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Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally
reported as a vasodilator in 1970, has multiple physiological and
pathological effects on development, growth, and the control of neuronal,
epithelial, and endocrine cell functions that in turn regulate ion secretion,
nutrient absorption, gut motility, glycemic control, carcinogenesis, immune
responses, and circadian rhythms. Genetic ablation of this peptide and its
receptors in mice also provides new insights into the contribution of VIP
towards physiological signaling and the pathogenesis of related diseases.
Here, we discuss the impact of VIP on gastrointestinal function and
diseases based on recent findings, also providing insight into its possible
therapeutic application to diabetes, autoimmune diseases and cancer.
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Introduction
Vasoactive intestinal peptide (VIP) is a 28-residue amino acid 
peptide first characterized in 1970 that was initially isolated 
from porcine duodenum1. A member of the secretin/glucagon 
hormone superfamily1,2, VIP is evolutionarily well conserved 
with sequence similarity among fish, frogs, and humans3; among 
mammals, except for guinea pigs and chickens4, the sequence 
similarity is at least 85%5. VIP was initially discovered owing 
to its potent vasodilatory effects (as its name implies). VIP is  
widely distributed in the central and peripheral nervous sys-
tem as well as in the digestive, respiratory, reproductive, and 
cardiovascular systems as a neurotransmitter and neuroendo-
crine releasing factor5,6. These effects contribute to an exten-
sive range of physiological and pathological processes related 
to development, growth, and the control of neuronal, epithelial, 
and endocrine cell function. VIP has also been implicated in the 
regulation of carcinogenesis, immune responses, and circadian  
rhythms7. Here, we focus on current findings related to VIP 
and its signals in the gastrointestinal (GI) tract with regard 
to its effects on secretion, intestinal barrier function, and  
mucosal immunology.

Historical background
In the late 1960s, Dr. Sami I. Said at the Medical College of 
Virginia reported that systemic injection of extracts of mam-
malian lungs produced generalized vasodilation and hypoten-
sion. Together with Dr. Viktor Mutt from Karolinska University, 
Stockholm, Sweden, Dr. Said turned his search from the lung 
to duodenal extracts, which were more readily available, based  
on the premise that the same peptide might be present in other 
organs. They soon discovered that peptide fractions from  
porcine duodenum indeed contained a component with vasodila-
tory activity8, supporting Bayliss and Starling’s assumption 
(made in 1902 during their discovery of secretin) that a  
“vasodepressor principle” was present in intestinal extracts9.

A few years later, VIP was identified in the central and periph-
eral nervous systems10 and has since been recognized as a 

widely distributed neuropeptide, acting as a neurotransmit-
ter or neuromodulator in many organs and tissues, including 
the heart, lung, thyroid gland, kidney, immune system, urinary  
tract, and genital organs3. VIP’s presence across numerous 
locations is related to its participation in a vast number of  
biological events11.

Structure and classification
The three-dimensional structure of VIP is similar to that of 
other members of the glucagon and secretin family2, in which 
the structure, function, and signaling activity of pituitary ade-
nylyl cyclase-activating peptide (PACAP) is the most closely 
related peptide to VIP, sharing 68% sequence homology11.  
VIP is cleaved from a ~9 kb precursor molecule, prepro-
VIP, located in the chromosomal region 6q24 containing 
seven exons6, each encoding a functional domain. The signal  
peptidase located in the endoplasmic reticulum cleaves the  
signal peptide from the 170-amino-acid prepro-VIP, then forms 
a 149-amino-acid precursor peptide termed pro-VIP, which is  
then cleaved by prohormone convertases to a form of VIP pre-
cursor containing the internal cleave-amidation site Gly–Lys–
Arg (GKR) (VIP–GKR; prepro-VIP

125–155
)12 (Figure 1). The 

KR residues of VIP-GKR are then cleaved by carboxypepti-
dase B-like enzymes to VIP-G13, which is then metabolized 
by peptidyl-glycine alpha-amidating monooxygenase (PAM)  
to VIP, which has an amidated C-terminus11 (Figure 1). Pre-
pro-VIP also contains a bioactive hormone, peptide histidine 
methionine (PHM) in humans or peptide histidine isoleucine 
(PHI) in other mammals; PHM/PHI are less potent than VIP14. 
VIP varies its conformation depending on the environment. 
Most notably, its α-helical forms are present when VIP is in the  
presence of an anionic lipid bilayer or liposomes when bound to 
receptors5.

