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Abstract

Background: Patent ductus arteriosus (PDA), the most commonly diagnosed cardiovascular condition in preterm
infants, is associated with increased mortality and harmful long-term outcomes (chronic lung disease,
neurodevelopmental delay). Although pharmacologic and/or interventional treatments to close PDA likely benefit
some infants, widespread routine treatment of all preterm infants with PDA may not improve outcomes. Most PDAs
close spontaneously by 44-weeks postmenstrual age; treatment is increasingly controversial, varying markedly
between institutions and providers. Because treatment detriments may outweigh benefits, especially in infants
destined for early, spontaneous PDA closure, the relevant unanswered clinical question is not whether to treat all
preterm infants with PDA, but whom to treat (and when). Clinicians cannot currently predict in the first month
which infants are at highest risk for persistent PDA, nor which combination of clinical risk factors, echocardiographic
measurements, and biomarkers best predict PDA-associated harm.

Methods: Prospective cohort of untreated infants with PDA (n=450) will be used to predict spontaneous ductal
closure timing. Clinical measures, serum (brain natriuretic peptide, N-terminal pro-brain natriuretic peptide) and
urine (neutrophil gelatinase-associated lipocalin, heart-type fatty acid-binding protein) biomarkers, and
echocardiographic variables collected during each of first 4 postnatal weeks will be analyzed to identify those
associated with long-term impairment. Myocardial deformation imaging and tissue Doppler imaging, innovative
echocardiographic techniques, will facilitate quantitative evaluation of myocardial performance. Aim1 will estimate
probability of spontaneous PDA closure and predict timing of ductal closure using echocardiographic, biomarker,
and clinical predictors. Aim2 will specify which echocardiographic predictors and biomarkers are associated with
mortality and respiratory illness severity at 36-weeks postmenstrual age. Aim3 will identify which echocardiographic
predictors and biomarkers are associated with 22 to 26-month neurodevelopmental delay. Models will be validated
in a separate cohort of infants (n=225) enrolled subsequent to primary study cohort.
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Discussion: The current study will make significant contributions to scientific knowledge and effective PDA
management. Study results will reduce unnecessary and harmful overtreatment of infants with a high probability of
early spontaneous PDA closure and facilitate development of outcomes-focused trials to examine effectiveness of
PDA closure in “high-risk” infants most likely to receive benefit.

Trial registration: ClinicalTrials.gov NCT03782610. Registered 20 December 2018.

Keywords: patent ductus arteriosus, preterm infant, echocardiogram, prospective cohort, prediction modeling

Background
Patent ductus arteriosus (PDA), the most commonly
diagnosed cardiovascular condition in preterm infants, is
associated with an eight-fold increase in mortality [1]
and multiple, harmful longer-term outcomes including
bronchopulmonary dysplasia (BPD) [2–4], intestinal
injury [5, 6], brain damage [3, 7–9], cerebral volume loss
[10, 11], and congestive heart failure [12, 13]. PDA
results in an enduring blood flow in preterm infants
between the aorta and the pulmonary artery. The ductus,
an essential component of fetal circulation, normally
closes shortly after birth in term infants, but remains
open (patent) at one-month of age in approximately 70%
of <30-weeks gestation preterm infants [12, 14]. PDA-as-
sociated symptoms including mesenteric, renal, and
cerebral hypoperfusion and pulmonary edema secondary
to pulmonary overcirculation develop in 60% of those
with persistent PDA [11, 12, 15].
Despite association with worsened outcomes in

preterm infants, PDA closure has become increasingly
controversial among cardiologists and neonatologists
[16], with treatment strategies varying markedly between
institutions [17–19] and individual providers [20].
Within the first postnatal month, the majority of neo-
natal providers still routinely administer nonsteroidal
anti-inflammatory drugs, or less commonly acetamino-
phen, to at least some infants with PDA with the expect-
ation of increased early ductal closure [18, 20]. Because
the majority of PDAs in preterm infants close spontan-
eously by 44-weeks postmenstrual age (PMA) when left
untreated, the frequencies of both early medication
treatment and surgical or catheter-based closure ligation
for persistent PDA have declined over the last decade
[17–20]. Given a lack of validated evidence to identify
which subset of preterm infants is most likely to benefit
from PDA closure [3], the decision to treat PDA remains
subjective. Randomized clinical trials [3, 21, 22] and
innovative observational studies [18, 23] have not dem-
onstrated net improvement in death, BPD, or neurode-
velopmental impairment following routine medical or
interventional treatments (surgical ligation, catheter-
based closure) of all preterm infants with PDA. How-
ever, the effectiveness of more selective PDA treatment
closure strategies remains unclear [3, 12, 13].

Nonsteroidal anti-inflammatory drug treatment is
linked to nephrotoxicity [24], acute renal failure [25],
decreased cerebral and intestinal blood flow [26, 27],
intestinal perforation when co-administered with gluco-
corticoids [28–30], and failure to close the PDA in one-
third of infants [31], and costs between $1458 to $1875
per three-dose treatment course [32, 33]. Acetamino-
phen, a less studied medical option, is associated with
neurologic impairment [34, 35]. Surgical ligation via
thoracotomy requires exposure to general anesthesia
[36, 37]. Vocal-cord paralysis and post-operative
hemodynamic instability are also potential risks [38–40].
PDA closure via heart catheterization is potentially less-
invasive [41–44]; however, it remains understudied and
carries potential complications including arterial injury
[41–43]. Since all forms of PDA closure are expensive
and associated with adverse effects [38, 41–43, 45, 46],
treatment harms may outweigh benefits, especially for
the majority of infants destined for early, spontaneous
PDA closure.
Still, treatment of some infants with symptomatic PDA

is necessary [13]. A subset of preterm infants with
persistent PDA continues to display PDA-associated
symptoms, including volume overloading of their imma-
ture heart and lungs, and worsening respiratory failure
[3, 13, 47]. Chronic PDA exposure is associated with
congestive heart failure [13, 48, 49] and death [1, 3, 50].
The American Academy of Pediatrics and experts on

