, related work,
mentions recent researches on sensor-based occupancy detection. Section
3 explains the suggested method and how beneficial it is to occupancy
detection. Section 4 discusses the results of using neutrosophic sets with
two types of fusion, features-to-decision and features-to-feature fusions,
compared to using the original data. Finally, the paper is concluded in
Section 5.
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2. Related work

Currently, there are many researches related to occupancy detection.
These researches can be categorized into video-based [10, 11] and
environmental sensor-based. Using video cameras for occupancy detec-
tion violates the privacy of individuals. Besides, video processing re-
quires large storage and high processing capabilities. Consequently, this
section focuses only on environmental sensor-based occupancy detection
researches.

An occupancy behavioral pattern recognition model based on unsu-
pervised approach was presented in [12]. The model used a variety of
data such as illumination, motion, CO2, noise levels, relative humidity
and temperature. The results reported maintaining indoor comfort with
30% energy saving. In [4], using HMM achieved an average of 80% ac-
curacy in detecting the number of occupants. Data captured from CO2
and acoustic sensors was used. The work presented in [5] used the in-
formation theory for studying the correlation between the occupants
number and the extracted features from CO2, relative humidity, and
acoustics sensors data. It also used HMM to detect the occupancy number
but with accuracy of 73% on average. In [13], accuracy of 98.4% was
achieved by using a decision tree to combine multiple motion sensor
features. However, the addition of power use, CO2, and sound sensors
worsened the classification results. The work presented in [14] suggested
an occupancy estimation model based on a Radial Basis Function (RBF)
NN to predict the occupants number. Using sensors data as indoor tem-
perature, light, sound, humidity, CO2 concentration and motion, accu-
racy of 64.83% was reported. NN was used to fuse multi-sensory features
derived from CO2, air temperature, computer temperature, sound, rela-
tive humidity, and motion to estimate occupancy numbers [6, 7]. An
accuracy of 75% was achieved in [6] and 84.59% was achieved in [7].
Using statistical correlations between occupancy levels and room tem-
perature, CO2 concentration, and ventilation actuation signals [15],
identified a dynamic model for estimating the occupancy levels with 88%
accuracy. In [16], a new methodology based on the Adaptive
Neuro-Fuzzy Inference System (ANFIS) algorithm was suggested to
detect building occupancy. The indoor events, indoor climatic variables,
and energy data were combined using a sensors fusion model. The
resulting occupancy sensor was expected to improve the reliability. The
work presented in [17] evaluated six machine-learning techniques per-
formance in both single-occupancy and multi-occupancy offices using
light, temperature, relative humidity, infrared, sound, motion, CO2, and
door switch sensors. The decision-tree technique showed the best accu-
racy ranging from 96.0% to 98.2%. The work presented in [18] investi-
gated Auto-Regressive Hidden Markov Model (ARHMM) to estimate the
occupants number. The accuracy for detecting the occupants number
using data from PIR, CO2, temperature, relative humidity, air speed and
reed switches sensors was 76.2% and 84% for HMM and ARHMM,
respectively.