VIP and its receptors
The two receptors that recognize VIP, termed VPAC1 and 
VPAC2, are class B of G-protein-coupled receptors (GPCRs), also 
known as the secretin receptor family, which includes receptors 

Figure 1. Processing of prepro-VIP to VIP. PHI, peptide histidine isoleucine; PHM, peptide histidine methionine; VIP, vasoactive intestinal 
peptide; VIP–GKR, VIP precursor containing the internal cleave-amidation site Gly–Lys–Arg.
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for VIP, PACAP, secretin, glucagon, glucagon-like peptide 
(GLP)-1 and -2, calcitonin, gastric inhibitory peptide (GIP), 
corticotropin-releasing factor (CRF)-1 and -2, and parathyroid 
hormone (PTH). VPAC1 and VPAC2 are activated by VIP and  
PACAP15, whereas PACAP has its own specific receptor, 
named PAC1, for which VIP has very low affinity16. Through 
these receptors, VIP can mediate an extensive number of GI 
functions such as regulating gastric acid secretion, intesti-
nal anion secretion, enzyme release from the pancreas, cellular  
motility, vasodilation, and intestinal contractility17–19. The 
localization of VIP, VPAC1, and VPAC2 is closely related to 
their physiological and pathological functions, which are also  
discussed under the heading “Functions in the GI tract”.

Localization of VIP
VIP is produced in the neurons in the central and peripheral 
nervous systems. VIP is mainly localized in the myenteric and 
submucosal neurons and nerve terminals in the GI tract20,21. 
Endogenous VIP is released by numerous stimuli such as acetyl-
choline (ACh)22, ATP23, serotonin (5-HT)24, substance P (SP)25, 
GLP-226, and xenin-2527 from at least two populations of  
VIP-positive nerves: cholinergic and non-cholinergic VIP-releas-
ing nerves. In guinea pig small intestine, most VIP-positive nerves  
in the mucosa and submucosa are non-cholinergic secreto-
motor neurons28 and well colocalized with neuronal nitric  
oxide synthase (nNOS) in human colonic circular muscles29.

VIP is also expressed in immune cells, such as activated  
T cells30,31, and therefore present in lymphoid tissues includ-
ing Peyer’s patches, the spleen, and lymph nodes, in addition 
to the VIP-ergic innervation in lymphoid tissues. VIP is pro-
duced by immune cells including T cells, B cells, mast cells, and  
eosinophils stimulated by lipopolysaccharide (LPS) and proin-
flammatory cytokines including tumor necrosis factor (TNF)-α,  
interleukin (IL)-6, and IL-1β32.

Interestingly, VIP-positive parasympathetic nerves are present 
in the pancreatic islet, and vagal stimulation increases the 
release of VIP in the canine islet33. PACAP is also present in  
the pancreatic islet and amplifies the glucose-induced insulin  
secretion34. These findings suggest that VIP and PACAP modu-
late glucose-induced insulin secretion, similar to the incretins  
GLP-1 and GIP.

Phenotype of VIP deficiency
The VIP knockout (KO) mouse exhibits phenotypes, including 
disturbances of circadian rhythm35, inflammatory responses36,37, 
and metabolism38. In the GI tract, VIP KO mice exhibit abnor-
malities of the small intestine rather than of the colon, with 
increased villus length, reduced mucus secretion, thick-
ened muscle layers, and impaired GI transit39. Furthermore,  
VIP deficiency increases small intestinal crypt depth with 
increased crypt cell proliferation, which is not reversible with 
exogenous VIP treatment40. In contrast, the colon of VIP KO 
mice exhibits decreased crypt height with reduced cell prolif-
eration and increased apoptosis, reduced mucus production,  
and increased fluorescein-dextran 4000 (FD4) permeability37.  