PDA in preterm infants agree that future outcomes-
based randomized clinical trials are needed to determine
the effectiveness of selective pharmacological and/or
interventional treatments for “high-risk” infants with
PDA [3, 12, 13, 51]. The goal is to eventually deliver
prompt, personalized PDA treatment to only those in-
fants most likely to benefit [3, 52, 53], thereby reducing
the side-effects and costs associated with unnecessary
and potentially harmful PDA overtreatment. Unfortu-
nately, no validated prediction models currently exist to
permit early identification of those infants with increased
probabilities of persistent PDA and PDA-associated
harm. As a first step in trial design, the American
Academy of Pediatrics has called for the development of
comprehensive, echocardiographic- and biomarker-
based PDA risk-stratification tools [3].
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The objectives of this study are to use a prospective
cohort of untreated preterm infants with PDA to accur-
ately predict the timing of spontaneous ductal closure
(and conversely, long-term ductal patency) in preterm
infants with PDA, and the identification of measurable
echocardiographic predictors and biomarkers that are
present in the first postnatal month that are associ-
ated with mortality, chronic lung disease (CLD), and
long-term neurological impairment. These results will
ultimately improve neonatal patient care by informing
the design of outcomes-focused randomized clinical
trials that will examine the effectiveness and timing
of PDA closure in those “high-risk” infants most
likely to receive benefit [41].

Methods
Research design overview
A number of clinical [54], echocardiographic [4, 55–57],
and biomarker [58] variables have known associations
with an increased likelihood of either spontaneous PDA
closure or PDA-associated morbidity [3]. However, no
one has incorporated all reported predictors to develop
comprehensive, clinically-focused PDA prediction models.
In addition, most prior investigations have been limited by
retrospective study designs [4], with echocardiographic
surveillance at the clinician’s discretion rather than uni-
form echocardiogram collection at pre-specified time
points. The few prospective studies were limited by expos-
ure measurements at single, early time points [57, 58],
short durations of PDA exposure [57], and/or small sam-
ple sizes [57, 58]. Historically, most PDA investigations
have been conducted at sites favoring early, aggressive
PDA treatment, thus preventing an unbiased examination
of the relationships between early PDA indicators, spon-
taneous closure, and outcomes following persistent PDA
[4]. The proposed research is innovative because we will
prospectively collect sequential echocardiographic
measures, serum and urine biomarkers, and important
clinical risk factors within a cohort of untreated in-
fants with PDA. We will utilize that data to develop
robust models to evaluate their combined ability to
predict both spontaneous PDA closure timing, and
PDA-associated mortality, respiratory, and long-term
neurodevelopmental outcomes. This study uses a pro-
spective cohort and a rigorously designed observa-
tional study to answer proposed questions that
cannot be answered with a randomized trial, but that
are crucial to future PDA trial development.

Study subjects
We will recruit a cohort of <30-weeks gestation preterm
infants consecutively enrolled using the following inclu-
sion and exclusion criteria:

Inclusion criteria

1) Infants born between 23-weeks + 0 days (230/7

weeks) and 296/7 weeks of gestation, inclusive
2) Admitted to a study network neonatal intensive

care unit (NICU) within 72-hours of birth
3) PDA noted on initial screening echocardiogram

at <72 postnatal hours

Exclusion criteria

1) Life-threatening congenital abnormalities including
congenital heart disease (other than PDA or small
atrial septal defects/patent foramen ovale/muscular
ventriculoseptal defects)

2) Infants whose parents have chosen to allow natural
death (do not resuscitate order)

Recruitment
Patient screening for eligibility and recruitment
Cohort entry will occur within 72 hours after birth, a
time of PDA patency in >95% of infants born at <30-
weeks gestational age [54]. The research coordinator will
evaluate new admissions; written informed consent will
be obtained by a study nurse or co-investigator. In-
patient recruitment for the primary study cohort (n=450)
is ongoing (start date 04/01/19; first patient enrolled
(04/02/19) with a goal of 2 years. Because prediction
models should be validated in a population separate
from that in which they were created, inpatient recruit-
ment of a validation cohort (n=225) will begin immedi-
ately following primary study cohort enrollment
completion. Infants will remain in their respective co-
hort until follow-up at 22 to 26-months corrected age.

Recruitment sites
Recruitment will take place within the Nationwide Chil-
dren’s Hospital (NCH) Neonatal Network, one of the
largest neonatal intensive care networks in the United
States. The NCH Neonatal Network is comprised of 9
hospitals in central Ohio within a 20-minute drive from
the NCH research campus, has 268 neonatal beds, and
had >420 admissions of infants born at <30-weeks gesta-
tion in 2016. Patient demographics, including sex and
race/ethnicity, are largely representative of the US
population. All sites share clinical-practice guidelines,
are staffed by NCH neonatologists, and electronically
transmit echocardiographic images to NCH for cardiolo-
gist interpretation.
The NCH Neonatal Network is committed to a guide-

line-driven approach for the care of infants born at <30-
weeks gestation [59]. The NCH Neonatal Network de-
signed and implemented a regional consensus guideline
for PDA management in 2012 (Slaughter and Backes,
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unpublished). Local guidelines mandate that no pharma-
cologic therapy be used to treat PDA. Interventions to
close the PDA (surgical or catheter-based closure) may
only be considered after 30 postnatal days as a “last re-
sort” for patients with severe respiratory illness, signs of
PDA-associated systemic hypoperfusion (e.g., metabolic
acidosis, hypotension, oliguria) and echocardiographic
findings of >1.5 mm diameter PDA with increased left
cardiac volume load, maximum ductal velocity >2 m/s,
or decreased, absent, or reversed end-diastolic abdom-
inal aortic flow. The PDA consensus guidelines and min-
imally interventional PDA treatment strategies provide a
unique opportunity to examine determinants of spon-
taneous PDA closure among extremely preterm infants
who did not receive therapy [20]. Consistent with the
switch to guidelines, from 2013-2016 NCH did not per-
form any surgical PDA ligations or catheter-based clo-
sures prior to 30 days postnatal. Since 2012, only 2.6% of
infants with PDA have received catheter-based closure,
at a median of 38.1 weeks PMA [25th-75th percentiles:
35.4 - 41.4 weeks].