In [8], non-linear multi-class SVM was used to model user occupancy
and activity patterns with more than 80% accuracy in two scenarios. The
statistical classification models: Gradient Boosting Machines (GBM),
Linear Discriminant Analysis (LDA), Random Forest (RF), and Classifi-
cation and Regression Trees (CART) were evaluated by [3] using data
from light, temperature, humidity and CO2 sensors. The best accuracies
ranging from 95% to 99% were obtained from LDA, CART and RF
models. In [19], Feature Scaled Extreme Learning Machine (FS-ELM)
algorithm was presented for estimating the number of occupants based
on CO2 measurement. It provided up to 94% accuracy. In [20], a
learning-based method to detect the occupancy behavior of a building
was proposed. That method used a Recurrent Neutral Network (RNN) to
detect the number of occupants through the temperature and/or heat
source information. The error level is 0.288 at maximum with the
knowledge of Heating, ventilation, and air conditioning (HVAC) powers
and more than 0.5 without it. From [21], a Support Vector Regression
(SVR) method was presented to detect occupancy using solar factor,
working time, lights energy, and indoor/outdoor temperature features.
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The average error of the 4-feature SVRmodel and the 5-feature model are
0.638 and 0.317, respectively. Using data-driven models: Extreme
Learning Machine (ELM), SVM, NN, K-Nearest Neighbors (K-NN), LDA
and CART, a fusion framework for occupancy estimation was suggested
[9]. The suggested framework achieved enhancements of 5–14% and
3–12% in estimation accuracy and detection accuracy (pre-
sence/absence). In [22], the decision tree and HMM algorithms were
used for occupancy detection at the current/future state. The data used
was CO2 concentration and electricity consumption. Accuracy of 93.2%
was achieved in detecting the number of occupants. In [23],
Dempster-Shafer theory was combined with HMM to predict occupancy
profile. Data from dew point temperature, electrical power, and CO2
concentration was used in that work. The approach handled the periods
of missing sensor data effectively. Another work suggested applying
different NN algorithms to data from light, temperature, humidity and
CO2 sensors [24]. The highest accuracy (99.06%) was obtained from
Limited Memory Quasi-Newton (LMQN) algorithm and the lowest ac-
curacy (80.32%) was achieved by Batch Back (BB) algorithm. In [25],
Sensing by proxy (SbP) was proposed. The occupancy detection was
based on “proxy” measurements such as temperature and CO2 concen-
trations. The proposed approach achieved 0.6 mean squared error and
saved 55% of the total ventilation. The work presented in [26] applied
four data mining algorithms: Naïve Bayes, SVM, K-NN and Ada boosting.
Naïve Bayes and SVM resulted in an accuracy of around 94% with
approximately 6% average error. K-NN and Ada boosting algorithms
resulted in more than 99% average accuracy with average error less than
1% and 0.5%, respectively. A hybrid CO2/light sensor was proposed in
[27] for detecting occupancy accurately.

The stacking for multi-class classification was applied to a binary
occupancy classification task in [1]. NN with duo outputs was combined
with the stacking. The applied approach provided 90.27% average ac-
curacy for five input features and 70.46% average accuracy for two input
features. In [2], an occupancy detectionmethodology based on HMMwas
used to infer the daily and hourly average occupancy schedules. The
HMM based on the first order difference of CO2 data at 5 min time
average achieved the best accuracy (90.24%). The work presented in
[28] applied a rule-based method on noise, Volatile Organic Compound
(VOC), PIR, temperature, relative humidity, and CO2 measurements to
detect the occupancy. Accuracies of 98% and 78% in two different testing
environments were reported. In [29], Fuzzy Cognitive Maps (FCM) was
combined with SVM to increase the accuracy. The FCM was used at first
for discovering interrelationships between variables and correlation
patterns to produce a single variable. Then, the produced variable was
feed to SVM to enhance prediction. The proposed SVM-FCM model
achieved accuracies of 0.9790 and 0.9945 for 2 test data sets. The work
presented in [30] investigated whether or not using a small random
sample could produce performance that is as good as the one resulting
from using a large sample. It used three classification models: Deep Feed
Forward (DFF) Learning Model, RF, and K-NN. The DFF resulted in best
accuracy of 98.44%. In [31], a distance sensor, CO2 and PIR motion were
fused to reduce false positive and false negative, thus improving the
reliability. The work in [32], however, proposed two novel feature se-
lection algorithms: the wrapper and hybrid feature selection methods. A
ranking-based incremental search was introduced in the algorithms to
decrease the computation time. Accuracies of over 96% were obtained
for presence detection. In [33], an ensemble learning algorithm was
presented. Heterogeneous learning algorithms were used for pruning and
generating diverse learners to enhance the performance of the ensemble.
The proposed algorithm achieved up to 88% accuracy based on dynamic
occupancy data set and 93% accuracy based on daily occupancy data set.
In [34], a new control algorithm, consisting of two parts, was presented.
The first part is an environmental data driven model for the occupancy
status detection. The second is an integrated comfort algorithm for
operating the indoor devices. Data obtained from a door sensor, CO2
concentrations, PIR sensors, and lighting electricity consumption was
used by a multinomial logistic regression model to detect the occupancy



N.S. Fayed et al. Heliyon 5 (2019) e02450
status. The presented algorithm provided 94.9% accuracy. An Internet of
Things (IoT)-based occupancy detection system was presented in [35].
The system used patterns change of dust concentrations to detect
occupancy.