Interestingly, exogenous VIP treatment of VIP KO mice 
restores these changes in the colon37 but does not reverse the 
mucosal changes in the small intestine as mentioned above40.  
Therefore, the physiological and pathological contribu-
tions of VIP towards growth and development may differ  
among GI segments.

VPAC1 in the GI tract
VPAC1, for which no receptor splice variant is known, 
was first isolated and identified from the rat lung and later  
identified in human tissues. The majority of VIP actions are 
mediated through the VPAC1 receptor expressed on the epi-
thelial cells, cholinergic excitatory motor neurons innervating  
longitudinal muscles, cholinergic secretomotor neurons, and 
mucosal mast cells41,42. Selective agonists and antagonists 
have been synthesized for its anticipated experimental and  
clinical use15,43.

VPAC1 in mice and humans is predominantly expressed in 
the colon relative to the small intestine44 and is predomi-
nantly expressed in the mucosa and submucosa compared to 
the muscle layers in rat ileum27, suggesting that VIP effects on  
epithelial functions, including ion transport, mucus secre-
tion, tight junction protein expression, and cell proliferation, 
are mainly mediated via VPAC1 activation. VPAC1 localization  
in the epithelial cells is thought to be on the basolateral mem-
branes, since serosally applied VIP increases electrogenic anion 
secretion in the small and large intestine45,46. Nevertheless,  
the exact localization of VPAC1 on the basolateral mem-
branes of epithelial cells has not been reported, whereas VPAC1 
was immunolocalized to the apical membranes of mouse and 
human colonic epithelial cells44. Functional studies of VPAC1  
activity through the apical membranes of colonocytes are  
awaited.

VPAC1 is constitutively expressed on T cells and macrophages 
but less on dendritic cells, mast cells, and neutrophils11. VIP  
differentially induces histamine release from mast cells in that 
peritoneal mast cells respond to VIP more than intestinal mucosal 
mast cells47, likely corresponding to the VPAC1 activation  
on mast cells.

VPAC1 KO mice exhibit impaired neonatal growth and increased 
post-weaning death due to intestinal obstruction and hypogly-
cemia, histologically with increased mucosal cell proliferation, 
bowel wall thickening, and smaller pancreatic islet size48,  
suggesting that VPAC1 is essential for the normal development  
of the intestinal tract and the endocrine pancreas.

VPAC2 in the GI tract
VPAC2 receptors are predominantly expressed in smooth mus-
cles throughout the GI tract and in vascular smooth muscles in 
humans49 and mice50. Interestingly, thyroid follicles also show 
VPAC2-specific binding50. Although VPAC2 expression in 
nerves and follicles in the thyroid and parathyroid is reported51,  
there is no evidence of thyroid or PTH release by VIP or 
PACAP, whereas VIP increases thyroid blood flow52. VPAC2 
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is also expressed at a high level in pancreatic β cells53. VPAC2 
is upregulated in activated macrophages induced by LPS  
and T helper (Th) cells induced by IL-4 stimulation11.

VPAC2 KO mice showed significant growth impairment, 
decreased fat mass and increased lean mass, increased insulin 
sensitivity, and increased basal metabolic rate with lower serum 
thyroid hormone (free T3) levels and lower serum insulin-like 
growth factor-1 only in young females54. Another group reported 
that VPAC2 KO mice exhibited impaired circadian rhythms 
with reduced metabolic rates and disrupted feeding rhythm55.  
However, the basal phenotype of the GI tract of VPAC2 KO 
mice has not been reported, although VPAC2 KO mice exhibit 
enhanced susceptibility to chemically induced colitis56. Pre-
dominant VPAC2 expression in GI smooth muscles predicts 
impaired intestinal motility in VPAC2 KO mice, since VIP 
KO mice show delayed intestinal transit39. Similarly, although  
chemically induced colitis was less severe in PACAP KO 
mice57, the intestinal phenotype of PACAP KO mice has not  
yet been reported.