Data Collection
Data entry and monitoring
Patient demographic, clinical, and sample data will be
collected in REDCap (Research Electronic Database Cap-
ture), a robust, secure web-based electronic capture tool
that allows for real-time data entry with embedded logic
and range checks, skip patterns, and missing data alerts
to ensure quality control, while minimizing the amount
of missing data, and assigned a study ID number [60].
Study data collection forms were designed and imple-
mented with the support of The Ohio State University
Center for Clinical and Translational Science, and are
stored behind the NCH firewall. The study research
coordinator will enter data for each enrolled preterm
infant, including clinical, echocardiographic, and bio-
marker data. Study statisticians will monitor data for
completeness and accuracy.

Clinical signs
The clinical cardiac examination will be performed con-
sistent with standards outlined by the American Heart
Association and American College of Cardiology [61].
To ensure competency and reliability, training in per-
formance and documentation of the cardiac examination
will be ensured prior to study commencement by a
pediatric cardiologist who will assess inter- and intra-
rater reliability. To ensure standardization of the cardiac
examination, the pediatric cardiologist will also perform
the standardized exam on 10-20% of enrolled infants on
the same day as the research nurse exam and provide
feedback or correction as needed. All examiners will be
masked to echocardiographic and biomarker results.

Echocardiographic measures
All echocardiograms will be performed by dedicated and
trained research sonographers, including the baseline
echocardiogram <72 hours postnatal to determine study
eligibility. Consistent with American Heart Association
and American College of Cardiology standards [62], the
sonographers will have formal training and be certified in
pediatric echocardiography. Infants with evidence of a
PDA on the baseline echocardiogram will undergo weekly
echocardiograms for the first 4 weeks, then biweekly echo-
cardiograms until PDA closure or NICU discharge; an
echocardiogram will also be completed at 36-weeks PMA
per study protocol. If the baseline echocardiogram shows
no evidence of a PDA, infants will continue to be followed
prospectively, but without additional echocardiographic
studies. If discharged home with an open ductus, infants
will follow-up with the pediatric cardiologist (per NCH
Neonatal Network standard of care) in the outpatient neo-
natal-cardiology clinic. All echocardiograms will be per-
formed with a dedicated research ultrasound (CX50;
Philips, Amsterdam, The Netherlands). Images will be ob-
tained with the narrowest sector angle to maximize frame
rate (goal frame rate >100 frames/s) for optimal image
quality [63, 64]. Images will be saved and interpreted by a
single pediatric cardiologist who will be masked to patient
and clinical data. All recordings will be measured in tripli-
cate and averaged [65]. Consistent with previous work
[65–70], images will be analyzed using a dedicated work-
station (Tomtec USA, Chicago, IL, USA) [71].

Risk measurement
During the first postnatal month, variables collected will
allow for adequate control of confounding due to sever-
ity of illness, as the independent value of echocardio-
graphic measurements and laboratory biomarkers in
predicting important outcomes is established (Aims 2
and 3). Early severity of illness may be both a predictor
of the duration of PDA patency and a modifier of the ef-
fect of echocardiographic and biomarker-derived PDA
measurements on PDA closure (Aim 1).

Clinical measures
Predictor variable data collection within the first postnatal
month
In addition to echocardiograms and laboratory-measured
biomarkers, we will collect multiple clinical variables dur-
ing the perinatal and neonatal period (postnatal days 0-28)
to facilitate predicting the time of spontaneous PDA clos-
ure (Aim 1), and to control for confounding within our
models for mortality and 36-weeks PMA respiratory out-
comes (Aim 2) and 22 to 26-months neurodevelopmental
outcomes (Aim 3). The following data will be collected: 1)
patient demographics; 2) antenatal risk factors; 3) early
postnatal measures of illness severity; 4) diagnoses that
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present in the first postnatal month (neonatal period); 5)
medications; and 6) physiologic measures (Table 1). An
overview of the study timeline for each patient is shown in
Table 2.

Clinical markers associated with mortality and
neurodevelopmental impairment
We will include variables routinely collected in preterm
infants within the first 12-hours postnatal that comprise
the Score for Neonatal Acute Physiology with Perinatal
Extension-II (birth weight, 5-minute Apgar score, small
[<10th percentile] for gestational age, lowest mean blood
pressure, lowest temperature, pO2/FIO2, lowest serum
pH, presence of multiple seizures, and low urine output)
[72]. This score is a validated predictor [75] of mortality
[72, 76], CLD of prematurity [77], and long-term neuro-
developmental impairment risk [78, 79]. We will also col-
lect Eunice Kennedy Shriver National Institute of Child
Health and Human Development (NICHD) Neonatal Re-
search Network (NRN) Extremely Preterm Outcomes Pre-
diction Tool variables [73]. These variables (e.g., antenatal
corticosteroid exposure, female sex, singleton birth, and
higher birth weight) are associated with a reduced risk of
death and/or neurodevelopmental impairment [74].

Clinical markers associated with 36-weeks PMA respiratory
status
To determine which early echocardiographic parameters
and biomarkers in preterm infants with PDA are
independently predictive of respiratory illness severity at
36-weeks PMA (Aim 2), early risk variables from the
best clinical prediction model for bronchopulmonary
dysplasia (BPD) severity (NICHD NRN Neonatal BPD
Outcome Estimator) will be included [80, 81]. Preterm
birth-associated CLD in infants at 36-weeks PMA is sec-
ondary to BPD, a consequence of preterm lung exposure
to the extra-uterine environment. Inflammation from al-
veolar, systemic, and vascular causes including PDA

contribute to disease severity [82–85]. These variables
include (but are not limited to): 1) gestational age; 2)
birth weight; 3) race/ethnicity; 4) sex; 5) respiratory
support (none, nasal cannula, continuous positive airway
pressure, conventional ventilation, or high-frequency ven-
tilation); and 6) fraction of inspired oxygen (FiO2). Pulse
oximetry continually measures peripheral capillary oxygen
saturation throughout NICU hospitalization as standard
of care. We will incorporate the daily oxygen saturation
index (mean airway pressure × FiO2 × 100 ÷ peripheral
capillary oxygen saturation), which has been validated as a
non-invasive alternative to oxygenation index for assessing
neonatal hypoxic respiratory failure severity [86].

