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Animal acoustic communication systems can be built upon co-opted struc-
tures that become specialized for sound production or morphological
novelties. The ghost crab, Ocypode quadrata, evolved a novel stridulation
apparatus on the claws that is used during agonistic interactions, but they
also produce a rasping sound without their claw apparatus. We investigated
the nature of these sounds and show that O. quadrata adopted a unique and
redundant mode of sound production by co-opting the gastric mill (grinding
teeth of the foregut). Acoustic characteristics of the sound are consistent with
stridulation and are produced by both male and female crabs during aggres-
sive interactions. Laser Doppler vibrometry localized the source of
maximum vibration to the gastric region and fluoroscopy showed move-
ment of the gastric mill that coincided with stridulation. The lateral teeth
of the gastric mill possess a series of comb-like structures that rub against
the median tooth to produce stridulation with dominant frequencies
below 2 kHz. This previously undescribed gastric stridulation can be modu-
lated and provide a means of assessment during aggressive interactions,
similar to the use of the claw stridulation apparatus. This functional redun-
dancy of stridulation in crabs offers unique insights into the mechanisms of
evolution of acoustic communication systems.
1. Introduction
The co-option of existing structures and emergence of morphological novelties
are considered key routes for evolutionary diversification [1,2]. Both mechan-
isms have contributed to the broad repertoire of acoustic communication
systems across the animal kingdom. Structures as diverse as swim bladders
[3], wings [4], feathers [5], respiratory tracts [6], and walking legs [4] have
become co-opted for acoustic communication, but less diversified are novel
morphologies, such as the rattle of rattlesnakes [7], stridulatory structures in
arthropods [8,9], and tymbals in insects [10]. Despite the pre-adaptive nature
of so many structures for sound production, redundant morphologies with
similar function are uncommon. An intriguing example of acoustic redundancy
is the coevolution of vocal, wing feather, and tail feather mechanisms in male
hummingbirds, which all produce similar acoustics [11]. Vocalizations are
used for both defensive and courtship functions, but the feather mechanisms
are specific to males and are likely driven by sexual selection. Here, we present
a compelling example in an invertebrate, wherein both novel and co-opted
structures are used in duplicative function, with neither being driven by
sexual selection. Our primary goal is to characterize a previously undescribed
form of acoustic communication in crabs that resulted from the co-option of
the gastric teeth. This acoustic signal is similar in structure and is elicited in a
context consistent with a similarity in function as that produced by the special-
ized stridulation morphology on the claws, but the gastric mechanism has the
advantage of freeing the claws for display and aggressive actions.
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Figure 1. Acoustic recording of a ghost crab bubbling and stridulating. Oscillogram (top) shows consistently spaced pulses within each rasp of stridulation but not
during bubbling. Spectrogram (bottom) shows seven stridulations, or rasps, with most of the energy below 2 kHz and visible harmonics at high pulse rates. Rasp
duration, pulse number, and pulse rates are highly variable within an individual (S1–S7). The boxed region of a rasp is magnified on the right to show harmonics
with greatest energy.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191161

2

Crustaceans have evolved a diversity of mechanisms for
communicating with sound during courtship, agonistic inter-
actions, and predator deterrence [12–14]. Sound production is
not easily observed, particularly in aquatic species, but its
importance is signified by the evolution of specialized
sound-producing morphology in more than 30 genera of
Brachyura [4,15]. Most crab species have specialized, external
sound-producing structures on their exoskeleton that, when
rubbed together, generate a rasping sound known as stridula-
tion [15]. Stridulation is just one of multiple acoustic
mechanisms used by crabs, which also produce sounds by
percussion (drumming of body parts against each other or
the substrate), tremulation of carapace or appendages, and
bubbling of fluids from the buccal cavity [16–19]. Of these
various forms of sound production, only stridulation requires
special morphological structures: a plectrum (scraper) and a
pars stridens (file). In crabs, the pars stridens is typically a
series of tubercles that rubs against a ridge-like plectrum.
Their locations on the cheliped, walking legs, and cepha-
lothorax suggest that these acoustic structures are novel
morphologies rather than co-opted structures [4,15].