Functions in the GI tract
Prosecretory action of VIP
VIP released from enteric nerves stimulates anion secretion 
from the enterocytes via G

s
-coupled VPAC1 activation58, fol-

lowed by adenylyl cyclase activation, increased intracellular 
cAMP, protein kinase A (PKA) activation, and cystic fibrosis 
transmembrane conductance regulator (CFTR) activation46,59. In  
the duodenum, exogenous VIP increases protective HCO

3
– secre-

tion via a CFTR-dependent pathway46. In the ileum and colon, 
VIP increases electrogenic Cl– and HCO

3
– secretion27,45,59.  

VIP also increases Cl– secretion in porcine gallbladder60 and 
increases porcine pancreatic fluid and HCO

3
– secretion61.

Hypersecretion of VIP leads to severe watery diarrhea in 
humans. VIP-secreting endocrine tumors termed VIPo-
mas are the best-characterized models of increased endog-
enous VIP secretion. Hypersecretion of VIP by this ectopic 
tumor causes large-volume watery diarrhea, hypokalemia, and  
achlorhydria known as pancreatic cholera, the Verner– 
Morrison syndrome, or the WDHA syndrome62, due to the 
action of VIP on VPAC1 receptors in the intestinal mucosa that  
increases Cl– and water movement into the intestinal lumen58. 
One case report shows that a patient with WDHA syndrome 
was successfully treated with octreotide, a somatostatin ana-
log, and octreotide-based radionuclide scanning localized 
the pancreatic tumor, which was VIP and VPAC1 positive by  
immunohistochemistry63, suggesting that hypersecretion of  
VIP from a VIPoma affects tumor growth and that VIP release 
is modified via VPAC1 activation with positive or negative 
feedback. VIP and PACAP also stimulate amylase secretion 
from pancreatic acini of rat and guinea pig via both VPAC1  
and VPAC2 activation64.

Vasodilatory action of VIP
VIP acts as a potent vasodilator. Close intra-arterial infusion 
of VIP increases blood flow in the gastric, small intestinal, 
and colonic mucosa in cats and rats65,66. In contrast, systemic  

intravenous (IV) infusion of VIP decreases mucosal blood flow 
in the rat duodenum, accompanied by systemic hypotension67. 
Vasodilatory effects of VIP are mediated via VPAC1 activa-
tion on endothelial cells, followed by release of NO, and via  
VPAC2 activation on vascular smooth muscle cells in the por-
cine basilar arteries68. Although the detailed mechanisms of 
VIP-induced vasodilation in the GI mucosa are not fully under-
stood, the basilar artery study suggests that VIP-induced mucosal 
hyperemia may be mediated via direct activation of vascular 
smooth muscle VPAC2 and indirectly via VPAC1 activation 
with NO release. Close intra-arterial infusion of ATP increases  
gastric and small intestinal mucosal blood flow concomitant 
with parallel release of VIP69, suggesting that neural ATP release 
and P2 receptor activation on VIP-ergic nerves may induce 
vasodilation via VIP release. VIP also inhibits lymphatic ves-
sel pumping via VPAC2 activation on lymphatic smooth muscle  
cells70, suggesting that locally released VIP modulates lymph  
drainage and is implicated in inflammation-associated edema.

Smooth muscle contraction and relaxation by VIP
VIP contracts and relaxes GI smooth muscles. Rabbit and 
guinea pig gastric and tænia coli smooth muscle cells express 
only VPAC2, not VPAC1 or PAC171. Autoradiography using a 
VPAC2-selective agonist demonstrated that VPAC2 is predomi-
nantly expressed on smooth muscle cells of the vasculature of 
the smooth muscle layers of the GI tract50. Human gastric smooth 
muscle cells are relaxed in response to VIP, most probably via  
VPAC2 activation72. Selective VPAC2 agonists, not VPAC1 
agonists, relax pre-contracted longitudinal muscles of rat  
fundic stomach73. In contrast, VPAC1 is expressed on the 
myenteric neurons colocalized with choline acetyltransferase  
(ChAT), and VIP contracts longitudinal muscles of guinea 
pig jejunum via muscarinic receptor and VPAC1 activation41,  
suggesting that VPAC1 activation releases ACh from  
secretomotor neurons. PACAP-induced, non-adrenergic, non-
cholinergic (NANC) relaxation of longitudinal muscle of  
the proximal colon is markedly reduced in PAC1 KO mice74, 
suggesting that PAC1 expressed on NANC nerves mediates 
PACAP-induced relaxation and PACAP may also directly activate  
VPAC2 on smooth muscle cells, and then induce relaxation.