Information produced from real-world applications may be incom-
plete, imprecise, and inconsistent. The reason for that uncertainty may be
acquisition errors, or incomplete knowledge. Some of the mentioned
methods dealt with the uncertainty of decision based on probability
theory [36] using HMM such as [2, 4, 5, 12, 18, 22, 23] or based on fuzzy
set theory [37] such as [16, 29]. Probability is the likelihood of whether
an event will occur using historical data. So, probability is related to
event and not facts (historical data). In case of occupancy detection, the
event is the occupancy and the facts are the sensors readings. Generally,
using of the probability in occupancy detection is the probability of the
place being occupied based on specific sensors reading appearing (con-
ditional probability). It is not concerned with the validity of the sensor
reading itself. On the other hand, fuzzy set theory defines set membership
as a degree of truth, which is the percentage of fact (sensor reading)
belonging to a specific fuzzy set. After defining the membership degree,
fuzzy logic is used to combine the fuzzy sets and to make reasonings
about events (occupancy) effectively. Also, fuzzy set theory deals with
sensors readings as facts and is not concerned with their validity.
Consequently, these two methods can deal only with one imprecision
problem, which is the uncertainty of decision, without managing the
problems of imprecision and uncertainty within the data. For that reason,
a neutrosophy approach [38] was proposed. Neutrosophy can deal with
the problem of imprecision and uncertainty as described in the following
section.

3. Methods

Using environmental sensors in occupancy detection has its benefits
in preserving privacy. However, sensors data is uncertain and unreliable
because of acquisition errors, or incomplete knowledge. Hence, the
proposed method handles this problem via using neutrosophic sets
instead of the original data. For best of our knowledge, neutrosophic sets
was not used before for occupancy detection.

3.1. Neutrosophic domain

Neutrosophy is a philosophy branch combining the philosophical
knowledge with set theory, logics, and probability/statistics to solve the
problem of imprecision and uncertainty [38]. A statement in proba-
bility/statistics is either true or false. In fuzzy logic, a statement is not
necessarily true or false; rather it has a degree of truth between 0 and 1.
The neutrosophic logic and intuitionistic fuzzy logic presented a per-
centage of “indeterminacy”. However, the neutrosophic logic allows each
statement to be over or under true, over or under false and over or under
indeterminate by using hyper real numbers developed in non-standard
analysis theory. The hyper-real number set is an extension of the real
number set. For example, the non-standard finite numbers 1þ ¼ 1þε,
where “1” is its standard part and “ε” its non-standard part, and –0 ¼ 0-ε,
where “0” is its standard part and “ε” it's non-standard part. Neutrosophic
logic represents data in a 3D space using (T, I, F), where T, I and F
represent Truth, Indeterminacy, and False respectively and each is in the
range of ]-0, 1þ[ (Non-standard unit interval) [39]. The classical unit
interval [0, 1] is used instead of non-standard unit interval for software
engineering proposals [40].

3.2. Transformation to neutrosophic domain

Suppose a set of sensors S ¼ {s1, s2…, sn} is used for occupancy
detection. The sensors data is transformed to neutrosophic sets, using two
methods inspired by the method applied to image data in [41]. In
sensor-based transformation, each sensor data vector Sj, where 1 � j � n,
is converted separately to a neutrosophic version using the following
3

equations:

NSSj ðiÞ¼ fTðiÞ; IðiÞ; FðiÞg (1)

Where NSSj is the transformed neutrosophic set for the Sj sensor data. The
index i refers to the ith instance in the data set. The membership values
TðiÞ; IðiÞ; and FðiÞ are derived as follows:

TðiÞ¼ gðiÞ � gðminÞ
gðmaxÞ � gðminÞ (2)

Where gðiÞ is the local mean value which is derived as follows:

gðiÞ¼ 1
W

XiþW=2

m¼i�W=2

gðmÞ (3)

Where gðmÞis the mth data value in the sensor data vector andW denotes
the window size.

FðiÞ¼ 1� TðiÞ (4)

IðiÞ¼ δðiÞ � δðminÞ
δðmaxÞ � δðminÞ (5)

Where

δðiÞ¼ absðgðiÞ� gðiÞÞ (6)

The transformed data set that contains all n transformed vectors is
denoted NS. In multi-sensor-based transformation, the sensors vectors
are treated as one 2Dmatrix to give a chance for each sensor data to affect
the other sensors during the conversion process. This owes to the fact
that, in real world, the value of one observation may affect the value of
other observations such as lighting a place may affect its temperature.
Sensors vectors are arranged, either in an ascending or in a descending
order, according to the readings range of each sensor. This ensures that
high sensors readings do not cancel the effect of low sensors readings
during occupancy detection. The 2D matrix is converted to a neu-
trosophic version using the following equations:

NS allði; jÞ¼ fTði; jÞ; Iði; jÞ; Fði; jÞg (7)

Where NS_all is the transformed neutrosophic set. The index i refers to
the ith instance in the data set, whereas the index j refers to jth sensor
vector, where 1 � j � n. The membership values Tði; jÞ; Iði; jÞ;
and Fði; jÞ are derived as follows:

Tði; jÞ¼ gði; jÞ � gðminÞ
gðmaxÞ � gðminÞ (8)

Where gði; jÞ is the local mean value and it is derived as follows:

gði; jÞ¼ 1
W �W

XiþW=2

m¼i�W=2

XjþW=2

n¼j�W=2

gðm; nÞ (9)

Where gðm; nÞ is the data value in the sensors data matrix at the location
(m, n) and W �W denotes the window size.