Most of what is known about crab acoustic communi-
cation stems from studies on the semi-terrestrial fiddler and
ghost crabs (Ocypodidae). Ghost crabs can be heard stridulat-
ing from inside their burrows [20] and seen stridulating with
their claws at the burrow entrance when intruders approach
[21,22]. Stridulation is used in territorial or other agonistic
interactions, whereas claw waving and dancing displays
with drumming are used by males during courtship
[17,20,21,23,24]. The importance of claw stridulation for
defence is indicated by the evolution of specialized claw stri-
dulation apparatus in both males and females of all but one
species of ghost crab [15]. In the Atlantic ghost crab, Ocypode
quadrata, the stridulation apparatus is located on the major
claw of both male and female crabs (figure 4d ). To stridulate,
crabs must flex their large claw so that the inner surface of the
propodus, where the pars stridens is located, rubs against the
plectrum on a basal segment (ischium) of the same cheliped
using a lateral movement [13] (figure 4d ). During close agon-
istic interactions, such as those that occur when defending
burrows or food, the chelae are usually held outstretched
either laterally or forward, presenting a visual display that
is sometimes accompanied by pouncing [25–27]. In the lab-
oratory, we observed that O. quadrata amends this
aggressive behaviour with a rasping sound, sometimes
accompanied by bubbling (electronic supplementary
material, video S1). Yet, the outstretched claws preclude stri-
dulation by the specialized claw apparatus. Here, we
characterize this obscure acoustic signal as well as determine
its origin and mechanism. Sound production and communi-
cation using the specialized stridulation apparatus on the
claw is already well documented in ghost crabs
[12,13,17,18,22–24,28], and it has been assumed that all stri-
dulation sounds are produced by the claws. We have
compelling observations, however, that there is another key
sound production mechanism, the gastric mill, which
appears to provide functional redundancy in ghost crab
communication.
2. Material and methods
(a) Animals and care
Live Atlantic ghost crabs Ocypode quadrata (Decapoda, Ocypodi-
dae) from the Florida panhandle were purchased from a supplier
(Gulf Specimen Marine Lab, FL, USA). A total of 30 juvenile and
adult crabs were used in this study (carapace width range 26.4–
46.6 mm; 16 male and 14 female). Measurements of crabs were
conducted at the University of California, Berkeley, and the
Scripps Institution of Oceanography at the University of Califor-
nia, San Diego (UCSD). Crabs were maintained in an
environmental room set at 28°C and a 12 h day, 12 h night
cycle. Humidifiers kept the room at a minimum of 80% humid-
ity. Crabs were held in individual plastic storage containers
(43 cm × 30 cm × 16.5 cm) with a thick layer of sand moistened
with seawater (35 ppt) and a water dish large enough for crabs
to soak in. Crabs were fed carrots, lettuce, and cat food three
times per week. Water was changed and sand was cleaned daily.

(b) Behaviour and acoustic analysis
Observations of sound production and associated behaviours
were made on 15 crabs, 5 trials each. Testing was performed in
an acoustic chamber at UC Berkeley, where individual crabs
were placed in a large glass aquarium (55 gal) with a layer of
sand on the bottom. A multi-directional microphone (6.3 Hz–
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Figure 2. Characteristics of gastric mill stridulation. A bout of stridulation (a) composed of four rasps, each of different duration (noted by width of the column).
Rasp frequency was calculated as the number of rasps divided by the duration of stridulation bout (11.4 Hz in this example). Magnification of an individual rasp
(b) revealing individual pulses. Each pulse represents a ridge of the comb-like structures on the lateral tooth rubbing against the medial tooth. Pulse rate was
calculated as the number of pulses divided by the duration of the rasp (481 Hz in this example).
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20 kHz, Type 4189, Bruel & Kjaer, Naerum, Denmark) connected
to a preamplifier (Type 2671, Bruel & Kjaer) and a digital audio
recorder (48 kHz sample rate, maximum 20 kHz frequency
response, PMD670, Marantz, NJ, USA) was placed in the
middle of the tank. Aggression was elicited by approaching the
crab closely with a rod, and each trial where rasping was
heard was noted along with the corresponding behaviour. In
addition, the following stimuli were presented to a subset of
five crabs to determine a range of stimuli that induces the rasping
sound: dead and live ghost crabs, plastic toy crab, and a remote
control robotic toy (Hexbug spider). This series of stimuli was
presented to individual crabs in random order, over the course
of 4 days (one stimulus per day).

