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A B S T R A C T

This paper presents the second part of the mapping of topsoil properties based on the Land Use and Cover Area
frame Survey (LUCAS). The first part described the physical properties (Ballabio et al., 2016) while this second
part includes the following chemical properties: pH, Cation Exchange Capacity (CEC), calcium carbonates
(CaCO3), C:N ratio, nitrogen (N), phosphorus (P) and potassium (K). The LUCAS survey collected harmonised
data on changes in land cover and the state of land use for the European Union (EU). Among the 270,000 land
use and cover observations selected for field visit, approximately 20,000 soil samples were collected in 24 EU
Member States in 2009 together with more than 2000 samples from Bulgaria and Romania in 2012. The che-
mical properties maps for the European Union were produced using Gaussian process regression (GPR) models.
GPR was selected for its capacity to assess model uncertainty and the possibility of adding prior knowledge in the
form of covariance functions to the model.

The derived maps will establish baselines that will help monitor soil quality and provide guidance to agro-
environmental research and policy developments in the European Union.

1. Introduction

Globally, soil and environmental challenges (climate change, pol-
lution, water scarcity, biodiversity decline) are increasing dramatically
(IPBES, 2019). Organizations such as the United Nations Convention to
Combat Desertification (UNCCD), the Food Agriculture Organization
(FAO) and the Intergovernmental Science-Policy Platform on Biodi-
versity and Ecosystem Services (IPBES) have recognized that soil is
under threat globally (Montanarella, 2015). The development of solu-
tions to combat land degradation requires data collection, expert
knowledge, and scenario analysis through the modelling of soil prop-
erties and functions (Hartemink, 2015). During the past two decades,
the soil science community has developed regional, continental and
worldwide soil maps and databases, which have been used for soil re-
source assessment and risk evaluation (Arrouays et al., 2017).

During the past decade, the increased use of digital soil mapping
(McBratney et al., 2003) approaches became a solution to increased
requests for spatial soil data coming from research organizations, policy
makers and the private sector. The extensive development of digital soil
mapping models has been facilitated by the exponential increase in the

availability of remote sensing data, computing power, and the devel-
opment of Geographic Information Systems (Minasny and McBratney,
2016). Digital soil mapping has important advantages in the prediction
of soil properties (e.g. evidence-based, open access data and software,
transparent and repeatable methodology, etc.) compared to conven-
tional soil mapping approaches (Minasny et al., 2018). Among others,
Grundy et al. (2015) mapped 11 soil properties in Australia using a
geostatistical approach, Padarian et al. (2017) contributed to the de-
velopment of a Global Soil Map by modelling eight properties for Chile,
Mansuy et al. (2014) generated national maps of soil properties for
managed forests in Canada, Adhikari et al. (2014) developed soil or-
ganic carbon content maps for Denmark while Poggio and Gimona
(2014) modelled soil organic carbon stocks in Scotland.

In the European Union (EU), Ballabio et al. (2016) have developed
physical properties datasets (silt, clay, sand and coarse fragments) for
the EU, together with maps of derived products (bulk density, available
water capacity) using the Land Use and Cover Area frame Survey
(LUCAS) topsoil database. In addition, de Brogniez et al., 2015 and
Yigini and Panagos, 2016 have mapped the soil organic carbon content
(expressed as percent and carbon stocks) using LUCAS topsoil database
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and geostatistical models.
The objective of this paper is to produce chemical soil properties

datasets using LUCAS topsoil database and advanced digital soil map-
ping methodologies. In detail, this paper proposes a soil mapping model
for interpolating the 22,000 surveyed points in LUCAS for chemical soil
properties at continental scale. Finally, we developed datasets for soil
pH, Cation Exchange Capacity (CEC), calcium carbonates (CaCO3), and
total phosphorus, potassium and nitrogen, plus derived products based
on soil organic carbon and nitrogen (e.g. C:N ratio) covering the 26 EU
Member States (excluding Croatia and Cyprus).

It is not the objective of the paper to challenge any local or regional
map of chemical properties implemented with higher density of sur-
veyed points. Moreover, this paper will provide only a cursory ex-
planation for the reasons for different spatial patterns on chemical
properties as our focus is the digital soil mapping model development.

2. Mapping chemical properties at European scale

This section gives an overview of existing activities relevant to
chemical properties using digital soil mapping. Soil chemical properties
have a spatial dependence; their spatial patterns depend on soil forming
processes (including climate, parent material and weathering), topo-
graphy, climate, vegetation, time and anthropogenic influences (Yost
et al., 1982).