Gestational age as a predictor of spontaneous PDA closure
We retrospectively evaluated (10/2012–7/2017) local in-
fants with echocardiography-diagnosed PDA who were
born 23 to 30-weeks gestation and who had at least 2
echocardiograms to allow PDA status verification (open/
closed) over time (n=244) (Fig. 1). We evaluated gesta-
tional age, birth weight, sex, race, and 5-minute Apgar
scores using a multivariable Cox regression. Gestational
age was a significant predictor of ductus closure (Hazard
ratio: 1.38, 95% confidence interval: 1.20, 1.59). Given
our culture of PDA non-treatment in central Ohio rela-
tive to most US institutions, the proportion of patients
receiving ≥2 echocardiograms was small. Nevertheless,
our finding of a higher prevalence of ductal patency in
lower gestational age infants, is strikingly similar to
findings reported in a larger cohort (HR: 1.28, 95% con-
fidence interval: 1.20, 1.36) [54].

Effect modification by indomethacin for intraventricular
hemorrhage
A 3-day prophylactic course of indomethacin may be
initiated on the date of birth (postnatal days 0-2) to re-
duce the frequency of intraventricular hemorrhage. Since
indomethacin prophylaxis may contribute to PDA

Table 1 Clinical predictor variables

Patient
Demographics

Antenatal Risk
Factors

Early Postnatal
Illness Severity

Diagnoses in Early
Postnatal Perioda

Medications (by
date, doseb, route)

Physiologic Measures
(date)

Birth GA
Birth weight
z-score for GA
Sex
Race/Ethnicity
Transported from
outside birth
hospital
Singleton or
multiple gestation
Social status
(BSMSS)

Maternal
corticosteroid
administration
Maternal
magnesium
sulfate
administration
Pre-eclampsia
Clinical and
histological
chorioamnionitis

Apgar scores
Score for Neonatal
Acute Physiology
(SNAPPE-II)
variables [72]
Variables from
NRN Extremely
Preterm
Outcomes
Prediction Tool
[73, 74]

IVH Grade 3 or 4 (only
included in models
after routine
ultrasound at 7
postnatal days)
Necrotizing
enterocolitis
Pneumothorax
Spontaneous
intestinal perforation
Seizure

Indomethacin
Caffeine
Diuretics
Inhaled
corticosteroids
Surfactant
treatment
Vitamin A
Total daily fluid
intakeb

Daily respiratory
support modality
Mean daily FiO2

Oxygen saturation
index
Mean arterial blood
pressureb

Daily urine outputb

a Will only include diagnoses in models that were present prior to model specific week during postnatal weeks 1 to 4
b Will weight adjust by kg
GA gestational age, BSMSS Barratt Simplified Measure of Social Status, IVH intraventricular hemorrhage
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closure in some infants by modifying the effect of deter-
mined predictors on PDA-associated outcomes [87], we
will evaluate for an interaction when creating prediction
models. Persistent ductal patency following prophylaxis
may also be a marker of delayed PDA closure. Similar to
PDA treatment, the frequency of indomethacin prophy-
laxis varies between institutions and individual providers
[20, 88]. Our retrospective data (10/2012–7/2017)

showed that a small minority (15.7%) of clinicians within
the NCH Neonatal Network treat infants born ≤29-
weeks gestation with indomethacin prophylaxis.

Prospective collection of PDA indicators in untreated infants
Traditional indicators
The clinical signs associated with PDA shunting depend
on shunt magnitude and the compensatory ability of the

Table 2 Patient study timeline

Study Period

<72 h Week 1 Week 2 Week 3 Week 4 Bi-weekly 36-weeks PMA Every 2-3 months f 22 to 26-months CA

Enrollment

Eligibility screen
(Echocardiogram)

X

Informed consent X

Data collection

Biomarkers X X X X

Echocardiography a X X X X X d

Assessments

Respiratory support X

Echocardiography a X e X X

Bayley III b X

Catheter-based PDA Closure c X
a traditional, myocardial deformation imaging, tissue Doppler imaging
b Bayley Scales of Infant and Toddler Development, 3rd Edition (Gross Motor Development Scaled Standard Score postnatal age, Fine Motor Development Scaled
Standard Score postnatal age, Cognitive Composite Score, Language Composite Score)
c patients with persistent PDA at 22 to 26-months corrected age (CA)
d obtained bi-weekly until 36-weeks postmenstrual age (PMA) if PDA remains open
e All infants receive echocardiogram at 36 weeks irrespective of previous PDA status
f until documented ductal closure per local standard of care
Note: If PDA closed, additional weekly echocardiograms not obtained
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Analysis Time (days)

28 & 29 weekers 23 & 24 weekers
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Kaplan-Meier Survival Estimates

Fig. 1 Inpatient Ductal Patency by Gestation over Time. 50% patent ductus arteriosus (PDA) prevalence in preterm infants (n=244): 23-24 weeks
(113 d); 25-27 weeks (82 d); 28-29 weeks (30 d). Log-rank test, p=0.0003
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immature myocardium to handle the additional volume
load [89]. Historically, some NICUs relied solely on
clinical examination for PDA diagnosis [90]. While more
recently, investigators have challenged the isolated use
of clinical signs [90–99], no studies have prospectively
evaluated the accuracy and reliability of clinical examin-
ation in a large, prospective cohort of <30-weeks gesta-
tion infants, or evaluated those findings alongside
echocardiographic or biomarker data.
Traditional echocardiography is the gold-standard for

PDA diagnosis and provides assessment of ductal diam-
eter, shunting pattern, and volume [100]. Echocardio-
graphic indices can be used to define the hemodynamic
significance of PDA. However, because the relative
benefits and limitations of PDA echocardiographic
indexes remain poorly characterized [100], we will
comprehensively examine a multitude of potential pa-
rameters. All traditional echocardiograms will assess
standard M-mode, two-dimensional, pulsed-wave
Doppler, continuous-wave Doppler, and color Doppler
evaluations (PDA size [46, 52, 101–104], shunt pattern,
shunt volume [55, 100, 105]).