Audio recordings of crabs producing rasping sounds were ana-
lysed for acoustic characteristics using Raven software (v. 1.5,
Cornell Lab of Ornithology, Ithaca, NY, USA). A bout of stridula-
tion was defined as a sequence of rasps. Individual rasps were
considered distinct when a pause of duration longer than the
pulse rate occurred between consecutive rasps or there was an
abrupt shift in pulse rate. Rasp rate was calculated as the
number of rasps in a sequence divided by the duration of the
sequence (from the start of the first rasp to the end of the last
rasp). Within an individual rasp, the number of pulses were
counted from the oscillogram and divided by the duration of the
rasp to determine pulse frequency. Ranges and means of pulse fre-
quency were determined from five individual rasps for each crab.

(c) Laser Doppler vibrometry
We used laser Doppler vibrometry on five crabs to locate the
sound source by measuring exoskeletal regions that may vibrate
from moving internal structures. The laser Doppler vibrometer
(LDV, PDV 100, Polytec Inc., Irvine, CA, USA) was set for a
peak velocity measurement range of ±20 mm s−1 with a low-
pass filter at 22 kHz and was focused on multiple regions of
the crab body. Small reflective stickers (less than 5 × 5 mm)
were placed on the following exoskeleton locations to focus the
laser: gastric, branchial, cardiac, and frontal regions of the cara-
pace, maxilliped, and merus of the cheliped (see figure 3 for
locations). Vibrations were digitized at a sampling rate of
48.1 kHz. An individual crab was strapped to the LDV platform
using Velcro and aggressive behaviour was induced by prodding
with a rod. Clear vibration impulses were viewed and analysed
for RMS amplitude using Raven software (v. 1.5, Cornell Lab
of Ornithology, Ithaca, NY, USA).

(d) Fluoroscopy
Attempts were made to visualize movement of the gastric mill
during aggressive behaviour using fluoroscopy. Five live crabs
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were imaged (Hologic 9900 OEC c-arm) in the Radiology unit at
Hillcrest Medical Center, UCSD. Oral contrast (dilute barium)
was administered to crabs through the buccal region using a syr-
inge. To permit transmission of X-rays, crabs were recorded in a
clear acrylic box (39 × 23 × 23 cm) placed on a table directly under
the X-ray c-arm. X-ray imaging was processed at a rate of 15
frames s−1. Aggressive behaviour of crabs was induced by either
approaching the crab with a net handle or adding a second live
crab to the box. Video frames were examined for gastric mill
activity using MicroDicom viewer (v. 2.8.3, Sofia, Bulgaria).

(e) Gastric mill morphology
The morphology of the gastric mill was examined to determine
correlation of structure with the observed acoustic character-
istics. Crabs (N = 18) were anaesthetized and euthanized by
placement in a −20°C freezer. The gastric mill was dissected,
cleaned of extra tissue and placed in 70% ethanol. The medial
and lateral teeth of the gastric mill were examined and
imaged with a digital camera (Leica DFC290, Buffalo Grove,
206 IL, USA) attached to a stereomicroscope (Leica M165 C,
Buffalo Grove, Illinois, USA). From the digital images, the
number of small comb-like teeth was counted on each gastric
mill. The widths of five comb-like teeth from each lateral
tooth were measured using microscope software. In addition,
one complete gastric mill was carefully cleaned and imaged
using Micro-Computed Tomography scanning (Micro-CT;
Skyscan 1076, Kontich, Belgium) at the Cartilage Tissue
Engineering Lab at UCSD. The gastric mill was scanned in
humidified air under high resolution (9 µm voxel size) and pro-
cessed for 3D rendering using CTVox software (Skyscan,
Kontich, Belgium).

( f ) Statistics
Acoustic data were tested for normality using the Shapiro–Wilk
test and homogeneity using Spearman tests. Rasp and pulse
characteristics were compared between sexes using two-tailed
t-tests and with carapace width using linear regression. Signal
RMS amplitudes were compared among exoskeleton regions
using the Kruskal–Wallis and pairwise comparisons were made
using pairwise Wilcoxon with BH correction. Statistics were
performed using SigmaPlot v. 12.5 and R (v. 3.0.2).
3. Results
(a) Acoustic characteristics
Rasping sounds produced by the hypothesized gastric mech-
anism were heard in 13 of the 15 crabs tested. Spectrograms
and oscillographs showed a series of homogeneous impulses,
or oscillations, that are characteristic of stridulation [29]
(figure 1). Specifically, stridulation consists of a series of
rasps, each of which contain evenly spaced pulses that rep-
resent individual tubercles of the plectrum striking the
ridge of the pars stridens.