Gastric inhibitory action of VIP
VIP inhibits gastric acid secretion via inhibition of gastrin 
release in dogs75,76. PACAP also inhibits gastric acid secre-
tion stimulated by pentagastrin and histamine77. A study using 
isolated histamine-containing enterochromaffin-like (ECL) 
cells and somatostatin (SST)-containing D cells demonstrate 
that PAC1 is expressed on ECL cells and PACAP, not VIP,  
increases histamine release from ECL cells, whereas D cells 
release SST in response to both VIP and PACAP78. Fur-
thermore, SST blockade with specific antibodies enhanced 
PACAP-induced gastric acid secretion in rats in vivo78. VIP-
positive and PACAP-positive nerves are present in the gastric 
mucosa79,80. Fluorescent protein-tagged reporter mice for SST  
demonstrate that purified D cells express VPAC1 and release 
SST in response to VIP81. These results suggest that VIP inhib-
its gastric acid secretion via VPAC1 activation on D cells 
and SST release, whereas PACAP stimulates acid secretion  
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via histamine release from ECL cells, parallel with SST release 
from D cells via VPAC1 activation.

VIP effects on epithelial paracellular permeability
VIP modulates epithelial paracellular permeability via regula-
tion of the expression and function of epithelial tight junction 
proteins. VIPergic pathways increase the expression of the tight 
junction protein zonula occludens-1 (ZO-1) in human polarized 
colonic epithelial monolayers co-cultured with human submu-
cosa containing the submucosal plexus, associated with reduced 
epithelial paracellular permeability82. VIP also ameliorates  
bacterial infection-induced intestinal barrier disruption by pre-
venting the translocation of tight junction proteins ZO-1, 
occludin, and claudin-3 in a Citrobacter rodentium-induced  
colitis model83.

Mucosal inflammation increases epithelial paracellular perme-
ability primarily due to the alteration of the epithelial tight junc-
tion complex by TNF-α and interferon (IFN)-γ derived from 
activated macrophages and T cells84. Since VIP and PACAP 
equally reduce TNF-α release from activated macrophages 
induced by LPS85, and since VPAC2 reduces the activation  
of inflammatory cells86, VIP–VPAC2 signaling may modify the 
epithelial paracellular permeability changes during intestinal  
inflammation.

VIP and irritable bowel syndrome
Irritable bowel syndrome (IBS) is a chronic symptomatic GI dis-
order characterized by abdominal pain with altered bowel func-
tion, typically constipation and/or diarrhea. IBS with diarrhea 
(IBS-D) correlates with increased mast cell function and VIP 
release. Mast cell number and tissue immunoreactivity for  
substance P and VIP are greater in IBS-D patients, especially in 
women87. A recent study shows that female IBS patients have 
higher plasma VIP and higher mast cell tryptase content and 
mast cell number in colonic biopsies compared to data from  
controls88. Furthermore, colonic biopsies show greater tran-
scellular bacterial passage and a higher percentage of mast 
cells that express VPAC1 than do biopsies from controls.  
Bacterial passage through the colonic biopsies was inhibita-
ble with anti-VPAC antibodies or with the mast cell stabilizer  
ketotifen88. These data suggest that mast cells and VIP 
are key modifiers of bacterial translocation in the colonic 
mucosa of IBS patients. However, the observations of colonic 
mucosal barrier function and the roles of VIP and mast 
cells in colonic biopsies require confirmation in patients  
with IBS in vivo.

Stress is a key factor in IBS pathogenesis. One of the stress-
induced hormones is corticotropin-releasing factor (CRF), 
which is an important bioactive molecule not only in the cen-
tral nervous system but also in the peripheral enteric nerv-
ous system. Stress-induced defecation and diarrhea in rodents 
is induced by peripheral administration of CRF via CRF1  
receptor activation89. Peripheral CRF-induced defeca-
tion and diarrhea involves VIP signals via the activation of 
CRF1-positive VIPergic submucosal neurons90, suggesting 
that stress-induced diarrhea observed in IBS-D patients can  

be treated with VPAC1 antagonists that reduce the volume  
and frequency of bowel movements58.