Advanced indicators

Tissue Doppler imaging Tissue Doppler imaging can
provide quantitative measures of the velocity of myocar-
dial contraction and relaxation throughout the cardiac
cycle as a reflection of cardiac performance. Because
both systolic and diastolic information are contained in
a single tracing, simultaneous isovolemic contraction
and relaxation time intervals can be obtained. Tissue
Doppler imaging can also be used to calculate a myocar-
dial performance index that reflects both systolic and
diastolic global function [106]. In older patients, quanti-
tative assessment of cardiac function with tissue Doppler
imaging is a more sensitive indicator of myocardial dys-
function and may provide earlier detection prior to the
more qualitative changes observable with traditional
echocardiography [107]. While tissue Doppler imaging
measurements have been published for both children
[108] and fetuses [109], minimal data are available on
infants with pathology. Our group was one of the first to
show that both collection and interpretation of tissue
Doppler imaging are feasible in extremely preterm
infants [65].
Tissue Doppler images will be obtained from the ap-

ical 4-chamber view with the point of interest along the
annulus at the following 3 segments: right ventricle free
wall; interventricular septum; and left ventricle free wall.
Tissue Doppler imaging tracings will demonstrate a
systolic wave, early and late diastolic waves for each
segment, and simultaneous isovolemic contraction and
relaxation time intervals.

Myocardial deformation imaging Myocardial deform-
ation imaging assesses strain (change in myocardium
length relative to its resting length, expressed as a
percentage) and strain rate (deformation over time)
[110–112]. In contrast with traditional echo, but similar
to tissue Doppler imaging, myocardial deformation
imaging quantitatively assesses myocardial function
[63, 113–118]. However, unlike tissue Doppler im-
aging, myocardial deformation imaging is not influ-
enced by loading conditions (preload or afterload),
which may be highly variable in premature infants,
particularly those requiring intensive care [65, 119].
Right and left ventricle myocardial deformation im-

aging strain will be assessed using two-dimensional, ap-
ical 4-chamber images [110, 113]. The myocardial walls
will be divided into 6 segments. Strain curves will be
traced from the basal lateral atrioventricular valve
annulus to apex to basal interventricular septum for
both right and left ventricles. Strain curves will only be
accepted after visual inspection of tracing with manual
adjustment of range of interest. If tracing is not adequate
in all 6 segments per visual inspection and the software,
the image will not be used [63].

Biomarkers If either the clinical exam or biomarkers
can replace the more costly and labor-intensive echocar-
diographic techniques at specific postnatal time-points
in some predictive models (each echocardiogram is >10-
times the cost of the proposed biomarker tests), health
care costs would be greatly reduced [120]. Interest in
biomarkers to diagnose, stage, and predict hemodynamic
and cardiovascular disease in adults and children con-
tinues to increase [100, 121–123]. However, no studies
have determined, in a large prospective cohort of
extremely low birth weight infants, the accuracy and re-
liability of serum and urinary biomarkers to predict PDA
duration and associated outcomes, nor have those
findings been evaluated alongside clinical and echocar-
diographic data. The selected biomarkers appear un-
influenced by gestational age, birth weight, and antenatal
and postnatal events, making them ideal for evaluating
PDA-related myocardial damage and hemodynamic
status in preterm infants [120, 124–136].
Weekly blood and urine samples for biomarker ana-

lysis will be collected within one calendar day of the
echocardiogram for the first 4 weeks postnatal. Blood
draws (0.5 mL) will be collected concurrently with
weekly nutrition labs that are obtained on all premature
infants per local standard of care. Blood samples will be
capillary (always concomitant with scheduled clinical
blood draws) or arterial if a pre-existing indwelling line
is present. Cotton balls will be put in the diapers of en-
rolled infants to collect urine. De-identified and labeled
blood and urine samples will be transported on ice to
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the Center for Perinatal Research at NCH where samples
will be centrifuged, and frozen in a dedicated freezer at
−70°C for batch analysis. We have locally validated the
serum and urine biomarkers for our specific patient
population.

Serum biomarkers To avoid excessive blood collection
in preterm infants two serum natriuretic peptide bio-
markers were selected a priori: beta-natriuretic peptide
and N-terminal pro-B-type natriuretic peptide, which
have been shown to predict likelihood of spontaneous
PDA closure, respiratory outcomes, mortality, and
neurodevelopment [124–129, 131, 137–140]. Both are
cardiac hormones that rapidly respond to volume and
pressure overload and are elevated in patients with left
and right heart failure. Concentrations of both peptides
directly correlate with severity of ductal shunting
[133, 134]; levels decrease with successful ductal clos-
ure [120, 125, 131, 141]. Brain natriuretic peptide is
significantly related to shunt magnitude at the time of
measurement, and has good discriminating power for
detecting moderate-to-large PDA shunts [125].

Urinary biomarkers Ductal shunting may decrease
renal and mesenteric bed perfusion [40, 142, 143]. We
will use urine (non-invasive, minimal processing) to
evaluate two exploratory biomarkers of end-organ
ischemia. Neutrophil gelatinase-associated lipocalin is a
well-described diagnostic marker of acute renal failure
[144–147] with high sensitivity and specificity [148–152].
Heart-type fatty acid-binding protein is an intracellular
lipid-binding protein, and expression is stimulated by lipid
metabolism alterations, including ischemia. Increased
heart-type fatty acid-binding protein levels suggest mesen-
teric hypoperfusion [153]. Small pilot studies have shown
that urinary measurement of both peptides is feasible in
preterm infants and appear promising as tools for quanti-
fying the effect of a PDA on systemic perfusion [15, 154].

Outcome measures
Aim 1
To estimate the probability of spontaneous PDA closure
and predict the timing of ductal closure using echocar-
diographic, biomarker, and clinical predictors obtained
within the first postnatal month.
Until documented PDA closure, echodardiograms will

be conducted weekly for the first 4 weeks postnatal and
biweekly thereafter, between study entry and 36-weeks
PMA on all inpatient study participants. Based on local
pilot data, we expect 15% of PDAs (90% small, <1.5 mm;
10% moderate, 1.5-2 mm) to remain patent at NICU dis-
charge. All preterm infants with PDA at discharge will
follow-up with the pediatric cartiologist at the dedicated
neonatal-cardiology clinic within The Heart Center at

NCH (sole pediatric cardiology provider-site for central
Ohio). Per local standard of care, these infants will re-
ceive echocardiograms at 2-3 month intervals until doc-
umented closure; any infants with a persistent PDA at
22 to 26-months postnatal age (~5% of those discharged
with a persistent ductus) will undergo catheter-based
closure to prevent long-term complications of PDA
(Table 2) [48, 49]. This will facilitate precise documenta-
tion of ductal patency duration from 72-hours postnatal
until neurodevelopmental follow-up at 22 to 26-months.
We will model clinical measures, weekly biomarker mea-
surements, and weekly echocardiography-derived predic-
tors (as described above) from the first 4 postnatal
weeks, when the decision to initiate pharmacologic treat-
ment closure for PDA is most commonly made [18].
The primary outcome for Aim 1 is documented PDA
closure by 36-weeks PMA.