A bout of stridulation ranged in duration from 0.48 to
0.95 s (0.68 ± 0.16, mean ± s.d.), with the number of rasps ran-
ging from 5 to 13 (N = 13; 7.8 ± 2.2) (figure 2). Rasp rate (11.6 ±
1.8 Hz) was correlated with crab carapace width (linear
regression: slope = 0.17, R2 = 0.37, N = 13, p = 0.03), revealing
that larger crabs had higher rasp rates. Within a rasp, pulses,
which reflect individual tubercles rubbing against a ridge,
ranged from 4 to 31 (6.7 ± 1.3), but the pulse rate (149 ±
32 Hz) did not correlate with crab size (linear regression:
slope = 0.62, R2 = 0.02, N = 13, p = 0.69). Female and male
crabs had similar rasp (t-test: t = 1.469, d.f. = 11, N = 5, 8, p =
0.17) and pulse rates (t-test: t =−0.405, d.f. = 11, N = 5, 8, p =
0.69). Variation within individuals was high for all stridulation
characteristics (figure 1), indicating signal modulation.
(b) Behavioural context
Rasping sounds by the hypothesized gastric mechanism were
produced by both males (N = 7) and females (N = 6), and were
emanated as part of a consistent behaviour during aggressive
interactions. Of the trials where rasps were produced (35
total), crabs held their claws outstretched in an aggressive pos-
ture during 100% of the trials (electronic supplementary
material, video S1). Rasping occurred with lunging attacks
in the majority (77%) of those trials. Attacks were character-
ized by the chelae being outstretched and thrusting forward
to grasp as the crab lunges forward. In all of the remaining
trials with rasps (23%), crabs held the chelae outstretched,
but without lunging. This aggressive behaviour with rasping
sounds was consistently observed when other crabs or objects
were placed within close range of the crab (less than 10 cm).
Three of five crabs responded aggressively with rasping to a
toy crab, hexbug, and live conspecific, and all crabs responded
to dead conspecifics frozen with their chelipeds spread later-
ally in a threat display. These aggressive behaviours are
consistent and characterized by spreading of the chelipeds,
lunging, and snapping the chelae, often with a rasping
sound that was sometimes accompanied by bubbling
(electronic supplementary material, video S1).
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Figure 4. Ghost crab gastric (a–c) and claw (d ) stridulation apparatus. (a) Microscope image showing lateral teeth in open position, apart from the medial tooth.
(b) Lateral tooth with 17 small comb-like teeth and arrow showing direction of movement along the medial tooth. (c) CT scan of intact gastric mill showing
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2.5 mm. (d ) Major claw showing the location of novel stridulation structures. To stridulate, crabs flex the cheliped to rub the pars stridens of the propodus
across the plectrum on the ischium. Enlarged images show the ridge-like plectrum (p) and the 14 tubercles of the pars stridens (ps). I, ishium; M, merus; C,
carpus; P, propodus.
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(c) Sound source
Laser Doppler vibrometry detected clear exoskeletal vibrations
from each target location, with vibration signal detected
primarily in the anterior part of the crab (figure 3). The
vibration signal varied in amplitude among locations, with
the greatest amplitude occurring in the gastric region of the
carapace (Kruskal–Wallis, χ2 = 17.9, d.f. = 5, p= 0.003, pairwise
Wilcoxon, p < 0.05). The vibration signal was also strong in the
buccal region. In a species of freshwater crab, the second and
third maxillipeds have small tubercles that produce stridulation
when rubbed together [30], but these appendages do not move
when O. quadrata produces pure stridulation (without bub-
bling) nor do they have structures that could function as a
plectrum or pars stridens. Regardless, we immobilized the
maxillipeds of one crab with a small drop of cyanoacrylate
glue, which did not prevent it from stridulating, thereby
confirming that these structures are not the sound source.