Soil pH is dependent on the parent material, climate and soil or-
ganic carbon. Where precipitation levels are high, soil pH decreases
over time through acidification due to leaching of base cations and
corresponding build-up of hydrogen ions. In dry environments, where
chemical weathering and leaching are less intense, soil pH may be
neutral or alkaline, as a result of evaporation of alkaline groundwater.
In general higher rainfall rates result in acid soils and the water balance
seems to act globally as a main driving factor for soil pH (Slessarev
et al., 2016), while topography and mineralogy may act as secondary
drivers. At European scale, soil pH datasets have been produced by the
Forum of European Geological Surveys (FOREGS) (Salminen et al.,
2005) using 1588 soil samples across 28 countries. The project Geo-
chemical Mapping of Agricultural and Grazing Land Soil in Europe
(GEMAS) sampled 2200 points in agricultural land and 2118 points in
permanent grasslands in 2008–2009. In 2012, a harmonised pH dataset
was compiled by the JRC and disseminated through the European Soil
Data Centre (ESDAC) (Panagos et al., 2012). The ESDAC pH dataset is
based on 12,333 measurements from 11 different data sources which is
a significant limitation, due to heterogeneity in the measurements,
compared to the LUCAS soil sampling scheme. The recent publication of
SoilGrids (Hengl et al., 2014) was an important advancement for soil
pH data availability at global scale.

Calcium carbonates are derived from the weathering of lime-rich
parent material (Lal, 2007). Soil carbonates, most commonly re-
presented by calcium carbonate, have multiple functions in soils.
Firstly, they help slowing soil acidification by acting as a buffer to in-
creased levels of aluminium and hydrogen ions, thus also preventing
the uptake of heavy metals by plants. Another important function is the
stabilization and the improvement of both soil organic carbon content
and soil structure. Sarmadian et al. (2010) used geostatistical methods
to produce a topsoil calcium carbonates map. At continental scale,
Wilford et al. (2015) predicted soil calcium carbonate concentrations in
Australia using data from 1311 sites. According to Wilford et al. (2015),
the key predictors of CaCO3 in Australia include mean annual pre-
cipitation, mean annual radiation, soil types, mean annual temperature,
and the MODIS vegetation coefficient of flatness.

Cation Exchange Capacity (CEC) is often considered as an in-
dicator of soil quality and measures the ability of soil to hold and ex-
change cations (Saidi, 2012). CEC is related to stable aggregates and
texture properties (Bronick and Lal, 2005). CEC is often estimated using
pedotransfer rules or other algorithms such as artificial neural networks
(Amini et al., 2005). Few studies have estimated CEC at country scale

and, among them, Khaledian et al. (2017) derived correlations between
CEC and physical attributes (clay, silt, sand) and chemical attributes
(pH). Bishop and McBratney (2001) applied different geostatistical
models to estimate the CEC in northern New South Wales, Australia.

Nitrogen (N) spatial distribution is not only affected by natural
ecological processes, but also impacted by intensive human activities
(K. Wang et al., 2013). This is an important challenge for accurate
predictive mapping at regional scales. The C:N (organic carbon to ni-
trogen) ratio is an index of the organic matter turnover and nitrogen
availability due to mineralization or immobilization of soil nitrogen.
Using more than 4000 soil profiles around the world from the World
Inventory of Soil Emission Potentials (WISE) database, Batjes (1996)
estimated a wide range of mean C:N ratios for the 0–30 cm topsoil
starting from 9.9 for arid Yennosols to 25.8 for Histosols.

Phosphorus (P) concentrations are also influenced by human ac-
tivity. Fertilization can result in higher levels of P, especially in higher
yields crops where high input of P fertilizers are reported (Tóth et al.,
2014). Modern agriculture is much dependent on phosphorus fertili-
zers, and P supply is strategically critical at global level. Using a
geostatistical model, Rossel and Bui (2016) mapped phosphorus stocks
in Australia at approximately 90m resolution.

Potassium (K) has different functions for plant life; it is a

Table 1
Naming and description of the covariates used in the models (the covariate code
corresponds to the one used in the variable relevance plots of Fig. 2).

Covariate code Description

mir_PCAbi Component i of PCA transformed of MODIS
multitemporal Mean Infrared band for year 2009

nir_PCAbi Component i of PCA transformed of MODIS
multitemporal Near Infrared band for year 2009

red_PCAbi Component i of PCA transformed of MODIS
multitemporal Red band for year 2009

blue_PCAbi Component i of PCA transformed of MODIS
multitemporal blue band for year 2009

pheno_MODIS_LAEA.1 Periodic component i of MODIS NDVI time series Fourier
harmonic analysis

trend_MODIS_LAEA.1 Trend component i of MODIS NDVI time series Fourier
harmonic analysis

tmaxi_500 Average max temperature of month i from WorldClim
tmini_500 Average min temperature of month i from WorldClim
preci_500 Average precipitation of month i from WorldClim
bioi_500 Bioclimatic index i from WorldClim
y Latitude
x Longitude
elevation Elevation
valley height Valley height index
gen_surface Smoothed Elevation
ls RUSLE topographic factor (Slope Length and Steepness

factor)
aacn Altitude above channel network
airflow_height Effective Air Flow Heights (Böhner and Antonić, 2009)
downsl_dist_grad Downslope Distance Gradient (Hjerdt et al., 2004)
corine.i Class i of CORINE land cover
geo.i Class i of ESDB parent material

Table 2
GPR regression performance metrics for chemical properties. The mean and
median values in LUCAS data are given as a reference.