Fði; jÞ¼ 1� Tði; jÞ (10)

Iði; jÞ¼ δði; jÞ � δðminÞ
δðmaxÞ � δðminÞ (11)

Where

δði; jÞ¼ absðgði; jÞ� gði; jÞÞ (12)

After converting the sensors data, the truth membership values for NS
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and NS_all are used as certain data for training and testing. To study the
effect of each version of the data set on the occupancy detection, three
classification algorithms, RF, LDA, and FUGE [42], are used to detect
occupancy for each version of the data separately. The selection of RF and
LDA is due to their achieved high accuracy in the domain of occupancy
detection [3]. Also, the two algorithms are from different Machine
Learning Algorithms (MLAs) categories. RF is a non-parametric algo-
rithm, while LDA is a parametric algorithm. Besides that, LDA is a
probability-based algorithm and FUGE is a fuzzy-based genetic algo-
rithm. So, using both of them showed the effect of neutrosophy on the
accuracy of probability and fuzzy based algorithms. Consequently, using
these algorithms provides a chance to study the effect of neutrosophic
transformation of sensors data on the results of different categories of
MLAs.

3.3. Neutrosophic features fusion (NFF)

RF, LDA, and FUGE are used in this proposal to fuse the true feature of
different sensors data through Features-to-Decision fusion (F2D). Despite
the fact that using more than one feature can increase the accuracy of
detection, it may cause over fitting [3]. Moreover, increasing the number
of features increases time complexity. Using Features-to Feature (F2F)
fusion produces only one feature for training, and therefore, saves some
4

computation time. In addition, it shows better accuracy than F2D fusion
as shown in detail in the next section. Thereupon, using F2F fusion can
solve the mentioned problems. The proposed F2F fusion method, NFF,
produces a dynamic fusion equation based on the sensors data correla-
tion. The equation can be produced visually, using dendrogram of the
training set (Fig. 1), or formed using the correlation matrix of the training
set (Fig. 2). The steps to produce the fusion equation visually are illus-
trated using the flow chart in Fig. 1, and proceed as follows:

1. Start from the bottom of the dendrogram. The bottom represents the
largest correlation, because the dendrogram height represents
dissimilarity which equals the ones' complement of correlation.

2. Sum the children of each parent node at the same level. They can act
as alternative of each other.

3. Multiply the children of each parent node at different levels.
4. Repeat steps 2 and 3 until the top of the dendrogram is reached.

The dummy dendrogram of five sensors, S1:S5, in Fig. 3 is taken as an
example. From the bottom of the dendrogram, S1 and S2 are children at
the same level; hence they are summed (S1þS2). Moving up, S3 and S4 are
children at the same level, thus they are summed (S3þS4). Then, (S3þS4)
is multiplied by S5 which is a child of their parent at different level.
(S1þS2) and S5*(S3þS4) are at a different level. Therefore, the final
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Table 1
Dummy correlation matrix.

S1 S2 S3 S4 S5

S1 1.00 0.96 0.04 0.44 -0.14
S2 0.96 1.00 0.23 0.63 0.15
S3 0.04 0.23 1.00 0.66 0.65
S4 0.44 0.63 0.66 1.00 0.56
S5 -0.14 0.15 0.65 0.56 1.00
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equation becomes (S1þS2) *S5*(S3þS4).
The second way, generating the equations using correlation matrix, is

illustrated using the flow chart in Fig. 2 as follows:

1. Start from the largest correlation value.
2. If the correlation value is more than 50%, sum the two features, else

multiply them.
5

3. If the same correlation value is repeated, then sum or multiply all the
involved features according to the correlation value.