Fluoroscopy enabled visualization of gastric mill activity
in six instances of aggressive behaviour. In only one brief
sequence, however, did the crab remain stationary to provide
sufficient resolution for two full sequences of gastric move-
ment (electronic supplementary material, video S2).
Opening, closing, and grinding movements of the lateral
teeth were observed, each occurring within one frame
(0.067 s), which is within the same timescale of an individual
rasp (0.048 ± 0.010 s). Video resolution was insufficient to cal-
culate the precise duration of the lateral teeth rubbing against
the medial tooth. An estimated pulse frequency based on the
duration of one frame (0.067 s) and the range of individual
pulses detected in rasps (4–31) provides a range of 60–
463 Hz. This range is congruent with the range determined
from the acoustic recordings.
(d) Gastric mill morphology
The medial tooth is 5.49 ± 1.04 mm (mean ± s.d.) in length,
which is more than twice the length of the lateral teeth
(2.54 ± 0.51 mm). Each of the lateral teeth possesses four
large denticles and a series of small comb-like teeth (figure 4).
The number of comb-like teeth on each lateral tooth ranged
from 14 to 19 (17 ± 1) and was not correlated with crab size
(linear regression: slope = 0.038, R2 = 0.027, N = 18, p = 0.51).
The length (0.60 ± 0.24 mm) and width (0.14 ± 0.02 mm) of
the small comb-like teeth were also consistent. All of the
comb-like teeth, the denticles and the medial tooth are lined
with a brown pigment that is typical of hard mastication
structures.
4. Discussion
The ghost crab, O. quadrata, communicates with sounds that
are characteristic of stridulation, but not with their special-
ized claw apparatus. Laser Doppler vibrometry helped to
pinpoint the sound source to the foregut, where the gastric
mill is located. The gastric mill is the only viable internal
structure, with its intricate system of more than 40 ossicles
and 1 large medial tooth and paired lateral teeth that work
together to grind up food [31]. It is supported by a complex
musculature and controlled by the stomatogastric ganglion
(STG), allowing the lateral and medial teeth to move indepen-
dently, in multiple planes and at different frequencies [32].
Motions of the gastric mill that are needed to stridulate
stem from the pre-existing repertoire of movements used
during mastication. We propose that ghost crabs stridulate
by using the grinding motions of the medial tooth against
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the surface of the small comb-like structures on the lateral
teeth. The congruence of morphology and movement with
the observed acoustic characteristics further corroborate the
gastric mill as a previously unidentified mechanism of
sound production.

While some studies have successfully used neurophysiol-
ogy, electromyography, and even endoscopy to study the
control and movement of the gastric mill [32–35], they were
carried out on much larger Cancer crabs and lobsters that
were immobilized. Such methods are intractable for observ-
ing in vivo movement of the gastric mill in small, lunging
ghost crabs. With fluoroscopy, we were able to observe gastric
mill activity, including the opening, closing, and grinding
movements of the lateral teeth. Though the resolution was
insufficient to directly correlate with acoustic characteristics,
the time course for the observed movements was consistent
with the stridulation characteristics we recorded. Specifically,
each movement occurred within a single frame (0.067 s),
which corresponds to the average duration of an individual
rasp (0.048 ± 10 s). Ghost crabs have a relatively high gastric
mill rhythm, with a complete cycle occurring in as little as
0.2 s. By contrast, spontaneous chewing in the California
spiny lobster involves gastric mill cycles as long at 27 s [32].

In addition to sharing the standard characteristics of stri-
dulation, there are other similarities between claw
stridulation and the gastric stridulation observed in this
study. Both mechanisms show modulation, which results in
high variability of the acoustic signal within an individual
crab. During gastric stridulation, crabs can modulate the dur-
ation of the grinding stroke and thus the number of comb-like
structures that the medial tooth rubs against. The number of
pulses observed in the spectrograms of an individual rasp is
therefore highly variable, ranging from 4 to 31, but always
fewer than the total number of comb-like structures on the
two lateral teeth. Similarly, in the ghost crab Ocypode joussea-
muei, the pars stridens on the claw comprises 18 tubercles,
but individual rasps contain only one to six pulses [22].
Both forms of stridulation have dominant frequencies that
are generally low, below 2–3 kHz [18,22,28]. The claw stridu-
lation apparatus varies among species of ghost crabs,
resulting in species-specific acoustic signals [22]. Variation
in gastric mill morphology may likewise produce acoustic
signals that carry species identification. The primary dis-
tinguishing characteristic between the two forms of
stridulation is that the pulse frequency is much higher
when using the gastric apparatus (149 ± 32 Hz) than the
claw apparatus (approximately 30–40 Hz) [18,22], at least
for O. quadrata in this first description of gastric stridulation

Gastric stridulation appears to be of an aggressive or
defensive nature and is used by juvenile and mature crabs
of both sexes during close agonistic or otherwise threatening
interactions. This acoustic signal is within the audible
frequency range of common predators, such as raccoons
(0.14–37 kHz) [36] and birds (1–5 kHz) [37], as well as con-
specifics, which respond to airborne sounds of the same
frequency, 3 kHz [18]. The observed behaviours of ghost
crabs when stridulating with the gastric mill are consistent
with field observations of burrow and food defence. Rather
than constructing new burrows, O. quadrata prefers to
annex those of other crabs [38], such that agonistic encounters
are frequent. Gastric stridulation may have originated from
physiological changes associated with aggression. A variety
of neurotransmitters and hormones are known to affect the
rhythmic output of the STG [39]. Seratonin, for instance, con-
trols and modulates the STG [40,41], and is also associated
with aggression in crustaceans [42,43]. Elevated levels of ser-
otonin during agonistic interactions could stimulate action of
the gastric mill in the absence of digestion processes.