Mean Median RMSE MAE RSE R2

CaCO3 g·kg−1 52.78 1.00 78.29 40.84 0.76 0.61
CEC cmol·kg−1 16.08 12.70 11.02 6.64 2.55 0.35
C:N ratio 13.20 10.89 1.97 1.26 0.12 0.91
Nitrogen g·kg−1 12.10 1.80 2.40 1.2 2.59 0.60
Phosphorous mg·kg−1 37.61 29.10 17.52 11.70 0.82 0.74
Ph in H2O 6.30 6.30 0.78 0.62 0.57 0.65
Ph in CaCl2 5.70 5.80 0.68 0.53 0.36 0.76
Potassium mg·kg−1 199.17 142.20 121.89 70.98 0.53 0.75
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constituent of enzymes and acts as a regulator of drought tolerance and
water use (M. Wang et al., 2013). In the soil, the principal sources of
potassium are feldspars and micas, which release K during weathering
(Hillel, 2008). Potassium depletion from soil is quite uncommon as
cation exchange prevents leaching. Few studies have mapped potassium
at continental scale; among them, Prado et al. (2008) mapped the po-
tassium distribution in Brazil using a limited amount of data and ex-
trapolated it to the whole country.

3. Material and methods

This section describes the main data input which is the LUCAS
topsoil database, how it has been compiled based on the survey and the
laboratory analysis.

3.1. Land Use/Land Cover Area Frame Survey (LUCAS) topsoil database

The Land Use/Land Cover Area Frame Survey (LUCAS) is a project
to monitor land use and land cover changes across the EU. The LUCAS

Fig. 1. Predicted vs observed values for the topsoil properties discussed in Section 4.2. The blue line represent a linear fit for predicted-vs-observed data. The black
line is the diagonal and the contours represent point densities. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Variable importance metrics for the topsoil properties discussed in Section 4.2.
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survey is performed every three years, with the latest published LUCAS
dataset dating back to 2015. It now covers all the 28 EU countries and
includes field observations at more than 273,000 points. Soil samples
are taken in about 10% of the surveyed locations every 6 years. The first
LUCAS soil survey was done in 2009 collecting 19,969 topsoil samples
(0–20 cm) from 25 out of 28 EU countries, excluding Romania, Bulgaria
and Croatia (Orgiazzi et al., 2018). In the 2012 LUCAS survey, 2034
topsoil samples were collected from Bulgaria and Romania following
the standard procedure of 2009. The overall sampling density of this
pan-European soil survey is nearly one soil sample every 196 Km2

(Panagos et al., 2013), which means one sample about every
14 km×14 km. In this paper, we used the chemical properties based on
2009–2012 LUCAS topsoil as the analysis of the 2015 soil samples is
still ongoing.

The LUCAS topsoil dataset is the most comprehensive and harmo-
nised soil dataset at European scale, which allows pan-EU studies on the
distribution of physical properties (clay, silt and sand) (Ballabio et al.,
2016), soil erodibility (Panagos et al., 2014), soil organic carbon (de
Brogniez et al., 2015) and the modelling of heavy metals diffuse pol-
lution such as copper (Ballabio et al., 2018). The number of points
selected is based on a stratification in order to cover all possible land
uses (based on CORINE land cover classes) and country surface (Carre
et al., 2013). Orgiazzi et al. (2018) described in detail the soil sampling
procedure and the standards that the surveyors should follow. The soil
samples were analysed for the percentage of coarse fragments, particle-
size distribution (silt, clay, sand), pH, organic carbon, calcium carbo-
nate, soluble phosphorous, total nitrogen, extractable potassium, Cation
Exchange Capacity (CEC) and multispectral properties (Tóth et al.,

2013a, 2013b). Due to problems in labelling, tagging, geo-referencing
and mismanagement, 321 soil samples were excluded from LUCAS
topsoil database, resulting in 21,682 total records.

3.2. Laboratory analysis of soil samples for chemical properties

The sample analysis was performed by a single laboratory, con-
tributing to data comparability avoiding uncertainties due to analysis
based on different methods or different calibrations in case of multiple
laboratories. In a first phase, LUCAS topsoil samples were analysed for
their physical and chemical properties following ISO standard proce-
dures. In a later stage, an additional analysis for heavy metals was
performed.