VIP and immunity
The GI mucosa is the largest immune system in the body, 
likely owing to its status as the largest area of interface with 
the outside world. The GI tract contains luminal microbiota 
and numerous immune cells in the epithelium, lamina propria 
mucosa, and lymphoid follicles91. VIP, as an anti-inflammatory 
mediator, downregulates the abundance of pro-inflammatory  
cytokines and mediators such as TNF-α, IL-6, IL-12, nitric 
oxide, and chemokines92. VIP, which is also produced by 
type 2 lymphocytes (Th2), could also be classified as a Th2 
cytokine31,92. The potent anti-inflammatory effects of VIP may 
result from its promotion of Th cell differentiation toward a 
“Th2” phenotype11. Moreover, VIP also increases regulatory  
T cell production while inhibiting macrophage pro-inflammatory 
actions, all contributing to its anti-inflammatory effects.

VIP maintains immunological tolerance and homeostasis in 
the gut primarily by regulation of T cell responses and Toll-like 
receptor (TLR)-mediated innate immune responses. VPAC1 
is primarily expressed on T cells, whereas VPAC2 expres-
sion is induced by inflammation92. The anti-inflammatory 
effects of VIP are principally mediated via VPAC2 activation,  
which suppresses Th1 and Th17 functions and induces Th2 
and regulatory T cells, resulting in immunosuppression86. 
Therefore, the immunomodulatory actions of VIP expand its 
abilities to treat acute and chronic inflammatory and autoim-
mune diseases, including sepsis93, multiple sclerosis94, Crohn’s  
disease95, and type 1 diabetes96.

VIP and inflammatory bowel diseases
VIP was proposed as a biomarker for inflammatory bowel dis-
ease (IBD) such as Crohn’s disease and ulcerative colitis in 
a study reporting elevated VIP plasma concentrations dur-
ing the active inflammatory disease phase97. A recent study 
also reported that VIP content is higher in plasma and in ileal 
or colonic tissues resected from Crohn’s disease or ulcerative  
colitis patients, respectively, than those from healthy  
subjects98. Furthermore, the anti-inflammatory properties of  
VIP on Th1 immunity, which is involved in autoimmune dis-
eases including IBD, suggest that VIP is involved in the patho-
genesis of IBD and may be a therapeutic target. Nevertheless, the 
connection of VIP with animal models of colitis related to IBD 
has yet to be fully elucidated. The contribution of VIP towards 
the pathogenesis of dextran sulfate sodium (DSS)-induced  
and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced  
models of colitis in mice is controversial18.

The first report regarding VIP and colitis is that exogenous VIP 
improves TNBS-induced colitis in BALB/c mice, most likely 
via VPAC1 activation with anti-inflammatory and Th1–Th2 
switching effects of VIP99. Notably, higher doses of VIP likely 
aggravate the colitis99. Later, another group reported that VIP 
administration by constant infusion enhanced the severity  
of TNBS-induced colitis100. Subsequently, genetically modi-
fied animal models have been used to clarify the contributions 
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of endogenous VIP and its receptors to the pathogenesis of 
colitis. In the DSS-induced colitis model, VPAC1 KO mice are 
resistant to DSS-induced colitis, whereas colitis is exacerbated 
in VPAC2 KO mice; PKA inhibitors reverse the impairment  
of DSS colitis in VPAC2 KO mice, suggesting that enhanced 
VPAC1 activity in VPAC2 KO mice may aggravate DSS  
colitis56 or is alternatively explained by the protective effects 
of VPAC2 during the development of DSS-induced colitis,  
since VPAC2 activation inhibits Th1 signals11.