4. Move to a smaller correlation value and repeat steps 2 and 3 until all
features are represented in the equation.

5. Multiply different levels of correlations.

Using the correlation matrix in Table 1 as an example, the largest
value is 0.96 and it is >0.5. So, S1 and S2 are summed (S1þS2). The
smaller correlation value (0.66) is also >0.5, so S3 and S4 are summed
(S3þS4). The correlation value (0.65) is for correlation between S5 and
S3, but S3 is actually related to S4 by a larger correlation. Accordingly, S5
is the only feature in this level. The final equation, (S1þS2) *S5*(S3þS4),
is the result of multiplying the different levels.



Table 2
Occupancy Detection data set description [3].

Data set Number of
observations

Data Class Distribution
(%)

Comment

0 (non-
occupied)

1
(occupied)

Training 8143 of 7
variables

0.79 0.21 Measurements taken
mostly with the door
closed during occupied
status

Testing
1

2665 of 7
variables

0.64 0.36 Measurements taken
mostly with the door
closed during occupied
status

Testing
2

9752 of 7
variables

0.79 0.21 Measurements taken
mostly with the door
open during occupied
status
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4. Results & discussion

This section analyzes and compares occupancy detection accuracy of
RF, LDA, and FUGE as F2D fusion models using the Occupancy Detection
data set [3] from UCI Machine Learning Repository [43]. Also, the effect
of using NFF on the occupancy detection accuracy is discussed. The
motivation for using this specific data set was that the data and the data
processing script were provided in [44], so the results can be compared
directly. The accuracy was evaluated using the open source program R.
The data set contains three sets for training and testing the classification
models. They are summarized in Table 2. Each set contains: temperature
(Temp), humidity (H), derived humidity ratio (HR), light (L), CO2, oc-
cupancy status (0 for non-occupied, 1 for occupied) and time stamp. The
humidity ratio was not used in the experiments, because it is a ratio and
the target was fusing sensors data readings. Also, the humidity is a good
Table 3
Features combinations cases.

# Features # Features # Features # Features #

1 All 3 no-T 5 no-L 7 T, CO2 9
2 no-CO2 4 no-H 6 T, L 8 T, H 1
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alternative for the humidity ratio. Different combinations from the four
sensors data were used. Table 3 contains all 15 possible combinations of
the four sensors data. First column is the case No. and the second is the
features used, e.g. All means all features, no-CO2 means CO2 excluded
and the other three sensors data are included, and H, L means only Hu-
midity and Light are included. All cases were used for F2D fusion for
occupancy detection using RF, LDA, and FUGE. Only the first 11 cases
were used for F2F fusion and the reason was that one feature cannot be
fused to obtain one feature. The experiments were done both by
including time parameters and without including them. The time pa-
rameters are: The Number of Seconds from Midnight (NSM) and Week
Status (WS). For comparison, two normalized versions of the original
data were generated. The first version, Norm set, was generated using the
following equation:

NormSj ðiÞ¼
gðiÞ � gðminÞ

gðmaxÞ � gðminÞ (13)

Where NormSj is the normalized set for the Sj sensor data. The index i
refers to the ith instance in the data set. All normalized vectors were
contained in the Norm set. The second version, Norm_all set, was
generated using the following equation:

Norm all ði; jÞ¼ gði; jÞ � gðminÞ
gðmaxÞ � gðminÞ: (14)

Where Norm_all is the normalized set. The index i refers to the ith
instance in the data set, while the index j refers to jth sensor vector.
Hence, five versions of the data set were used: Original, NS, NS_all, Norm,
and Norm_all. NS and NS_all were produced using equations in the pre-
vious section. A window size of four was selected for producing NS
because the resulted sets provided better accuracy when used for occu-
pancy detection than the resulted sets from using window size of 2 and 6.
Features # Features # Features # Features
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Fig. 5. NS set dendrograms for (a) Training, (b) Testing 1, and (c) Testing 2.
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Also, the computational time for producing the sets using window size of
4 was more than that of using window size of 2 and less than the time of
using window size of 6. Thus, a window size of 4*4 was used for NS_all as
well. The ascending order of sensors vectors was used before producing
NS_all to ensure that high sensors readings do not cancel the effect of low
sensors readings during occupancy detection.

Figs. 4, 5, and 6 show dendrograms for the five versions of the data
set. For NS and NS_all, the truth membership values were used for
drawing the dendrograms. There are four interesting observations from
these dendrograms:

1. Dendrograms for Original, NS, Norm, and Norm_all are similar.
2. Dendrograms for Training, Testing 1, and Testing 2 are different for

Original, NS, Norm, and Norm_all.
7

3. Dendrograms for NS_all are different from the others.
4. Dendrograms for Training, Testing 1, and Testing 2 are similar for

NS_all.