Expected Outcomes A combination of echocardio-
graphic measures, biomarkers, illness severity, and pa-
tient demographics is expected to accurately predict in
the first postnatal month, both the probability of an in-
fant’s PDA closing and the duration of PDA patency.
Developing a clinically useful prediction model will allow
clinicians and clinical trialists to estimate the probability
of an infant’s PDA closing and the chronological age at
which closure will likely occur.

Aim 2
To determine in preterm infants with PDA within the
first postnatal month which echocardiographic predic-
tors and biomarkers are predictive of mortality and se-
verity of respiratory illness at 36-weeks postmenstrual
age.
After controlling for respiratory severity and other

clinical severity of illness markers (Table 1), we will in-
corporate longitudinally-measured echocardiographic
and biomarker variables from the first 4-weeks postnatal
to estimate the specific contribution of PDA to mortality
or the need for supplemental respiratory support (oxy-
gen or positive-pressure ventilation) at 36-weeks PMA
(primary outcome) (Table 3). Such composite primary
outcomes are standard in neonatal clinical trials due to
competing risks between mortality and other important
neonatal outcomes [155, 156].
An infant’s daily respiratory support modality record

at 36-weeks PMA closely correlates with important
long-term respiratory and neurodevelopmental out-
comes [84, 157]. CLD severity at 36-weeks PMA is the
neonatal CLD outcome marker most commonly used in
randomized trials [155, 158]. Per the National Institutes
of Health Consensus Definition, respiratory support via
supplemental oxygen at 36-weeks PMA defines moderate
CLD (BPD), whereas invasive or noninvasive ventilation
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(i.e., continuous positive airway pressure) defines severe
CLD (BPD). Infants in the NCH Neonatal Network are
never discharged to home prior to 36-weeks PMA unless
weaned from all respiratory support including supplemen-
tal oxygen (i.e., negative CLD outcome). For those infants
transferred before 36-weeks PMA, we will maintain con-
tact with the receiving NICU. In the unlikely case that a
transferred infant is lost to follow-up, we will adapt the
method of imputing CLD at the time of transfer used by
the NICHD NRN to create a validated BPD prediction
tool [46, 81].

Expected Outcomes We expect to accurately predict
the probability of mortality or requirement for supple-
mental oxygen or positive-pressure support at 36-weeks
PMA using a combination of echocardiographic mea-
sures, biomarkers, and clinical measures from the first 4-
weeks postnatal. We will develop a clinically useful
prediction model that will allow clinicians and those
conducting clinical trials to estimate by week in the first
4 postnatal weeks, the probability of mortality or moder-
ate/severe CLD (BPD) development. We will also evalu-
ate the impact of spontaneous PDA closure and
duration of PDA exposure on the 36-weeks PMA out-
comes. Early prediction of PDA-associated complications
will be crucial to future trial development to determine
the population of infants who may require interventional
PDA treatment and the ideal timing for such an
intervention.

Aim 3
To determine which echocardiographic predictors and
biomarkers in preterm infants with PDA within the first
postnatal month are associated with 22 to 26-month
neurodevelopmental outcomes.
The extent to which PDA persistence and/or severity

contribute to childhood neurodevelopmental impair-
ment is not fully known. The high-risk subset of chil-
dren who undergo surgical PDA ligation also have the
highest probability of neurodevelopmental impairment.
Prior to ligation, they have altered cerebral perfusion
[11, 159, 160] and long-term decreased cerebral oxygen
with associated lower cerebral volumes at term adjusted
age relative to infants with earlier PDA closure [11]. For
most of the last decade, surgical ligation itself was
thought to contribute to worse outcomes [161, 162].
However, a recently published study showed that under-
lying exposure to severe PDA is a likely cause of worse
outcomes [163].
We will incorporate longitudinally-measured echocar-

diographic and serum biomarker variables from the first
4-weeks postnatal to estimate the specific contribution
of PDA to composite motor score (primary outcome)
and gross motor, fine motor, cognitive composite, and
language composite scores (secondary outcomes) at 22 to
26-months corrected age (=age since birth–number of
weeks born before 40-weeks gestation) (Table 4) as
measured by the Bayley Scales of Infant and Toddler
Development, 3rd Edition (Bayley III) [164]. The Barratt

Table 3 Aim 2 Outcome Measures and Mediators at 36-weeks postmenstrual age

Primary Outcome Secondary Outcomes Covariates of Interest

Mortality or supplemental oxygen
or positive pressure respiratory support
at 36-weeks postmenstrual age (binary)

Secondary:
Mortality (binary)
Exploratory:
Cardiac performance measures (binary)
Time to full enteral feeds (binary)
Oral feeding status (binary)
Oxygen Dependency (Moderate BPD) (binary)
Positive-Pressure Dependency (Severe BPD) (binary)

Spontaneous PDA closure (binary)
PDA Duration (continuous)

BPD bronchopulmonary dysplasia, PDA patent ductus arteriosus

Table 4 Aim 3 Outcome Measures at 22 to 26-months corrected age

Primary Outcome Secondary and Exploratory Outcomes Covariates of Interest

Composite Bayley III Motor
Score (continuous)

Secondary
Bayley III Gross Motor Development Scaled Standard
Score postnatal age (continuous)
Bayley III Fine Motor Development Scaled Standard
Score postnatal age (continuous)
Bayley III Cognitive Composite Score (continuous)
Bayley III Language Composite Score (continuous)
Exploratory
Supplemental oxygen support (binary)
Supplemental positive-pressure ventilation support (binary)
Growth (weight, height, Body Mass Index) (binary)
Feeding (full oral feeding, gastric-tube) (binary)

Spontaneous PDA closure (binary)
PDA Duration (continuous)
Oxygen Dependency at 36-weeks
postmenstrual age (binary)