3.3. Auxiliary variables

To support the spatial predictions of soil properties, a series of da-
tasets or covariates were selected according to their possible influence
on soil chemical properties. The spatial resolution of the covariates was
set to 250m, as a compromise between the resolution of the Moderate-
resolution Imaging Spectroradiometer (MODIS) data (500m), the finer
resolution of the DEM (25m) and the coarser WorldClim climatic
(1 km) datasets (Fick and Hijmans, 2017). Overall 100 numeric and 99
dummy covariates were considered in the first steps of the analysis. The
dummy covariates were obtained from the coding of the categorical
variables classes (CORINE and parent material type) into dichotomous
variables.

After feature selection, the name and a description of the covariates

Fig. 3. Map of topsoil pH in water.
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retained in the final model is given in Table 1.
Cyprus was excluded from the analysis due to missing covariates.

3.3.1. MODIS and derived data
A series of MODIS image products for 2009 was collected; in par-

ticular, the MODIS Global vegetation indices (Didan, 2005). These
products are characterised by a spatial resolution between 250 and
500m and a temporal resolution of 16 days. The products include blue,
red and near- and mid-infrared reflectance, centered at 469 nm,
645 nm, and 858 nm respectively. The reflectance is used to determine
the MODIS daily vegetation indices, such as the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).
NDVI is defined as NDVI=(NIR− RED)/(NIR+ RED), where NIR and
RED stand for the spectral reflectance measurements acquired in the
near-infrared and visible (red) regions, respectively. NDVI has been
used to estimate a large number of vegetation properties from its value,
such as biomass, chlorophyll concentration in leaves, plant pro-
ductivity, fractional vegetation cover and accumulated rainfall.

The EVI index is defined as:

= ∙ −
+ ∙ − ∙ +

EVI g NIR RED
NIR c RED c LUE L1 2 B (1)

where NIR, RED, and BLUE are the respective surface reflectance in the
corresponding spectral bands, L is the canopy background adjustment,
and c1 and c2 are coefficients for the aerosol resistance term, which
uses the blue band to correct for aerosol influences on the red band. The
coefficients adopted by the MODIS-EVI algorithm are: L=1, c1=6,
c2=7.5, and g (gain factor)= 2.5.

Phenological indices were derived from MODIS data using a first
order harmonic model on the EVI and NDVI multi-temporal data. The
harmonic uses a discrete Fourier processing that decomposes temporal
curves in a linear trend plus amplitude, variance and phase metric
terms. The harmonic model can be defined as

 ∑= + ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠=

Y α α cos
j πt

l
β sin

j πt
l

2 2
t

j

m

j j0
1 (2)

where Yt is the vegetation index value, t is the time value for a given
pixel, l is the cycle length (yearly) and m is the order of the trigono-
metric polynomial and coincides with the number of harmonics of the
expansion (set as one in this study), αj and βj are the Fourier coeffi-
cients.

Harmonic analysis using Fourier series, has been used to model the
temporal changes in the vegetation cover using satellite data for several
decades (Menenti et al., 1993; Moody and Johnson, 2001; Olsson and
Eklundh, 1994) and provides better spatial information on the different
types of vegetation cover than using composite images alone.

Additionally, a Principal Component Analysis (PCA) transformation
of the full MODIS 16 day images time series was performed for each
band in order to extract relevant features. The PCA projects the time
correlated input images into uncorrelated PCA components ordered
according to their variance. Thus, the first few components account for
most of the time related variation in each MODIS band.

3.3.2. Terrain parameters
The EU-DEM digital elevation model (Bashfield and Keim, 2011)

was used to derive land features at a resolution of 25m for all Europe.

Fig. 4. Map of the difference between pH in water and pH in CaCl2 0.01M solution.
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Both the DEM and the derived surface parameters were then re-
scaled to 250m. The derivation of land surface parameters was made
using the SAGA GIS software. Among the various parameters derived
and tested, the most relevant were the Multi-resolution Valley Bottom
Flatness (MRVBF) and the Multi-resolution Ridge Top Flatness
(MRRTF) (Gallant and Dowling, 2003), slope, slope height and vertical
distance to channel network (CNBL).

3.3.3. Land cover
The CORINE (CORdinate INformation on the Environment) is a

raster format land cover database comprising 44 classes. CORINE is
derived from Earth observation satellites using computer-aided photo-
interpretation. The nominal scale of CORINE is 1:100,000 with a
minimum mapping unit (MMU) of 25 ha and a change detection
threshold of 5 ha. The CORINE dataset was used to represent the spatial
distribution of land use and land cover. The reliability of CORINE 2000
version at 95% confidence level is 87.0 ± 0.7%, according to the in-
dependent interpretation performed on the LUCAS (Land Use/Cover
Area Frame Survey) data (Büttner, 2014).