A key advantage of using gastric stridulation over the
claw apparatus is that it provides signal while freeing up
the chelae for postural display and attack readiness. Gener-
ally, the acoustic characteristics of gastric stridulation are
variable (e.g. pulse number, pulse frequency), potentially
modulated by aggression levels. Rasp rate, however, was cor-
related with body mass and may thus provide a means of
assessment during aggressive interactions. Ghost crabs may
convey information about size or intent during aggressive
gastric stridulation in a similar way that canines use growling
as an aggressive warning when protecting food or territory
[44,45] or red deer use roaring for assessment during contests
[46]. The utility of the gastric mill for acoustic communication
poses interesting questions about the evolution of the claw
stridulation apparatus, considered to be a morphological
novelty in some crabs.

The co-option of structures for sound production is
common among animal lineages because sound is a bypro-
duct of movement [47]. Most familiar are vertebrate
vocalizations co-opted from respiratory structures that
vibrate during breathing, but the vast majority of acoustic sig-
nals are co-opted from moving external structures. These
mechanisms are remarkably diverse and include, for
example, castanets on the forewings of moths that percuss
during flight [48], anal oars of caterpillars that scrape and
stridulate during crawling [49], thickened feather shafts of
manakins that resonate after wing contact [50], and the
specialized claw of snapping shrimp that produces cavitation
during closure [51]. There are many other examples to
demonstrate that evolutionary co-option is a common
origin of novel signals. This newly described internal gastric
stridulation by ghost crabs presents another novel mechan-
ism to probe the evolution and diversification of acoustic
communication systems.

While gastric stridulation appears to be unique, food
grinding structures are inherent sound producers. Even
the grinding of gizzards can be heard when chickens are
feeding [52]. Considering the repeated convergence of
sound-producing mechanisms in lineages, it is intriguing
that similar mastication structures have not been co-opted
for acoustic communication in other organisms, or at least
not yet discovered. The only other known examples are fish
that have co-opted their pharyngeal teeth for acoustic com-
munication by rubbing the upper and lower teeth together
[3]. Gastric mills are omnipresent in crustaceans and most
other arthropods, but similar food grinding machinery
exists in the stomachs of animals as diverse as birds [53],
molluscs [54], worms [55], and dinosaurs [56]. We therefore
pose the possibility that this sound production mechanism
lays undetected in other animals as well, as it has only now
been described even in a well-studied crab.

It is unusual that O. quadrata evolved specialized stridula-
tion morphology on the claws and co-opted the gastric mill
when both produce stridulation sounds with apparently
similar defensive function. While it is not uncommon for ani-
mals to use multiple modes of acoustic communication, they
are typically partitioned into mating and defence functions.
For example, hummingbirds of both sexes use vocalizations
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for a variety of purposes, but males also co-opted wings and
tails to produce sounds as part of their courtship display
[5,11]. Fiddler and ghost crabs use stridulation via the claws
for warning signals, whereas males use either claw stridula-
tion or percussion (drumming) for courtship, the latter
of which does not require any specialized morphology.
In O. quadrata, burrow defence is critical for mating and
general survival, yielding high selection pressure on sound-
producing mechanisms in aggressive interactions such
that redundant acoustic systems can evolve. Claw stridula-
tion may be most effective at a distance, whereas gastric
stridulation is effective during close contact because it
permits animals to continue conveying size and aggression
information acoustically while their weapons are in use.

Sequential, functionally redundant signalling is known to
occur in the visual courtship displays of one group of animals
(fiddler crabs) [57], but we know of no examples in acoustic
communication systems. Redundancy based on novel and
co-opted morphologies that are not under sexual selection
is to our knowledge rare and may reflect a time point in evol-
utionary transition or diversification. The evolution of novel
signals allows for the expansion of signalling space and
confers advantages across many contexts, such as defence
and social interactions. The diverse brachyura may, therefore,
hold unique insights into the evolutionary processes of
co-option and emergence of novelties.
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