Bayley III Bayley Scales of Infant and Toddler Development, 3rd Edition, PDA patent ductus arteriosus
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Simplified Measure of Social Status [165] will be admin-
istered to all mothers at study consent to allow adjust-
ment for the influence of socioeconomic status and
education within the home environment. Our focus will
be on combined motor outcomes at 22 to 26-months
because postnatal motor outcomes are nearly unaffected
by post-discharge socioeconomic influences [166]. In
addition, motor outcomes are a good surrogate for dis-
ease-induced global neurologic impairment, because
these are largely explained by various degrees of brain
injury, whether identified by neuroimaging, or occult
and inferred from documented accumulated inflamma-
tory and oxidative stress exposures [167–169].
The Bayley III [164] is validated for 22 to 26-months

corrected age neurodevelopmental measurement in ex-
tremely preterm neonates and is the gold-standard for
the evaluation of former NICU graduates [170]. Bayley
III scores are normed against a large population and
designed to be adjusted for prematurity. Neurodevelop-
ment measurement at 22 to 26-months is standard for
major neonatal trial groups including the NICHD NRN
[171]. We have demonstrated our ability, as a NICHD
NRN study center since 2011, to accurately and pro-
spectively collect 36-week BPD severity data and 2-year
neurodevelopmental assessments including Bayley III
scores for infants born at 22 to 27-weeks gestational age
and/or birth weight <1000 grams in our follow-up pro-
grams [172, 173]. The Bayley III is administered in the
NCH Neonatal Follow-Up Program by trained exam-
iners who undergo yearly retraining and certification by
NRN gold-standards with research follow-up rates at 22
to 26-months exceeding 90%.
Research personnel will work with families to schedule

visits at times that best meet family needs. Loss to fol-
low-up will be minimized by rescheduling the Bayley III
should a child not be able to complete testing during the
originally scheduled time. If necessary, experienced tes-
ters will perform the Bayley III in the home environ-
ment, as successfully implemented in local NRN studies.
All examiners will be masked to randomization group.
We will develop prediction models that will estimate

an infant’s probability of motor delays at 22 to 26-
months (primary outcome). In addition, we will examine
the effect of PDA duration as a specific feature of 22 to
26-month neurodevelopmental impairment to more
thoroughly evaluate the contribution of extended PDA
exposure to these outcomes (Table 4).

Expected Outcomes A combination of echocardio-
graphic measures, biomarkers, and clinical measures col-
lected in the first postnatal month is expected to
accurately predict the probability of PDA-associated
motor impairment at 22 to 26-months corrected age. A
clinically useful prediction model will allow clinicians

and those performing clinical trials to estimate, per week
within the first postnatal month, the probability of PDA-
associated neurodevelopmental impairment at 22 to 26-
months corrected age. We will also evaluate the impact
of spontaneous PDA closure and duration of PDA ex-
posure on motor outcomes at 22 to 26-months.

Development of Online Clinical Prediction Tool
PDA treatment parameters and frequencies vary mark-
edly between institutions and individual care providers
[17–20]. Over the past decade, the American Academy
of Pediatrics [3] has increasingly advocated for a vali-
dated PDA-severity grading-system to permit selective
treatment of preterm infants with PDA who are most
likely to benefit. We will use our final, validated models
to create a web-based tool that predicts an infant’s
unique probability of spontaneous PDA closure, mortal-
ity or 36-weeks PMA respiratory support requirement,
and 2-year neurodevelopmental impairment.

Statistical analyses
Aim 1: Statistical Methods
Recognizing that some babies may die prior to PDA
closure, models considered will accommodate the com-
peting risk of death prior to closure through a subdistri-
bution hazards model of Fine and Gray [174, 175]. In
development of a model to establish a rigorous predic-
tion of PDA closure risk, a penalized variable selection
method developed for the Fine and Gray framework will
be considered in the model development stage (detailed
below) [176]. As a comparison to these models, not
accounting for the potential of competing risks will be
explored using the Cox model framework. If catheter-
based closure is performed (<3% of infants within our
regional network), we will censor the observed follow-up
time at the time of last recorded PDA, and model the
impact of recorded duration of PDA exposure (in post-
natal weeks).

Model development/training stage A multivariable
prediction model for PDA closure risk will be developed
in the training cohort (n=450) based on verified features
identified by previous work and our hypothesized new
covariates of interest (echocardiographic and serum bio-
marker measures and magnitude of respiratory support
in the first 4-weeks postnatal). The test/validation set
that will be recruited in the year following the initial co-
hort is expected to consist of 225 neonates. Hierarchical
clustering will be used to display the unique patterns of
PDA closure based on the top echocardiographic,
biomarker, demographic, and clinical features. We
hypothesize that in addition to echocardiographic and
serum biomarker measures, the magnitude of respiratory
support in the first 4-weeks postnatal is an important
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predictor of PDA closure. Higher respiratory support
may predict delayed closure and modify the effect of
echocardiographic and serum biomarker measures of
PDA intensity on closure probability. Therefore, we will
examine interactions between respiratory measures
(treatment modality, mean daily FiO2, and mean oxygen
saturation index on the day of the weekly echo) and
PDA, in addition to individual features.
A ten-fold cross validation procedure will be iterated

500 times to develop the optimal diagnostic model. In
each cross validation iteration, the full training cohort
will be randomly split into ten equal partitions/folds.
Each fold will take turns to be the test set and the other
nine to be the training set. For each fold, a penalized
Fine and Gray model regression (e.g., LASSO or SCAD)
will be used to select the top predictors of PDA closure
risk. The “inner-run” cross-validation and the area under
the receiver operating curve (AUC) will be used to
choose the optimal tuning parameter. Based on the
optimal tuning parameter, the selected model prediction
accuracy and sensitivity/specificity will be evaluated
based on the test set. An overall receiver operating curve
and AUC based on all test set samples will be plotted
and estimated after running all 10 folds. The aforemen-
tioned cross validation procedure will be replicated 500
times and the distribution of the overall model perform-
ance (AUC, specificity, sensitivity) will be obtained. If
the average AUC is acceptable (≥0.70) and the variance
is limited (0.05), the final model will be estimated with
the entire test set.

Model validation stage The final predictive model
formulated at the training stage will be validated in an
independent validation, derived from approximately 225
participants in the cohort recruited the year following
enrollment of the initial training cohort. Model predic-
tion accuracy will be evaluated by AUC, with an AUC
performance ≥0.70 of interest for further exploration in
larger cohorts.