3.3.4. Climate data
Monthly temperature averages and extremes, and monthly average

precipitation values were obtained from the WorldClim (http://www.
worldclim.org/) dataset at a spatial resolution of 1 km2. These data
layers are the interpolated values of average monthly climate data
collected from numerous weather stations. The approach uses a thin
plate smoothing spline with latitude, longitude and elevation as in-
dependent variables to locally interpolate data (Hijmans et al., 2005).

Climatic data was included explicitly in the model in the form of
monthly values of minimum and maximum temperature and monthly
rainfall rates. Also the bioclimatic variables (Temperature and pre-
cipitation indexes) of WorldClim were included in the analysis. Given
the high collinearity of climate data, a careful feature selection proce-
dure was applied in the model training stage.

3.3.5. Legacy soil data and parent material geochemistry
In the first stage of this study, the European Soil Database (ESDB)

(Panagos et al., 2012) was considered as a possible covariate to char-
acterise soil properties. In this context, the ESDB was utilised as a
multinomial variable by identifying and labelling soil types. However,
the use of the ESDB soil data was found to provide little improvement to
the model outcome and was then removed from the analysis. None-
theless, the data within the ESDB was used to create a map of the parent
material geochemistry that was included in the model.

3.4. Gaussian process regression models for chemical properties

In order to assess the relation between environmental features and
soil chemical properties distribution, Gaussian Process Regression
(GPR) (Rasmussen and Williams, 2006) was utilised for inference and
mapping.

GPR assumes that the output y of a function f with input x can be
expressed as

= +y f (x) ϵ (3)

where σϵ~ (0, )ϵ
2N . This is analogous to linear regression. However in

Fig. 5. Map of topsoil CEC.
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GPR, not only the error term ϵ, but also f is treated as a random vari-
able. In GPR, f(x) is distributed as a Gaussian process

∗f μ k(x)~ ( (x), (x, x ))GP (4)

where f(x) is defined by its mean μ(x) and covariance k(x,x∗).
The covariance function k is also known as the kernel of the GPR

and models the dependence of the function values between different
values of x. In this respect, GPR is equivalent to kriging (Stein, 2012);
however, while kriging is usually performed in geographical space, GPR
is applied on an arbitrary number of covariates. The choice of the ap-
propriate kernel is based on the structure, in terms of smoothness and
peculiar patterns, of the data itself.

In this study, the Matérn kernel function (Stein, 2012) was used.
The Matérn function is quite flexible as it can model data with different
smoothness; the function can be written as

⎜ ⎟ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

⎛
⎝

− ⎞
⎠

∗
−

∗ ∗k
ν

ν B ν(x, x ) 2
Γ( )

2
ℓ

|x x | 2
ℓ

|x x |
ν ν

ν
1

(5)

where ν and ℓ are positive adjustable parameters, Bν is a modified Bessel
function of the second kind of order ν and Γ is the Gamma function. The
ℓ acts as a scale parameter, while ν controls the process smoothness. In
general, values of ν are kept within the range between 1/2, where the
process becomes rough, and 7/2, where it becomes difficult to distin-
guish between finite values of ν and ν→∞.

The kernel function is equivalent to a covariance function in kriging
and its value can be considered as a measure of similarity between the
two feature vectors.

GPR can be seen as a Bayesian Nonparametric approach to

regression, where the function from the Gaussian processes takes values
in a (possibly infinite) function space. Defining y as the vector of ob-
served values of the dependent variable and X as the matrix of the
corresponding covariates and defining y∗ as a set of points to be pre-
dicted with the corresponding matrix of covariates X∗, a random vector
can be drawn from the join prior distribution of functions as

∗ ∗ ∗Ky ~ (0, (X , X ))N (6)

where K(X∗,X∗) is the covariance matrix between inputs at points to be
predicted. However, any vector drawn from the prior will provide no
knowledge about the observed data. In order to get the posterior dis-
tribution over functions, the joint prior distribution must be restricted
to contain only those functions which agree with the observed data. So
given that the joint distribution of y and y∗ is

⎡
⎣

⎤
⎦

+ ′∗
∗ ∗ ∗K σ K K K

y
y ~ (0, [ (X, X) I (X, X ) (X, X ) (X , X )])n

2N
(7)

(where K(X,X) is the covariance matrix between all observed points
inputs (covariates), K(X,X∗) is the covariance between observed points
and points to be predicted and σn2I is the identity matrix multiplied by
the estimated (or presumed) variance of the observations) predictions
for the new points y∗ corresponding to the covariates matrix X∗ can be
derived as

= +∗ ∗ −K K σy (X , X)[ (X, X) I] yn
2 1 (8)

and the variances for the elements of y∗ can be obtained from the di-
agonal of the covariance matrix COV(y∗)

Fig. 6. Map of topsoil nitrogen content.
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= − +∗ ∗ ∗ ∗ − ∗K K K KCOV(y ) (X , X ) (X , X)[ (X, X) σ I] (X, X )n
2 1 (9)

Moreover, as the posterior distribution of Eq. (7) can be rewritten as

∑=
=

μ k(x) w (x, x )
i

t

i i
1 (10)

(where xi is an observed value in X, and the weights come from the
vector w= [K(X,X)+ σn2I]−1y), GPR is effectively equivalent to a
linear regression where inputs are projected into an higher dimensional
space using basis functions (the kernel), predictions are then obtained
by weighting the input values to the input values of the point to be
predicted. In this manner GPR retains the conceptual simplicity of
linear regression while having the capability of fitting arbitrarily
complex relations of machine learning approaches.