From these observations, it is concluded that only NS_all dendrograms
preserve the correlation between the four variables despite the values
changes in training, testing 1, and testing 2 sets. This conclusion is drawn
from dealing with four sensors vectors as one 2D matrix, which gives a
chance for each sensor data to affect the other sensors during the con-
version process. Changing the location of sensors in the monitored area
can affect measurement readings. Hence, using NS_all version can solve
the models retraining problem each time they are relocated. These
dendrograms help in interpreting the results of F2D and F2F fusions re-
sults mentioned in the following sections.
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4.1. F2D fusion results

Before presentation of the results, it would be convenient to explain
how RF, LDA, and FUGE work. RF is an ensemble algorithm for classi-
fication and regression. It works by creating a number of decision trees at
training time. While the output in regression is the mean prediction of the
trees, it is the mode of the predicted classes in classification. Decision
trees, as a non-parametric algorithm, suffer from the problem of over-
fitting which results in high variance. RF improved the problem of
overfitting in decision trees by choosing a random sample of m features
as split candidates rather than choosing the most optimal split-point
among all features in the training data set. Hence, the predictions from
the RF trees will be less correlated and this leads to a reduction in de-
cision trees variance. As for LDA, it is a parametric probability-based
method for classification. A parametric method assumes that the data
follows a specific distribution which is Gaussian in case of LDA. Even
though LDA assumes normality of data, it is still reliable when the
multivariate normality is violated [45]. LDA representation consists of
statistical properties calculated from the training data for each class. The
statistical properties for a single input are the mean value for each class
and the variance calculated across all classes. In case of multiple inputs,
the statistical properties are the mean vector for each class and the
common covariance matrix to all classes. LDA uses Bayes' theorem to
estimate the probability of the output class given the input. For classi-
fying a new data observation, a discriminate value for each class is
calculated based on the statistical properties obtained from the training
phase and the data is assigned to the class with the largest value [46].
Lastly, FUGE is an evolutionary algorithm for fuzzy systems. It uses a
genetic algorithm to generate a random population of fuzzy systems. The
fuzzy systems contain fuzzy logic rules used after that for the prediction.
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Fig. 9. RF testing accuracy on Testing 2 data
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The generated fuzzy systems are tested using the training data. The
systems with best accuracies are used to generate the population for the
next generation using crossover and mutation. At the end of algorithm
execution, the system with best accuracy is returned. FUGE suffers from
overfitting, because the generated rules fit the training data [42].

Moving on to the results, Figs. 7, 8, and 9 show the RF prediction
accuracy on Training, Testing 1, and Testing 2 data with and without
using the previously mentioned two time parameters: NSM and WS.
Accordingly, using NS_all greatly improved the accuracy range more than
the usage of any of the other sets. Not to mention that including time
parameters NSM andWS enhanced accuracy evenmore. So, the following
key points can be concluded:

1. Using the time parameters, NS_all provided a stable accuracy above
96 % for all cases that included Temp feature and went down to
87.14% in accuracy for cases that excluded Temp feature. This is a
logical result because, from the previous dendrograms, CO2, H, and L
are alternatives, but Temp is mandatory.

2. Although Testing 1 and Testing 2 data sets have different sensors
measurements, NS_all provided similar accuracy ranges for them. The
reason is that NS_all discovered the consistant correlation of the four
variables in the Training, Testing 1, and Testing 2. Unfortunately,
Original, NS, Norm, and Norm_all failed to do that.

3. Using NS_all is promising for critical applications, especially security
applications. Using any of CO2, L, or H with Temp provides good
accuracy. If some sensors are damaged intentionally or unintention-
ally and the worst case happened, the accuracy of 87.14% is more
acceptable than the worst cases of the other sets.

Although LDA, FUGE, and RF are from different MLAs categories,
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Fig. 10. LDA testing accuracy on Training data (a) without and (b) with NSM and WS.
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Fig. 11. LDA testing accuracy on Testing 1 data (a) without and (b) with NSM and WS.
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Fig. 14. FUGE testing accuracy on Testing 1 data (a) without and (b) with NSM and WS.
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NS_all had the same effect on LDA and FUGE results as on RF ones; but
with different prediction accuracy ranges as shown in Figs. 10, 11, and 12
for LDA and Figs. 13, 14, and 15 for FUGE. Using time parameters did not
significantly affect the prediction accuracy of LDA. Because LDA is a
parametric MLA, as mentioned in the beginning of this section; adding
the time parameters to the data made a small effect on the estimated
9

parameters (mean and covariance) calculated by LDA in the training
phase. Thus, LDA has low variance in learning function estimation if
training data was changed. On the contrary, RF provided better accuracy
ranges using time parameters. Adding the time parameters to the input of
RF changed the combinations of randomly selected split features and this
in turn changed the structures of created decision trees. As a result, the
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Fig. 15. FUGE testing accuracy on Testing 2 data (a) without and (b) with NSM and WS.