In VIP KO mice, DSS treatment had no effect on colitis in 
males, compared to wild-type males, whereas body weight 
loss and disease activity index in females was less frequently 
observed in VIP KO subjects40, suggesting that VIP may have 
enhanced pro-inflammatory functions in females. Furthermore, 
male VIP KO mice or wild-type mice treated with a pan-VIP 
receptor antagonist (VIP-hybrid101) or the selective VPAC1  
antagonist (PG97-269)15 are resistant to DSS-induced coli-
tis with reduced levels of colonic inflammatory mediators and 
cytokines102, suggesting that VIP acts as a pro-inflammatory  
mediator. In TNBS-colitis, VIP KO mice are resistant to coli-
tis with lower levels of TNF-α and IL-6103. Similar resistant 
phenotypes are observed in a VIP KO with LPS-induced endo-
toxemia model, where LPS induced less mortality in VIP KO 
mice36, and with the experimental autoimmune encephalomy-
elitis (EAE) model, where clinical scores were less in VIP KO  
mice104. Nevertheless, VIP KO mice develop more severe coli-
tis in the DNBS- or DSS-induced colitis models, which is res-
cued by exogenous VIP treatment37. Most recently, a recom-
binant stable VIP analog (rVIPa) was reported to ameliorate 
TNBS-induced colonic injury and inflammation, effectively  
preserving intestinal mucosal barrier function in rats105, most likely 
owing to increased stability of the VIP analog.

These discrepancies between anti-inflammatory and pro-inflam-
matory effects of VIP on chemically induced colitis models 
may reflect the differences between endogenous and exog-
enous effects of VIP due to dose effects and peptide stability in  
the tissues and circulation because VIP is rapidly degraded by 
dipeptidyl peptidase 4 (DPP4), similar to the incretins106, and 
by other peptidases. Furthermore, genetic deficiency of VIP  
or VPAC irreversibly alters epithelial, neural, and immune 
responses during development. Another possibility is that tar-
gets of VIP may induce opposite effects on inflammation; 
VPAC2 activation on T cells shifts Th1 to Th2 differentia-
tion as anti-inflammatory, whereas VPAC1 activation of epi-
thelial cells increases anion and water secretion, with resultant  
diarrhea, which may affect the disease activity of colitis. 
VPAC2 activation of GI smooth muscles increases GI motility, 
whereas impaired motility in VIP KO or VPAC2 KO may affect 
GI transit, affecting the exposure time to luminal toxic chemi-
cals such as DSS in drinking water. Therefore, cell-specific,  
conditional knockout will clarify these contradictory results.

VIP/PACAP and diabetes
The metabolic syndrome, including type 2 diabetes and obes-
ity, is also a GI-related disorder, since insulinotropic hormones,  

termed incretins, including GLP-1 and GIP, are secreted 
from enteroendocrine L and K cells, respectively. As men-
tioned above, vagal stimulation increases the release of PACAP  
and VIP in pancreatic islets, suggesting that PACAP and 
VIP modulate insulin secretion from β cells through the  
activation of cognate receptors.

Pancreatic islet β cells express PAC1 and VPAC2 with less 
VPAC128. Selective VPAC2 agonists are insulinotropic, simi-
lar to PACAP and GLP-1, amplifying glucose-induced insulin 
secretion107. VIP KO mice exhibit elevated plasma glucose, insu-
lin, and leptin levels with no change in islet mass38, probably 
due to the compensatory effect of PACAP. In VPAC2 KO mice,  
glucose-induced insulin secretion is decreased with no change 
in glucose tolerance. VPAC1 KO mice show growth retarda-
tion, intestinal obstruction, and hypoglycemia48, suggesting 
that VPAC1 is also involved in glucagon secretion, which  
counteracts the hypoglycemic effects of insulin. In isolated  
perfused pancreas, PAC1 KO mice exhibit a 50% reduction of  
the PACAP-induced insulin secretory response, whereas  
VIP-induced insulin secretion is unchanged108, suggesting that the 
insulinotropic action of PACAP is partially mediated by PAC1. 
Therefore, VPAC2 agonists and PAC1 agonists are candidates for 
the therapy of type 2 diabetes.