An advantage of GPR over other machine learning approaches is
that the process models both the expectation and the variance of the
random variable, thus allowing mapping the prediction uncertainty.
Moreover, the GPR allows the specification of the input data noise, so if
prior knowledge about it is known, it can be used to avoid overfitting
the data.

Another advantage of using GPR is that any linear combination of
kernels is itself a valid kernel. This property can be used to model data
that has different scale dependent patterns (Ballabio and Comolli,
2010) or are a composition of periodic and trend components. In this
study, a single and a composition of two Matérn kernels were tested.
Since the composition requires the tuning of more parameters, ν was
kept constant across kernels in the composition. While the composition
performed generally better than the single kernel, the gain was not

significant enough as to justify the extra tuning time required. There-
fore, we applied the GPR using a single kernel.

While GPR is a powerful technique, its main drawback is its com-
putational complexity. Given that the computational burden scales
as N( )3O for model fitting, N( )O for model prediction and N( )2O for
variance prediction (where N is the number of observations) the
number of covariates is usually kept as small as possible. The compu-
tational scaling is especially problematic in spatial mapping where the
number of predictions is easily in the order of millions of raster cells. To
ease this issue it is possible to use the Nyström kernel matrix approx-
imation (Drineas and Mahoney, 2005) to compress matrices to a more
manageable size. Moreover, it is advisable to use massive parallel
processing in order to split the raster data into more manageable sub-
sets as the prediction task is easy to parallelize.

The GPR models parameters were tuned using a repeated k-fold
cross-validation, with k=10, in order to avoid overfitting. Moreover,
model performance was also evaluated using the same procedure.
Models selection was performed by Simulated Annealing (SA)
(Kirkpatrick et al., 1983) in order to select the best set of covariates and
thus reducing the chance of collinearity. SA was also utilised to estimate
the relative information value of each covariate. As the selection is
based on the reduction in the k-fold cross-validation error estimates,
changes in the error due to a given predictor being added or removed
from the model are tracked during the SA. This track of error changes is
then aggregated as the variable information value.

Fig. 7. Map of the topsoil C:N ratio.
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4. Results

4.1. Model performance

In this study, GPR is quite efficient in predicting soil chemical
properties with values of R2 ranging from 0.91 to 0.35. In general, the
properties more related with the vegetation cover (nitrogen content,
pH) are the most successfully modelled, while properties such as CEC
result in higher errors as measured by Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). This is likely due to the influence of
other factors (e.g. soil clays mineralogy, soil age, etc.), that have little
or no direct connection with the covariates included in this study. In
particular, for soil age and mineral weathering, there are no available
covariates that could be used at this scale. Moreover, properties such as
CEC are inherently difficult to measure precisely, making their mod-
elling subject to a higher noise to signal ratio.

GPR regression performance metrics for chemical properties
(Table 2) shows the performances of the models in terms of RMSE,
MAE, Relative Squared Error (RSE) and R2; RMSE and MAE give error
values in the measurement unit of the original variable, so their values
can be compared with the mean and median values. RSE and R2 are
metrics that can be used to compare the performance of the different
models. The values were computed from repeated k-fold cross-valida-
tion. For maps discussed in Section 4.2 the plots of predicted vs ob-
served values are shown in Fig. 1, while variable information values are
shown in Fig. 2. The plots of Fig. 1 seem to suggest the presence of some
prediction bias for several of the properties. However, the prediction
bias is present only for extreme values. In general, values within the

95th percentile are quite well predicted with residuals normally dis-
tributed and showing absence of bias.

4.2. Topsoil chemical properties maps

This section will discuss some of the properties mapped, namely:

1. The topsoil pH in water and the difference between topsoil pH in
water and in CaCl2 0.01M solution

2. The topsoil total nitrogen content and the topsoil C:N ratio
3. The topsoil total phosphorus content and the topsoil total potassium

content

These properties were selected due to their distinctive spatial dis-
tribution and relevance in soil management.