Aim 2: Statistical Modeling and Methods
As in Aim 1, we will focus on building predictive
models. For the composite outcome of mortality or sup-
plemental oxygen or positive-pressure respiratory sup-
port at 36-weeks PMA, we will adopt the same structure
as in Aim1, by utilizing the training (450 patients) and
validation cohort, recruited thereafter.
Together with clinical features that include respiratory

severity and other markers of clinical severity of illness
(Table 1), longitudinally-measured echocardiographic
and biomarker variables from the first 4-weeks postnatal
will be incorporated to predict the composite endpoint
of mortality or need for oxygen or positive-pressure sup-
port at 36-weeks PMA (primary outcome) or mortality

(secondary outcome). A ten-fold cross validation proced-
ure will be iterated 500 times to develop the optimal
diagnostic model. Penalized logistic regression (SCAD,
MCP, LASSO) will be utilized to predict our composite
outcome and select the top predictors of mortality and
CLD risk. We will choose the optimal tuning parameter,
determine prediction accuracy and sensitivity/specificity,
and estimate the final model with the entire test set as
described above.
Given our interest in both the impact of PDA duration

and the additional benefit of PDA closure on outcomes
(in addition to echo and biomarker predictors over clin-
ical risk factors alone), we will force these two measures
(PDA duration and closure) into the model and subse-
quently compare model fit and accuracy to the models
of best predictors that exclude them. Furthermore, we
will explore interactions/effect modification between re-
spiratory and other risk factors and PDA measurements
(echocardiographic, biomarker) to predict outcomes.
Final models (one each for primary and secondary out-
comes) will be fit to the validation cohort, and the model
fit summarized as previously detailed.

Aim 3: Statistical Analysis
To predict longer-term neurodevelopment outcomes, we
will follow the methods described above, utilizing cross
validation together with penalized regression models
using re-sampling to evaluate the best model choice and
to facilitate model building on the training set. As de-
tailed above, we will force PDA measures into our
models and evaluate these against models without these
measures. For continuous outcomes we will examine the
mean square error and Akaike information criterion.
Final models for each outcome will be fit and evaluated
in the validation cohort. Although we do not expect a
large number of patients to be lost to follow-up or to die
during follow-up (~10%), we will also explore models
that will jointly model neurodevelopment outcomes and
time to loss or death with a Cox survival model. We will
follow the same general framework for model develop-
ment as previously described, using a joint random-
intercept Cox model [177].

Sample size and power
Sample size in the training/model building stage is based
on the justification according to Dobbin et al. [178] and
Pang et al. [179] Given that we expect the majority of
PDA closures by 36-weeks PMA (Aim 1) following en-
rollment (upwards of 80-85% of the 450 in the training
stage), and the relatively limited set of potential covari-
ates, we expect our resulting classification from the
training set to have a tolerance/accuracy of at most 0.05
of the optimal accuracy. An accuracy of 0.05 can be
interpreted as the expected accuracy of the classifier to
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be within 5% of the "best" possible accuracy achieved
with a binary classifier. Moreover, with 10-fold cross val-
idation, we expect that power will be high (over 80%)
with two-sided type I error of 5% with the expected 450
patient target accrual and modest hazard ratios between
1.5-2.0.
Assuming approximately ¼ of patients (n=112) will

experience the Aim 2 primary outcome event, we ex-
pect our resulting classification from the training set
to have a tolerance/accuracy of at most 0.05 of the
optimal accuracy using the justification according to
Dobbin et al. [178, 179]

Missing Data
We do not anticipate missing covariate data since we
will prospectively record data. However, should substan-
tial covariate data be missing, we will employ multiple
imputation techniques.

Discussion
The strengths of this investigation include a prospective
cohort design within a unique population of untreated
infants with PDA, and innovative modeling using ad-
vanced echocardiography, biomarkers, and clinical mea-
sures to accurately predict not only spontaneous PDA
closure timing, but which infants with persistent PDA
are at the highest risk for worsened PDA-associated out-
comes (mortality, CLD, neurodevelopmental impair-
ment). This novel approach will fulfill a critical
American Academy of Pediatrics clinical research object-
ive [3] by determining the relative added contribution of
echocardiography and biomarkers at specific weekly
intervals over measurable clinical risk factors alone.
Following optimization of our prediction models using
10-fold cross validation and penalized regression, all
prediction models will be independently validated in a
second cohort of patients.
The results from this study will immediately inform

clinical decision-making and, as a critical step to design-
ing trials that will enroll appropriate participants in
randomized trials, will ultimately lead to improved out-
comes for preterm infants with PDA. Our weekly predic-
tion models for the first postnatal month, the period
when pharmacologic and early interventional closure
decisions must be made, will aid practicing clinicians to
avoid pharmacologically treating infants unlikely to
benefit, and randomized-trial planners to develop evi-
dence-based trial designs to determine whether pharma-
cologic and interventional PDA closure is beneficial in
specific prenatal infant populations, and when PDA
treatment is most effective. Because of our diverse popu-
lation of <30-weeks gestation preterm infants within
both delivery and referral hospitals’ NICUs in one of the
largest allied NICU networks in the United States, we

anticipate findings will be applicable to similar preterm
infants with PDA throughout the U.S. and developed
world.
Although this study uses a prospective cohort and

rigorously designed observational study design to answer
proposed questions that cannot be answered with a
randomized trial, but that are crucial to future PDA trial
development, confounding is a potential problem [3].
We will carefully control for known confounders using
clinical markers that are validated predictors of our pri-
mary outcomes.
Early mortality precludes PDA-closure and develop-

ment of PDA-associated outcomes. Our team has ex-
perience in applying composite outcomes and guarding
against mortality-associated biases, such as for immor-
tal-time bias, in the preterm infant population [18, 180].
For Aim 2 we will employ a primary mortality or CLD
composite outcome at 36-weeks PMA, the accepted
practice among neonatal randomized trialists. For Aim 1
(spontaneous closure) outcomes we will employ Fine
and Gray subdistribution hazards models, which will
allow us to account for competing mortality risks and
limit the analysis to observed follow-up time. In Aim 3
(neurodevelopmental outcomes at 22 to 26-months) we
will explore using joint models to account for drop out
and potential death.
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