Table 4
Original, Norm, and Norm_all training sets correlation matrix.

Temperature Humidity Light CO2

Temperature 1.00 -0.14 0.65 0.56
Humidity -0.14 1.00 0.04 0.44
Light 0.65 0.04 1.00 0.66
CO2 0.56 0.44 0.66 1.00

Table 5
NS training set correlation matrix.

Temperature_T Humidity_T Light_T CO2_T

Temperature_T 1.00 -0.14 0.65 0.56
Humidity_T -0.14 1.00 0.04 0.44
Light_T 0.65 0.04 1.00 0.67
CO2_T 0.56 0.44 0.67 1.00

Table 6
NS_all training set correlation matrix.

Temperature_T Humidity_T Light_T CO2_T

Temperature_T 1.00 0.87 0.87 0.87
Humidity_T 0.87 1.00 1.00 1.00
Light_T 0.87 1.00 1.00 1.00
CO2_T 0.87 1.00 1.00 1.00

Table 7
F2F fusion equations.

Case
No.

Original, Norm,
Norm_all

NS NS_all

1 (H)*Temp*(L þ
CO2)

(H)*Temp*(L þ
CO2)

Temp_T*(H_T þ L_T þ
CO2_T)

2 (H)*(L þ Temp) (H)*(L þ Temp) Temp_T*(H_T þ L_T)
3 (H)*(L þ CO2) (H)*(L þ CO2) (CO2_T þ H_T þ L_T)
4 Temp*(L þ CO2) Temp*(L þ CO2) Temp_T*(L_T þ CO2_T)
5 (H)*(Temp þ CO2) (H)*(Temp þ

CO2)
Temp_T*(H_T þ CO2_T)

6 (L þ Temp) (L þ Temp) Temp_T*(L_T)
7 (Temp þ CO2) (Temp þ CO2) Temp_T*(CO2_T)
8 (H)*(Temp) (H)*(Temp) Temp_T*(H_T)
9 (H)*(L) (H)*(L) (H_T þ L_T)
10 (L þ CO2) (L þ CO2) (L_T þ CO2_T)
11 (H)*(CO2) (H)*(CO2) (H_T þ CO2_T)
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predictions from the trees were less correlated and the high variance of
the decision trees was reduced. Consequently, the prediction accuracy
improved. Regarding the effect of using time parameters on FUGE, the
latter's overfitting causes degrading in accuracy for all the data sets
except for NS_all. NS_all overcomes the overfitting by preserving a
consistent correlation of the four variables in the Training, Testing 1, and
Testing 2. So, only NS_all provides a small enhancement through using
time parameters.
4.2. F2F fusion results

Based on the two NFF methods described in Section 3, the F2F fusion
equation can be produced visually using dendrograms of Training sets in
Figs. 4, 5, and 6 or using the correlation matrices of Training sets in
Tables 4, 5, and 6. The dendrograms in Figs. 4, 5, and 6 are for all features
case. For other cases, dendrograms need to be redrawn. Table 7 contains
the fusion equations for all 11 possible cases. The first column is case
number. The second, the third, and the fourth columns are for fusion
equations.

Using F2F fusion produced only one feature for training, therefore, it
saved some computation time. It also showed better accuracy than F2D
fusion for all the five data set versions as shown in Figs. 16, 17, 18, 19, 20,
21, 22, 23, and 24. From Figs. 16, 17, and 18, applying F2F fusion
enhanced the accuracy ranges especially the minimum bound. Although
using RF without time parameters showed enhancement in the other sets
results, NS_all results are still the best. On using RF with time parameters,
10
NS_all showed the best results and theminimum bound raised from 87.14
to 88.16. In case of using LDA without time parameters, Figs. 19, 20, and
21, NS_all had the best results and the minimum bound raised from 87.09
to 88.27. However, including time parameters provided similar results
for NS_all and some enhancement for the other sets. Nevertheless, NS_all
provided results that are better, compared to the other sets. As for using
FUGE, Figs. 22, 23, and 24, with time parameters, the accuracy was
higher than without using them. Also, NS_all provided the best accuracy
range. The prediction accuracy ranges for F2D and F2F fusions are
summarized in Table 8.