4.2.1. Topsoil pH
The map of topsoil pH (Fig. 3) shows a clear influence of the geo-

chemical makeup of soil parent material. Areas where carbonate rocks
are present show higher pH levels; this is particularly obvious in areas
where soil erosion can enhance the influence of the parent material
such as in the area surrounding the Mediterranean Sea. In particular
most of Spain, southern France, Italy and Greece have neutral to al-
kaline soils. The effect of geology is also quite evident in Northern
France and most of United Kingdom. Nevertheless, climate can also
influence pH and sometime overcomes the effect of the parent material.
This is quite evident in Ireland and north-eastern Spain where rainfall is
intense enough to leach the topsoil, resulting in acid soils. Vegetation

Fig. 8. Map of topsoil phosphorous content.
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cover is another factor influencing soil pH; in general forest cover,
especially of coniferous species, tend to lower topsoil pH as they return
fewer base cations to the soil with the litter. On the contrary, steppe
grassland can result in increased topsoil pH as in the plains of Hungary
where Chernozem soils typically have a topsoil enriched in calcium ions
from the underlying loess deposits. The effect of vegetation is even
more striking at shorter scales where the difference of pH between
patches of forest and cultivated soils can be quite abrupt.

The map of pH in CaCl2 solution (not shown) has a similar outline as
the map of pH in water. Despite similarities the map of pH in CaCl2 is
useful for determining the soil liming potential (Schofield and Taylor,
1955). Moreover, the difference between the two pH measures can give
an idea of the exchangeable acidity of the topsoil (Fig. 4). Exchangeable
acidity includes more or less ionized acid functions, weak organic acids
and easily exchangeable cations. Commonly it is caused by clay hy-
drolysis, which results in some of Al3+ cations passing into exchange-
able positions; this occurs naturally in some processes, like podsoliza-
tion, but can be exacerbated by anthropic activities causing rain
acidification or by acidifying fertilizers. As shown by Fig. 4, greater
differences in pH values are found in areas where podsolization is the
prevalent pedogenetic process, such as Scandinava and the Atlantic
coast of Iberia and the west coast of France.

4.2.2. Topsoil Cation Exchange Capacity
The map of CEC (Fig. 5) is mostly influenced by the distribution of

clay in the topsoil. A comparison between clay distribution (Ballabio
et al., 2016) and CEC shows many similarities. Remarkably, CEC is also
quite influenced by topography, where areas of sediment accumulation

have general higher values of CEC. This is quite visible in The Neth-
erlands, Northern Germany and Poland, where the areas surrounding
rivers have higher than average CEC. The geochemistry of the parent
material also influences CEC. Besides limestone, where the relation
with higher clay content is evident, soils developed on calcareous and
marl rocks also tend to accumulate clay as a consequence of the
leaching of the carbonates leaving the more stable clays behind.

4.2.3. Topsoil nitrogen and C:N ratio
The distribution of topsoil nitrogen (Fig. 6) is highly correlated with

soil organic carbon, given that nitrogen is a main component of soil
organic matter. While their ratio can vary, some carbon rich soils are
also nitrogen rich, at least in terms of absolute quantities. Given this
relation, it is quite clear that vegetation cover and climate are the main
drivers in the distribution of nitrogen. As the map in Fig. 6 shows,
forests and grasslands areas tend to have higher nitrogen content.
Forests of Scandinavia, or those of the mountain areas are clearly
outlined by the map. Climate also acts as a main driving force influ-
encing nitrogen content along the Atlantic area; in particular, the
United Kingdom and Ireland show higher N concentrations due to a
fresh and humid climate which favours organic matter accumulation.
Soil texture also plays a role in stabilizing organic matter and thus ni-
trogen. Areas with coarser soils, such as most of Poland, tend to have
less nitrogen even if other conditions are favourable (e.g. vegetation,
climate).

While the nitrogen concentration is relevant for assessing stocks and
potential N2O emissions, the ratio between carbon and nitrogen can
better represent the differences in the organic matter composition.

Fig. 9. Map of topsoil potassium content.
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Where higher rates correspond to more oligotrophic soils, typical of
coniferous forests, or to peatland soils, lower rates are typical of more
balanced nutrient-rich soils. Moreover, C:N ratio is a major determinant
in the composition of the soil microbial community (Wan et al., 2015).
However the C:N ratio is in turn influenced by the biota, with microbial
dominated soils having lower C:N ratio than fungal dominated, in a
typical feedback loop.

The map of the C:N ratio shown in Fig. 7 evidences the higher values
in northern areas as well in areas of more intense rainfall. Vegetation
distribution clearly influences the spatial distribution of the C:N ratio
with higher values under coniferous trees and peatlands.

Surprisingly, the C:N ratio is better predicted (in terms of model
error) by the GPR model than the other properties. This is likely due to
the ratio being determined mostly by the vegetation type and not by
other variables such as soil age and the geological makeup.