VIP/PACAP and cancers
Human cancers including bladder, breast, colon, liver, lung, 
pancreatic, prostate, thyroid, and uterine cancers often over-
express VPAC1, whereas VPAC2 is limited in stromal tumors 
such as gastric leiomyomas, sarcomas, and neuroendocrine 
tumors109. Since VPAC1 is normally expressed in the epi-
thelium and VPAC2 in smooth muscle in the GI tract, these  
expression profiles may reflect their tumor expression with 
VPAC1 in adenocarcinoma and VPAC2 in stromal tumors. 
PAC1 is also expressed in diverse tumors including brain, breast, 
colon, lung, neuroendocrine, pancreas, pituitary, and pros-
tate tumors as well as neuroblastomas110. This suggests that  
VIP/PACAP may affect tumor growth and differentiation. VIP 
and PACAP stimulate the growth of several cancer cell lines  
in vitro110, supporting this hypothesis.

Regarding the GI tract, colon cancer tissue overexpresses  
VPAC1: in 35% of well-differentiated, 65% of moderately dif-
ferentiated, and 87% of poorly differentiated colon cancers111,  
predicting tumor differentiation can be accomplished by 
measuring VPAC1 levels. Therefore, VPAC1 can be a target 
for anti-cancer drugs, since VPAC1 antagonists inhibit the  
growth of colonic cancer cell lines in vitro112.

Overexpression of VPAC and PAC1 in tumors can be used 
for imaging and targeting tumors using radiolabeled VIP ana-
logues. Clinical studies show that radiolabeled VIP analogues 
localize breast cancer, pancreatic cancer, intestinal adenocarci-
nomas, neuroendocrine tumors, and colorectal cancer using a  
combination of positron emission tomography (PET) and  
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computed tomography (CT) scans110,113. Furthermore, VIP- 
conjugated nanoparticles have been developed to deliver the  
cytotoxic drug to tumor cells overexpressing VPAC114.

Therapeutic potential of VIP
Since VIP contributes to important physiological functions 
including anion secretion, the regulation of permeability of epi-
thelial tight junctions, mucosal inflammation, glycemic control,  
Th1–Th2 balance, and tumor growth, VIP has been sug-
gested to be a therapeutic target for diseases such as diarrhea58,  
IBD95, diabetes28, autoimmune diseases115, neurodegenerative 
disorders116, lung disease117,118, sarcoidosis119, and cancers114.  
Although VIP has well-studied anti-inflammatory and other 
therapeutic potential, VIP-based drug design has not been 
entirely successful because rapid degradation of the peptide 
limits its bioavailability and delivery. Furthermore, multiple  
cellular targets that bind VIP at high affinity may cause unde-
sirable adverse effects. Therefore, synthesis of a stable VIP 
analog, or the targeted delivery of VIP or its analogs via  
nanoparticles are desirable options.

Recent advances in the field include the synthesis of stable ana-
logs such as lipophilic or peptide VIP derivatives that mimic 
the activity of native VIP120. Another strategy is VIP self-
associated with sterically stabilized micelles, which protects 

VIP from degradation and inactivation115. Injection of VIP-
induced regulatory dendritic cells ameliorates TNBS-induced  
colitis models in mice95. VIP gene transfer using lentivirus is 
also useful to induce immunosuppression in the murine arthri-
tis model121. Finally, VIP-tagged nanoparticles may be a useful 
strategy for selective drug delivery to VPAC-overexpressing  
tumor cells and immune cells114,122.

Summary and conclusions
Since its discovery in 1970, VIP has been studied in numer-
ous organ systems including the gastrointestinal, respiratory, 
cardiovascular, immune, endocrine, and central and periph-
eral nervous systems, where it exerts numerous important 
effects (Figure 2). Nevertheless, owing to its protean and wide-
spread effects on numerous organ systems combined with its  
inherent instability, VIP has been challenging to clearly  
discern and analyze regarding its influence on isolated patho-
physiological functions. Specifically, in the gut, VIP has thera-
peutic potential for a variety of inflammatory disorders such  
as IBD. The recent progress of VIP-related medicine is aimed 
at improvement of its stability, selectivity, and efficacy with 
reduced adverse effects. In order to make optimal therapeu-
tic use of, it is essential to further study its localization and  
actions, working towards selective targeting or individual  
effects.

Figure 2. Broad multiple functions of vasoactive intestinal peptide in various organs. Number in parenthesis represents the corresponding 
reference number.
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