The observations from Table 8 and Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, and 24 can be summarized as follows:

� Using NS provides better accuracy range than using the original data.
� NS_all provides a stable and good accuracy for all cases that include
Temp feature and acceptable accuracy for cases that exclude Temp
feature.

� NS_all provides similar accuracy ranges for Testing1 and Testing2,
despite their different data values.

� Using NS_all is promising for critical applications, especially security
applications; because of its acceptable accuracy in worst cases.

� Using F2F based on features correlation enhances the accuracy and
increases the lower bound of accuracy ranges. Also, it is computa-
tionally efficient owing to the use of one fused feature for training and
testing.

� All advantages provided by NS_all are due to the ability of NS_all to
discover the consistent correlation among the features.

� Using Neutrosophic sets, NS or NS_all, as a certain data provides
better accuracy than using the original data.

5. Conclusion

This paper presented a new sensor fusion method for occupancy detec-
tion based on using neutrosophic sets and sensors correlations. Thismethod
benefited from the numerous advantages of using neutrosophic sets. One of
these advantages is enhancing the occupancy detection accuracy. It is also
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Fig. 16. Testing accuracy of RF F2F fusion on Training data (a) without and (b) with NSM and WS.
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Fig. 17. Testing accuracy of RF F2F fusion on Testing 1 data (a) without and (b) with NSM and WS.
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Fig. 18. Testing accuracy of RF F2F fusion on Testing 2 data (a) without and (b) with NSM and WS.
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Fig. 19. Testing accuracy of LDA F2F fusion on Training data (a) without and (b) with NSM and WS.
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Fig. 20. Testing accuracy of LDA F2F fusion on Testing 1 data (a) without and (b) with NSM and WS.
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computationally efficient which means saving energy and improving the
speed of detection. Moreover, it is promising for critical applications espe-
cially security applications because of its acceptable accuracy in the worst
cases. The experimental results showed that the usage of either features-to-
11
decisionor features-to-featureneutrosophic fusionsprovidesbetteraccuracy
ranges than using the original or normalized data. However, features-to-
feature fusion based on the features' correlation is more efficient and pro-
vides better accuracy than features-to-decision fusion.
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Fig. 21. Testing accuracy of LDA F2F fusion on Testing 2 data (a) without and (b) with NSM and WS.
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Fig. 22. Testing accuracy of FUGE F2F fusion on Training data (a) without and (b) with NSM and WS.
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Fig. 23. Testing accuracy of FUGE F2F fusion on Testing 1 data (a) without and (b) with NSM and WS.
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Fig. 24. Testing accuracy of FUGE F2F fusion on Testing 2 data (a) without and (b) with NSM and WS.

Table 8
Prediction accuracy ranges summary.

Original NS NS ALL Norm Norm ALL

Worst Best Worst Best Worst Best Worst Best Worst Best

RF-without NSM, WS 34.02 100 36.16 100 83.1 100 40.18 100 29.54 100
RF-with NSM, WS 57.51 100 65.14 100 87.14 100 54.58 100 60.08 100
RF fusion-without NSM, WS 48.6 100 61.66 100 83.12 100 63.96 100 47.5 100
RF fusion-with NSM, WS 65.1 100 76.62 100 88.16 100 79.76 100 64.74 100
LDA-without NSM, WS 63.53 99.13 63.53 99.25 87.09 99.17 63.53 99 36.47 99.05
LDA-with NSM, WS 63.53 99.35 63.53 99.42 86.66 99.38 63.53 99.32 36.47 99.33
LDA fusion-without NSM, WS 63.53 98.4 73.58 98.03 88.27 99.16 77.04 95.49 63.53 98.4
LDA fusion-with NSM, WS 68.78 98.74 74.25 98.98 88.01 99.16 75.5 96.67 63.53 98.74
FUGE-without NSM, WS 63.53 99.33 65.79 99.1 83.34 98.83 69.46 99.37 63.53 99.32
FUGE-with NSM, WS 55.38 98.91 62.87 98.93 83.45 98.92 68.68 98.96 58.43 99.08
FUGE fusion-without NSM, WS 37.97 99.32 59.76 97.54 82.93 98.76 64.63 97.21 39.49 99.32
FUGE fusion-with NSM, WS 72.14 98.91 76.02 98.78 84.55 98.85 80.33 98.94 54.91 98.91
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