4.2.4. Topsoil phosphorus and potassium
The map of soil P (Fig. 8) shows a clear trend where land use ap-

pears to have a strong influence. In particular, most of the agricultural
areas have higher levels of P. This is quite evident in areas like the River
Po plain (Italy) where levels of P diverge from the national average. In
general, areas with natural land cover and those with a prevalence of
permanent crops correspond to lower levels of P.

The geological background seems to have a quite small influence,
whereas climate is much more relevant. This is likely due to higher
fertilization rates in relatively wetter climates. The P map produced in
this study confirms models of P fertilization load (Potter et al., 2010).

Soil potassium distribution (Fig. 9) is mostly driven by parent

material chemistry and climate. In particular, lower than average K
concentrations are typical of the sandy soils of northeastern Europe,
and of the relatively young soils of Scandinavia. Moreover, Portugal
and northwestern Spain also exhibit lower levels of potassium likely
due to leaching. In general, soils with higher clay content are better
able to retain K, so the two variables show a similar spatial distribution
(Ballabio et al., 2016).

4.3. Prediction uncertainty

The GPR predictive variance is a measure of uncertainty in the
model prediction. Knowing the prediction uncertainty can be important
when making predictions for areas characterised by different covariates
values, compared to input data. This is analogous to kriging variance.
However, while kriging variance is based on geographic distance, GPR
variance is a function of the kernel distance in the covariates feature
space. So while the patterns of kriging variance can be guessed by the
final user from the spatial distribution of the observations, GPR var-
iance cannot be easily assessed as it only partially depends on the
samples spatial coverage.

Fig. 10 shows the prediction variances for pH, in water and CaCl2
solution, nitrogen and C:N ratio. While only these variables are shown,
maps of variance where produced for every chemical property. As ex-
pected, some of the areas with the highest variance values are asso-
ciated with unsampled areas (i.e. mountain areas above 1000m a.s.l.).
Forest areas also tend to exhibit a relatively higher variance as do areas
where the presence of organic soils is more likely (i.e. Scotland and
Ireland). A similar behaviour is visible in the pH maps; it is worth

Fig. 10. GPR prediction variance for nitrogen, C:N ratio, pH in water and CaCl2 0.01M solution.
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noting that pH measured in water has a generally higher variance than
pH in CaCl2; this reflects the less stable measure of pH in water.

4.4. Data availability

The soil physical properties maps (Ballabio et al., 2016) were made
available through ESDAC in September 2015. According to statistics
derived for a review of LUCAS data (Orgiazzi et al., 2018), the physical
properties are among the most requested datasets with almost 850
logged requests during a three year period (2015–2018). The proposed
chemical properties datasets will be available in ESDAC with the pub-
lication of this study. The availability of data is an important obstacle
for modellers as high spatial resolution datasets are not generally freely
accessible.

5. Conclusions

This study provides a new set of maps of baseline topsoil chemical
properties at 250m resolution for twenty-six countries of the EU, cov-
ering an area of more than 4.5 million km2. The modelling is based on
Gaussian Process Regression technique that allows the estimation of
prediction uncertainty. The best performing prediction was obtained for
the C:N ratio (R2= 0.91), followed by phosphorus and potassium
(R2=0.75). The performance prediction of the rest of chemical prop-
erties in terms of R2 is higher than 0.60 with the exception of CEC
(R2=0.35).

Topsoil pH is influenced by soil parent material, erosional effects,
climate and vegetation. The calcium carbonate content is highly cor-
related with pH, having similar influencing factors. Soil nitrogen dis-
tribution is dependent on soil organic carbon, vegetation and climate
and soil texture. The land use appears to be the main driver for phos-
phorus content in soils, as agricultural areas have higher concentrations
due to fertilizer application. CEC is influenced by the clay distribution
in soils, topography and parent material.

The main limitations of the study are the number of points and the
quality of some input covariates.

With 22,000 sampled locations the LUCAS soil database is unique in
Europe for the number of available observations, its spatial coverage
and its temporal resolution. Moreover, LUCAS soil will be improved by
the additional samples taken in the 2015 and 2018 campaigns.
However, at present the limitation of unsampled areas in mountains
higher than 1000m makes the prediction highly uncertain in those
areas. This limitation was removed in the 2015 survey.

The resolution of the available geological covariates is very coarse
and their influence in the prediction of chemical properties was limited.
On the contrary, the vegetation covariates were the most significant,
which means that better vegetation products such as the ones derived
from the EU-ESA Copernicus program can further improve the derived
chemical property maps in the future.

While LUCAS point data are available upon request from the
European Soil Data Centre (ESDAC), the interpolated maps of chemical
properties offer a better overview of the distribution of soil chemical
properties in the EU to the scientific community and to policy makers.

The chemical properties datasets, together with the physical prop-
erties, contribute to one of the main objectives of the GlobalSoilMap
project (Arrouays et al., 2017), which is to combine worldwide pre-
dictions of soil properties towards a first product of GlobalSoilMap.
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